MATH 392: HOMOTOPY TYPE THEORY, PROBLEM SET \#4

ANDREW J. BLUMBERG

1. Problems

(1) Let \mathcal{C} be a category. A monad is a monoid in the category of functors $\mathcal{C} \rightarrow \mathcal{C}$, where the product is given by composition. Given a monad M, we denote by $\mathcal{C}[M]$ the category of algebras over M, i.e., objects of \mathcal{C} equipped with a map $M X \rightarrow X$ which is associative and unital (with respect to the structure of M).
(a) Write out explicitly the requirements for a functor to be a monad. Write out what it means to be an algebra over a monad. A comonad is a comonoid in the category of functors; write this explicitly.
(b) Let (F, G) be adjoint functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$. Show that $F G$ is a comonad and $G F$ is a monad.
(c) Given an object x in $\mathcal{C}, M x$ is an object of $\mathcal{C}[M]$ (the free M-algebra on x). Explain.
(d) Given a monad M on \mathcal{C}, the Kleisli category \mathcal{C}_{M} has objects simply the objects of \mathcal{C} and morphisms $X \rightarrow Y$ given by maps $X \rightarrow M Y$. Relate the Kleisli category to the free algebras.
(e) Define an adjunction $F: \mathcal{C} \rightarrow \mathcal{C}_{M}$ and $G: \mathcal{C}_{M} \rightarrow \mathcal{C}$ such that the monad $G F$ is precisely M.
(f) Define the coKleisli category. For a fixed object x in a category \mathcal{C} with finite products, what is the coKleisli category associated to the comonad $(-) \times x$?
(2) Write an expression in the untyped λ-calculus that multiplies Church numerals. Write an expression that computes the predecessor of a Church numeral. Contemplate what would be involved in implementing rational arithmetic.
(3) This problem explores the proof of strong normalization for the simplytyped λ-calculus. (Recall that this theorem says that all expressions in the simply-typed λ-calculus do not give rise to an infinite sequence of $\beta \eta$ reductions.)
(a) Suppose we wanted to run a simple-minded inductive proof of strong normalization (simply using the structure of the expression). Define G to be set of strongly-normalizing expressions. Explain why even if we assume that $M, N \in G$, we can't necessarily conclude that $M N \in G$.
(b) Next, for a base type α we define

$$
G_{\alpha}=\{M: \alpha \mid M \in G\}
$$

and for arbitrary types β and γ we recursively define

$$
G_{\beta \rightarrow \gamma}=\left\{M: \beta \longrightarrow \gamma \mid M N \in G_{\alpha} \forall N \in G_{\beta}\right\} .
$$

Explain why this fixes the problem with application that arose above.
(c) Show by induction that $G_{\tau} \subseteq G$ for any τ.
(d) We'd now like to show that if $x: \beta \models M: \gamma$ and $M \in G_{\gamma}$, then $\lambda x: \beta . M \in G_{\beta \rightarrow \gamma}$. Why doesn't this just work?
(e) Write a complete proof of strong normalization.

E-mail address: blumberg@math.utexas.edu

