1. (a) Recall from (14.4) in the lecture notes that a diffeomorphism \(f : Y \to Y \) of a closed manifold \(Y \) determines a bordism \(X_f \). Let \(f_0, f_1 \) be diffeomorphisms. Prove that \(X_{f_0} \) is diffeomorphic to \(X_{f_1} \) (as bordisms) if and only if \(f_0 \) is pseudoisotopic to \(f_1 \).

(b) Find a manifold \(Y \) and diffeomorphisms \(f_0, f_1 : Y \to Y \) which are pseudoisotopic but not isotopic.

2. (a) Let \(S \) be a set with composition laws \(\circ_1, \circ_2 : S \times S \to S \) and distinguished element \(1 \in S \). Assume (i) \(1 \) is an identity for both \(\circ_1 \) and \(\circ_2 \); and (ii) for all \(s_1, s_2, s_3, s_4 \in S \) we have

\[
(s_1 \circ_1 s_2) \circ_2 (s_3 \circ_1 s_4) = (s_1 \circ_2 s_3) \circ_1 (s_2 \circ_2 s_4).
\]

Prove that \(\circ_1 = \circ_2 \) and that this common operation is commutative and associative.

(b) Let \(C \) be a symmetric monoidal category. Apply (a) to \(C(1,1) \), where \(1 \in C \) is the tensor unit.

3. Let \(y \in C \) be a dualizable object in a symmetric monoidal category, and suppose \((y^!, c, e) \) and \((\tilde{y}^!, \tilde{c}, \tilde{e}) \) are two sets of duality data. Prove there is a unique map \((y^!, c, e) \to (\tilde{y}^!, \tilde{c}, \tilde{e}) \).

4. For each of the following symmetric monoidal categories determine all of the dualizable objects.
 (a) \((\text{Top}, \amalg)\), the category of topological spaces and continuous maps under disjoint union.
 (b) \((\text{Ab}, \oplus)\), the category of abelian groups and homomorphisms under direct sum.
 (c) \((\text{Mod}_R, \otimes)\), the category of \(R\)-modules and homomorphisms under tensor product, where \(R \) is a commutative ring.
 (d) \((\text{Set}, \times)\), the category of sets and functions under Cartesian product.

5. Recall that every category \(C \) has an associated groupoid \(|C|\) obtained from \(C \) by inverting all of the arrows. What is \(|\text{Bord}_{(1,2)}|\)? \(|\text{Bord}^{\text{Spin}}_{(1,2)}|\)? What are all \(\text{Vect}_C\)-valued invertible topological quantum field theories with domain \(\text{Bord}_{(1,2)}\)? \(\text{Bord}^{\text{Spin}}_{(1,2)}\)?

6. Fix a finite group \(G \). Let \(C \) denote the groupoid \(G//G \) of \(G \) acting on itself by conjugation. Let \(D \) denote the groupoid of principal \(G \)-bundles over \(S^1 \). (A principal \(G \)-bundle is a regular, or Galois, cover with group \(G \).) Prove that \(C \) and \(D \) are equivalent groupoids. You should spell out precisely what these groupoids are.
7. Explain why each of the following fails to be a natural map \(\eta: F \to G \) of symmetric monoidal functors \(F, G: C \to D \).

(a) \(F, G \) are the identity functor on \(\text{Vect}_k \) for some field \(k \), and \(\eta(V): V \to V \) is multiplication by 2 for each vector space \(V \).

(b) \(C, D \) are the category of algebras over a field \(k \), the functor \(F \) maps \(A \mapsto A \otimes A \), the functor \(G \) is the identity, and \(\eta(A): A \otimes A \to A \) is multiplication.

8. In this problem you construct a simple TQFT \(F: \text{Bord}_{(0,1)} \to \text{Vect}_\mathbb{Q} \). For any manifold \(M \) let \(\mathcal{C}(M) \) denote the groupoid of principal \(G \)-bundles over \(M \), as in Problem 6.

(a) For a compact 0-manifold \(Y \), define \(F(Y) \) as the vector space of functions \(\mathcal{C}(Y) \to \mathbb{Q} \). Say what you mean by such functors on a groupoid.

(b) For a closed 1-manifold \(X \) define

\[
F(X) = \sum_{[P] \in \pi_0 \mathcal{C}(X)} \frac{1}{\# \text{Aut}(P)},
\]

where the sum is over equivalence classes of principal \(G \)-bundles. Extend this to all bordisms \(X: Y_0 \to Y_1 \).

(c) Check that \(F \) is a symmetric monoidal functor.

(d) Calculate \(F \) on a set of duality data for the point \(\text{pt} \in \text{Bord}_{(0,1)} \). Use it to compute \(F(S^1) \).

9. Fix a nonzero number \(\lambda \in \mathbb{C} \). Construct an invertible TQFT \(F: \text{Bord}^{SO}_{(1,2)} \to \text{Vect}_\mathbb{C} \) such that for a closed 2-manifold \(X \) we have \(F(X) = \lambda^{\chi(X)} \), where \(\chi(X) \) is the Euler characteristic. Can you extend to the bordism category \(\text{Bord}^{SO}_{(1,2)} \)?