Problem Set # 4
M392C: Bordism Old and New
Due: December 6, 2012

1. The embedding \(U(m) \hookrightarrow O(2m) \) of the unitary group into the orthogonal group determines a \(2m \)-dimensional tangential structure \(BU(m) \to BO(2m) \). Compute the integral homology \(H_\bullet(MTU(m)) \) of the associated Madsen-Tillmann spectrum.

2. For each of the following maps \(\mathcal{F}: \text{Man}^{\text{op}} \to \text{Set} \), answer: Is \(\mathcal{F} \) a presheaf? Is \(\mathcal{F} \) a sheaf?
 (a) \(\mathcal{F}(M) = \) the set of smooth vector fields on \(M \)
 (b) \(\mathcal{F}(M) = \) the set of orientations of \(M \)
 (c) \(\mathcal{F}(M) = \) the set of sections of \(\text{Sym}^2 T^* M \)
 (d) \(\mathcal{F}(M) = \) the set of Riemannian metrics on \(M \)
 (e) \(\mathcal{F}(M) = \) the set of isomorphism classes of double covers of \(M \)
 (f) \(\mathcal{F}(M) = H^q(M; A) \) for some \(q \geq 0 \) and abelian group \(A \)

3. Define a sheaf \(\mathcal{F} \) of categories on \(\text{Man} \) which assigns to each test manifold \(M \) a groupoid of double covers of \(M \). Be sure to check that you obtain a presheaf—compositions map to compositions—which satisfies the sheaf condition. Describe \(|\mathcal{F}| \) and \(B|\mathcal{F}| \). Compute the set \(\mathcal{F}[M] \) of concordance classes of double covers on \(M \).

4. (a) Fix \(q \geq 0 \). Define a sheaf \(\mathcal{F} \) of sets on \(\text{Man} \) which assigns to each test manifold \(M \) the set of closed differential \(q \)-forms. Compute \(\mathcal{F}[M] \). Identify \(|\mathcal{F}| \).
 (b) Fix \(k > 0 \). Fix a complex Hilbert space \(\mathcal{H} \). Define a sheaf \(\mathcal{F} \) of sets on \(\text{Man} \) which assigns to each test manifold \(M \) the set of rank \(k \) vector bundles \(\pi: E \to M \) together with an embedding \(E \hookrightarrow M \times \mathcal{H} \) into the vector bundle with constant fiber \(\mathcal{H} \) and a flat covariant derivative operator. (The flat structure and embedding are uncorrelated.) Discuss briefly why \(\mathcal{F} \) is a sheaf. Compute \(\mathcal{F}[M] \). Identify \(|\mathcal{F}| \).