1. Solutions

(1.5, 22) (a) Prove that \(\text{Tr}(AA^T) \) is the sum of the squares of all entries of \(A \).
(b) Prove that if \(\text{Tr}(AA^T) = 0 \), then \(A = 0 \).
(c) Prove that \(\text{Tr}(AB) = \text{Tr}(BA) \).

Proof. (a) Consider the \(i \)th diagonal entry of \(AA^T \). This consists of the dot product of the \(i \)th row with itself, which is precisely the sum of the squares of entries in the \(i \)th row. Since the trace is the sum of the diagonals, we see that \(\text{Tr}(AA^T) \) is the sum

\[
\sum_{i,j} A_{ij}^2.
\]

(b) Since each squared term in the sum above is positive, the sum can be zero only if each term is zero. If this happens, then all the entries of \(A \) are zero and so \(A \) must be the zero matrix.
(c) This follows by writing out the formulas for \((AB)_{ii}\) and \((BA)_{ii}\); both are equal sums.

\(\square \)

(1.5, 23) (a) Find a \(2 \times 2 \) idempotent matrix.
(b) Show that

\[
\begin{pmatrix}
-1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{pmatrix}
\]

is idempotent.
(c) If \(A \) is idempotent, show that \((I - A)\) is also idempotent.
(d) Use the previous two parts to get another idempotent matrix.
(e) Show that \(A \) is idempotent if both \(AB = A \) and \(BA = B \).

Proof. (a) Consider

\[
\begin{pmatrix}
1 & 1 \\
0 & 0
\end{pmatrix}
\]

(b) This is easily verified by multiplying.
(c) Since \(A^2 = A \), we see that

\[
(I - A)^2 = (I - A)(I - A) = I^2 - 2IA + A^2 = I - 2A + A = I - A.
\]
(d) Subtracting, we obtain
\[
\begin{pmatrix}
2 & -1 & -1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{pmatrix}
\]

(e) Using the given identities, we obtain
\[A^2 = (AB)A = A(BA) = AB = A.\]

\[\square\]

(2.1, 10) Prove that if more than one solution to a system of linear equations exists, then an infinite number of solutions exists.

Proof. Suppose that \(X_1\) and \(X_2\) are distinct solutions to \(AX = B\). Then for any constant \(c\), we find that
\[A(X_1 + c(X_2 - X_1)) = AX_1 + cAX_2 - AX_1 = B + cAX_2 - AX_1 = B + c(0) = B.\]
That is, \(X_1 + c(X_2 - X_1)\) is also a solution. If \(X_1 + c(X_2 - X_1) = X_1\), then \(c(X_2 - X_1) = 0\) and so \(c = 0\) since \(X_2\) and \(X_1\) are distinct. If \(X_1 + c(X_2 - X_1) = X_2\), then \(c(X_2 - X_1) = X_2 - X_1\) and so \(c = 1\); we can divide since \(X_2 - X_1 \neq 0\). \[\square\]

E-mail address: blumberg@math.utexas.edu