From Artin
Chapter 11 (pages 354–357) 3.2, 3.5, 3.8 (just take \(R = \mathbb{F}_p \)), 3.9, 3.12, 3.13, 7.5.

Others:
1. Let \(R = \mathbb{F}_2[x] \) and \(p(x) \in R \) given by \(x^2 + x + 1 \). Prove that \(R/ < p(x) > \) is a field with four elements.
2. The center of a ring \(R \) (with 1) is:
\[
Z(R) = \{ z \in R : rz = zr \ \forall r \in R \}.
\]
 (a) Prove that \(Z(R) \) is a subring of \(R \) that contains the identity.
 (b) Prove that the center of a division ring is a field.
3. Let \(G \) be a finite group, and \(R \) a commutative ring with 1. Prove that \(Z(RG) \) is non-trivial. (Hint: sum all the elements of \(G \)).
4. Which of the following are ideals of \(\mathbb{Z}[x] \)?
 (a) the set of all polynomials with constant term a multiple of 3.
 (b) the set of all polynomials whose coefficient of \(x^2 \) is a multiple of 3.
 (c) the set of polynomials in which only even powers of \(x \) appear.
 (d) the set of polynomials \(p(x) \) such that \(p'(0) = 0 \) (where \(p'(x) \) is the usual derivative function).
5. Prove that \(M_2(\mathbb{R}) \) contains a subring isomorphic to \(\mathbb{C} \).
6. Let \(R \) be a commutative ring with 1.
 (a) Define
 \[
 \text{rad } I = \{ r \in R : r^n \in I \text{ for some } n \in \mathbb{N} \}.
 \]
 Prove that \(\text{rad } I \) is an ideal of \(R \) containing \(I \) (called the radical of \(I \)).
 (b) An element \(a \in R \) is called nilpotent if \(a^m = 0 \) for some \(m \geq 1 \). Prove that the set of nilpotent elements form an ideal (the nilradical), and that \(1 + a \) is a unit.
 (c) What is \(\text{rad } I/I \)?
7. Determine the nilpotent elements of \(\mathbb{Z}/72\mathbb{Z} \).