Problem Set # 7
M392C: K-theory

1. Suppose \(p: E \rightarrow B \) is a fibration. Assume \(E, B \) have basepoints \(e, b \). For \(b' \in B \) let \(P_e((E; p^{-1}(b'))) \) denote the space of paths in \(E \) which begin at \(e \) and terminate on the fiber \(p^{-1}(b') \). Prove that \(p \) induces a fibration

\[
P_e((E; p^{-1}(b'))) \rightarrow P_b(B; b')
\]

with contractible fibers. What assumptions do you need to make on the topological spaces \(E, B \)? Conclude that \(p \) is a weak homotopy equivalence. When can you conclude that \(p \) is a homotopy equivalence?

2. Fix a positive integer \(n \). Let \(E \) denote the space of skew-Hermitian \(n \times n \) matrices with operator norm \(\leq 1 \). (The eigenvalues \(i\lambda_1, \ldots, i\lambda_n \) satisfy \(|\lambda_j| \leq 1 \).) Consider the exponential map

\[
p: E \rightarrow U(n)
A \mapsto \exp(\pi A)
\]

(a) For each \(k \) between 0 and \(n \) prove that the restriction of \(p \) over the subspace of \(U(n) \) consisting of unitary matrices with \((-1)\)-eigenspace of dimension \(k \) is a fiber bundle. What is the fiber?

(b) Show that \(p \) is a quasifibration.

3. Use the contractibility of the unit sphere in Hilbert space, proved in a previous problem set, to prove that the infinite dimensional Stiefel manifold is contractible.

4. Go through the proof of Kuiper’s theorem and prove that all homotopies are continuous.