MATH 392: HOMOTOPY TYPE THEORY, PROBLEM SET #4

ANDREW J. BLUMBERG

1. Problems

- (1) Let \mathcal{C} be a category. A monad is a monoid in the category of functors $\mathcal{C} \to \mathcal{C}$, where the product is given by composition. Given a monad M, we denote by $\mathcal{C}[M]$ the category of algebras over M, i.e., objects of \mathcal{C} equipped with a map $MX \to X$ which is associative and unital (with respect to the structure of M).
 - (a) Write out explicitly the requirements for a functor to be a monad. Write out what it means to be an algebra over a monad. A comonad is a comonoid in the category of functors; write this explicitly.
 - (b) Let (F,G) be adjoint functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$. Show that FG is a comonad and GF is a monad.
 - (c) Given an object x in C, Mx is an object of C[M] (the free M-algebra on x). Explain.
 - (d) Given a monad M on C, the Kleisli category C_M has objects simply the objects of C and morphisms $X \to Y$ given by maps $X \to MY$. Relate the Kleisli category to the free algebras.
 - (e) Define an adjunction $F: \mathcal{C} \to \mathcal{C}_M$ and $G: \mathcal{C}_M \to \mathcal{C}$ such that the monad GF is precisely M.
 - (f) Define the coKleisli category. For a fixed object x in a category C with finite products, what is the coKleisli category associated to the comonad $(-) \times x$?
- (2) Write an expression in the untyped λ -calculus that multiplies Church numerals. Write an expression that computes the predecessor of a Church numeral. Contemplate what would be involved in implementing rational arithmetic.
- (3) This problem explores the proof of strong normalization for the simply-typed λ -calculus. (Recall that this theorem says that all expressions in the simply-typed λ -calculus do not give rise to an infinite sequence of $\beta\eta$ -reductions.)
 - (a) Suppose we wanted to run a simple-minded inductive proof of strong normalization (simply using the structure of the expression). Define G to be set of strongly-normalizing expressions. Explain why even if we assume that $M, N \in G$, we can't necessarily conclude that $MN \in G$.
 - (b) Next, for a base type α we define

$$G_{\alpha} = \{ M \colon \alpha \mid M \in G \}$$

Date: October 5, 2014.

ANDREW J. BLUMBERG

and for arbitrary types β and γ we recursively define

 $G_{\beta \to \gamma} = \{ M \colon \beta \longrightarrow \gamma \, | \, MN \in G_{\alpha} \forall N \in G_{\beta} \}.$

- Explain why this fixes the problem with application that arose above.
- (c) Show by induction that $G_{\tau} \subseteq G$ for any τ .
- (d) We'd now like to show that if $x: \beta \models M: \gamma$ and $M \in G_{\gamma}$, then $\lambda x: \beta.M \in G_{\beta \to \gamma}$. Why doesn't this just work?
- (e) Write a complete proof of strong normalization.

 $E\text{-}mail\ address:\ \texttt{blumbergQmath.utexas.edu}$