I have been posting notes and handouts on the website, so be sure to check often.

Problems

1. Let A be a \mathbb{Z}-graded algebra and T_1, T_2 derivations of degree s_1, s_2, respectively. Prove that the commutator $[T_1, T_2]$ is a derivation of degree $s_1 + s_2$. Use the Koszul sign rule throughout.

2. (a) Suppose A is an $n \times n$ real matrix. Define $e^A = \exp(A)$ using a power series. Prove carefully that the series does define a matrix.

 (b) Prove that $e^{A+B} = e^A e^B$ if A and B commute. In particular, show that e^A is invertible. What is the first correction to this formula if A and B do not commute?

 (c) Compute the derivative of e^{tA} with respect to the real variable t.

 (d) What can you say about $\det e^A$? What can you say about e^A if A is skew-symmetric?

3. Let ω be a $(k-1)$-form on a manifold M and ξ_1, \ldots, ξ_k vector fields on M. Compute $d\omega(\xi_1, \ldots, \xi_k)$. (In lecture we covered the case $k = 2$.)

4. (a) State carefully what it means for a Lie group G to act on a manifold M on the left or on the right.

 (b) If G acts on M, then there is an induced linear map $\mathfrak{g} \to \mathcal{X}(M)$ from the Lie algebra of G to the linear space of vector fields on M. Show that for a right action the map $\mathfrak{g} \to \mathcal{X}(M)$ is a homomorphism of Lie algebras. For a right action it is an antihomomorphism: the bracket of the image is minus the image of the bracket.

5. (a) Let G be a Lie group. The left-invariant forms are closed under d, so form a subcomplex of the de Rham complex of G. As a vector space identify the left-invariant forms as the exterior algebra $\wedge^* \mathfrak{g}^*$, where \mathfrak{g} is the Lie algebra of G. Construct the de Rham differential d on $\wedge^* \mathfrak{g}^*$ in terms of the Lie bracket.

 (b) Suppose G is a compact Lie group and α a bi-invariant form. (In other words, α is both left-invariant and right-invariant.) Prove that $d\alpha = 0$.

 (c) Compute the complex of left-invariant forms and bi-invariant forms for the circle group \mathbb{T} (consisting of complex numbers of unit norm) and for the group SU_2. What happens for $SL_2(\mathbb{R})$, the group of 2×2 real matrices of determinant one?
6. Let \(G \) be a Lie group. A **torsor** for \(G \) is a smooth manifold \(T \) on which \(G \) acts simply transitively. Thus a **right \(G \)-torsor** is a manifold \(T \) with a right \(G \) action \(T \times G \to T \) so that the map \(T \times G \to T \times T \) defined by \((t, g) \mapsto (t, t \cdot g)\) is a diffeomorphism.

(a) Let \(L \) be a real inner product space of dimension one. Prove that the elements of unit norm in \(L \) form a torsor for \(\mathbb{Z}/2\mathbb{Z} \).

(b) Let \(V \) be a real vector space and \(\mathcal{B}(V) \) the space of all ordered bases of \(V \). It is convenient to regard a basis of \(V \) as an invertible linear map \(b : \mathbb{R}^n \to V \). Then the group \(GL_n(\mathbb{R}) \) of invertible linear maps \(g : \mathbb{R}^n \to \mathbb{R}^n \) acts on the right by composition. Prove that \(\mathcal{B}(V) \) is a right \(GL_n(\mathbb{R}) \)-torsor.

(c) Now endow \(V \) with an inner product and show that the space \(\mathcal{O}(V) \) of orthonormal bases is a right \(O_n \)-torsor. What if we endow \(V \) with an orientation instead of a metric? What if we consider an oriented inner product space?

(d) Let \(E \) be a Euclidean space and \(\mathcal{O}(E) \) the space of all orthonormal frames at all possible points of \(E \). Here an orthonormal frame is an isometry \(f : \mathbb{E}^n \to E \) from the standard Euclidean space to \(E \). Construct a right action of the Euclidean group \(\text{Euc}_n \) and show that \(\mathcal{O}(E) \) is a right \(\text{Euc}_n \)-torsor.

(e) Verify that the canonical left-invariant 1-form on a Lie group \(G \) is well-defined on a right \(G \)-torsor (but it is not right-invariant). Show that it satisfies the Maurer-Cartan equation.

7. Example or proof of nonexistence: A codimension 1 foliation on the sphere \(S^4 \).