Problem Set # 2
M365C: Real Analysis I
Due: January 28

Problems in Rudin
Chapter 1 (page 21): 1, 4, 5, 7, 16, 17

Other Problems

1. Show that the rational numbers \(\mathbb{Q} \) form an ordered field which satisfies the Archimedean property. What property of the real numbers \(\mathbb{R} \) is not satisfied by \(\mathbb{Q} \)?

2. A real polynomial \(p \) has the form \(p(x) = p_n x^n + p_{n-1} x^{n-1} + \cdots + p_0 \) for real numbers \(p_0, p_1, \ldots, p_n \) and some nonnegative integer \(n \). Unless \(p \) is the zero polynomial we assume \(p_n \neq 0 \) and say \(p \) has degree \(n \). A real rational function \(p/q \) is the ratio of two polynomials (of possibly different degrees) where \(q \) is not identically zero. Let \(F \) be the set of real rational functions.

 (a) Give \(F \) the structure of a field. What are the operations of addition and multiplication? What are the additive and multiplicative identity elements? Verify the field axioms.

 (b) Define \(p/q \in F \) to be positive \((p/q > 0) \) if

 \[
 \frac{p}{q}(x) = \frac{p(x)}{q(x)} = \frac{p_n x^n + \cdots + p_0}{q_m x^m + \cdots + q_0}
 \]

 satisfies \(p_n/q_m > 0 \). Why is this well-defined? Then for \(f, g \in F \) we define \(f > g \) if and only if \(f - g \) is positive. Prove that with this definition \(F \) is an ordered field. (Hint: in particular, you must prove that \(F \) is an ordered set.)

 (c) Does \(F \) satisfy the Archimedean property? Proof or counterexample.

3. Consider the function

 \[
 f: (-1, 1) \to \mathbb{R}
 \]

 \[
 x \mapsto x^2
 \]

 What is the domain of \(f \)? What is the codomain? What is the range? Is \(f \) injective? Surjective? Bijective? What is \(f([-1/3, 1/2]) \)? What is \(f^{-1}(\{3, 4, 5\}) \)? How does the cardinality of \(f^{-1}(y) \) depend on \(y \in \mathbb{R} \)? If \(f(1) \) defined?