1. Here are some problems concerning invertibility in symmetric monoidal categories, as in Lecture 17.
 (a) Construct a category of invertibility data (Definition 17.18), and prove that this category is a contractible groupoid.
 (b) Prove Lemma 17.21(i).
 (c) Let $\alpha: \text{Bord}^{SO}_{(0,1)} \to C$ be a TQFT. Prove that if $\alpha(\text{pt}_+) \in C$ is invertible, then α is invertible.

2. Compute the invariants of the Picard groupoid of superlines. (See (17.27) and (17.35) in the notes.)

3. Show that a special Γ-set determines a commutative monoid. More strongly, construct a category of special Γ-sets, a category of commutative monoids, and an equivalence of these categories.

4. Let S denote the Γ-set $S(S) = \Gamma^{\text{op}}(S^0, S)$, for $S \in \Gamma^{\text{op}}$ a finite pointed set. Compute $\pi_1[S]$.

5. Let C be a category. An object $* \in C$ is initial if for every $y \in C$ there exists a unique morphism $* \to y$, and it is terminal if for every $y \in C$ there exists a unique morphism $y \to *$.
 (a) Prove that an initial object is unique up to unique isomorphism, and similarly for a terminal object.
 (b) Examine the existence of initial and terminal objects for the following categories: Vect, Set, Space, Set$_+$, Space$_+$, the category of commutative monoids, a bordism category, a category of topological quantum field theories.
 (c) Prove that if C has either an initial or final object, then its classifying space is contractible.

6. Let K denote the classifying spectrum of the category whose objects are finite dimensional complex vector spaces and whose morphisms are isomorphisms of vector spaces. Compute π_0K. Compute π_1K.

7. Let M be a commutative monoid. We described a general construction of the group completion of any monoid. Give a much simpler construction of the group completion $|M|$ by imposing an equivalence relation on $M \times M$. You may wish to think about the examples $M = (\mathbb{Z}^\geq 0, +)$ and $M = (\mathbb{Z}^>, \times)$.
8. Let G be a topological group, viewed as a category C with a single object. (Normally we use ‘G’ in place of ‘C’, but for clarity here we distinguish.)

(a) Describe the nerve NC of G explicitly.

(b) Define a groupoid \mathcal{G} whose set of objects is G and with a unique morphism between any two objects. Construct a free right action of G on \mathcal{G} with quotient C. First, define carefully what that means.

(c) Prove that the classifying space $B\mathcal{G}$ is contractible.

(d) Show that G acts freely on $B\mathcal{G}$ with quotient BC.

So we would like to assert that $B\mathcal{G} \to BC$ is a principal G-bundle, and by Theorem 6.45 in the notes a universal bundle, which then makes BC a classifying space in the sense of Lecture 6. The only issue is local triviality; see Segal’s paper.