From Artin

Chapter 7 (page 224) 7.2, 8.1, 8.3, 8.5.

Chapter 11 (page 354) 1.6, 1.7, 1.8.

Others:

1. Prove that there is no simple group of order 56.

2. Finish the proof that there are no non-abelian simple groups of order \(n \leq 100 \) with \(n \neq 60 \) (i.e. finish the product of three primes case).

3. Prove that if \(H \neq 1 \) is a normal subgroup of \(A_5 \) then \(H \) contains a 3-cycle.

4. Prove that if \(|G| = 60 \) and \(G \) contains more than one Sylow 5-subgroup then \(G \) is simple.

5. Prove that a group of order 108 has a normal subgroup of order 9 or 27.

6. (Tricky) Suppose that \(|G| = 231 = 3 \cdot 7 \cdot 11 \). Show that the Sylow 7 and 11 subgroups are normal and that the Sylows 11-subgroup is contained in \(Z(G) \).

7. Let \(G \) be a finite group, \(H \) a normal subgroup of \(G \) and \(P \) a Sylow \(p \)-subgroup of \(H \). Show that \(G = HN_G(P) \) and \([G : H]\) divides \(|N_G(P)|\). (This is known as Frattini’s argument.)

8. Let \(\mathbb{Z}[^\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \). Prove that this ring has infinitely many units.

9. Let \(R \) be a commutative ring with 1, and let \(R[x] = \{\text{polynomials with coefficients in } R\} \).
 (a) Prove that \(R[x] \) is a commutative ring with 1.
 (b) Prove that if \(R \) is an integral domain, then \(R[x] \) is an integral domain.
 (c) What are the units in \(R[x] \)?