373K Algebra I, Homework 5

From Artin
Chapter 2 (p. 74): 11.3, 11.5, 11.6, 11.9.

Others:
1. Let G be a group and $S \subset G$ (only a subset, possibly empty). Let $\langle S \rangle = \cap \{H < G : S \subset H\}$.
 (i) Prove that $\langle S \rangle$ is a subgroup of G, called the subgroup generated by S.
 (ii) Let G denote the dihedral group D_n, ρ a rotation of order n, and σ any reflection. Prove that $\langle \{\rho, \sigma\} \rangle = G$.

2. Referring to Question 1 above. Let G be a group and $S = \{aba^{-1}b^{-1}\}$. The group $\langle S \rangle$ is called the commutator subgroup of G and denote G'.
 (i) Prove that G' is a normal subgroup of G.
 (ii) Prove that G/G' is abelian.
 (iii) Prove that if N is a normal subgroup of G and G/N is abelian then $G' < N$.

3. Referring to Question 2 above. What is D_4/D_4'?

4. (i) Compute the orders of $\text{PSL}(2, \mathbb{Z}/3\mathbb{Z})$ and $\text{PSL}(2, \mathbb{Z}/5\mathbb{Z})$. Prove that $\text{PSL}(2, \mathbb{Z}/3\mathbb{Z})$ has no subgroup of order 6.
 (ii) Prove that $\text{PSL}(2, \mathbb{Z}/3\mathbb{Z})$ is not simple but $\text{PSL}(2, \mathbb{Z}/5\mathbb{Z})$ is simple.

5. Let G be a finite group, let p be a prime, and let $H < G$ be a normal subgroup. Prove that if H and G/H have orders which are a power of p, then $|G|$ is a power of p.

6. Let $G = S_4$ and $H = \langle 1, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (2 \ 3)(1 \ 4) \rangle$. Prove that $H < G$ is normal and identify G/H.

Sample Midterm 1 Questions

1. Answer the following true or false. You must explain your answers to get full credit.
 (a) There is a non-abelian group of order 17.
 (b) There is a non-abelian group of order 14.
 (c) There is an abelian non cyclic group of order 49.
 (d) S_5 contains an element of order 6.

2. Suppose A is a normal subgroup of G and $H < G$ and these satisfy:
 (i) A is abelian,
 (ii) $A.H = G$.
 Show that $A \cap H$ is a normal subgroup of G.
 \textbf{(Hint:} Show $A \subset N_G(A \cap H)$ and $H \subset N_G(A \cap H)$.)
3. (a) Let G be a group containing normal subgroups H, K such that $H \cap K = 1$ and $G = HK$. Show that G is isomorphic to $H \times K$ (Hint: Consider G/K and G/H).
(b) Use (a) to deduce that an Abelian group of order 9 is cyclic or isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

4. Prove that if $\alpha \in S_n$ is an m-cycle (i.e., has the form $(a_1 \ a_2 \ldots a_m)$ for distinct integers $a_1, \ldots, a_m \in \{1, \ldots, n\}$) then α is a product of transpositions (i.e., permutations of the form $(i \ j)$ for some $1 \leq i \neq j \leq n$).

5. Suppose that G is a group and $N < G$ a normal subgroup. Assume that there is no normal subgroup $M < G$ with $N < M$. Prove that G/N is simple.