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TWO FEATURES OF TOPOLOGY

• Scale independence Let Σ be a compact Riemannian 2-manifold
with Gauss curvature K. Then

EulerpΣq “
1
2π

ż

Σ
K dµΣ.

Small distance scale on RHS (Riemannian metric). Large distance
scale on LHS (e.g. triangulation). Physics picture is analogous.

• Torsion and Integrality The de Rham cohomology
groups Hq

dRpMq of a smooth manifold M are real vector spaces.
The integral cohomology HqpM ; Zq is an abelian group which maps
to Hq

dRpMq with image a full lattice and kernel the torsion
subgroup of HqpM ; Zq.

Note: We can substitute a generalized cohomology theory for
integer cohomology.



DIRAC QUANTIZATION OF CHARGE

Classical Maxwell: M4 Minkowski spacetime
F P Ω2pMq electromagnetic field
jB P Ω3pMqcs magnetic current
jE P Ω3pMqcs electric current

The currents have compact spatial support and djE “ djB “ 0. On any
spacelike hypersurface N “ E3 their “homotopy classes” are

QB “ rjBs P H3
dRpNqc – R magnetic charge

QE “ rjEs P H3
dRpNqc – R electric charge

Maxwell’s equations assert

dF “ jB

d ˚ F “ jE

Notice the electromagnetic duality symmetry F Ø ˚F , jB Ø jE .



In the quantum theory charge is constrained to be an integer. This can
be viewed as H3pN ; Zqc Ă H3

dRpNqc (which is Z Ă R). This is encoded
by introducing a gauge field with topology: the electromagnetic field F is
the normalized curvature of a connection on a circle bundle.

Analogs of F, jE , jB appear as differential forms of arbitrary degrees in
many theories. In an theory with n spacetime dimensions

deg jB ` deg jE “ n` 2.

In the Euclidean formulation of QFT we work on a Riemannian
manifold X, assumed compact for convenience. Then charges lie in
generalized cohomology groups of X.

• The choice of cohomology theory for each gauge field is based on
physical considerations, including matching features of short
distance and long distance theories (scale invariance).

• There may be torsion charges, and they obey a Heisenberg
uncertainty relation (F.-Moore-Segal, hep-th/0605198, 0605200).



ORIENTIFOLDS IN STRING THEORY

String theory: X 10-dimensional spacetime (assumed compact)
Σ 2-dimensional worldsheet (also compact)

2d short distance theory on Σ: maps Σ Ñ X, spinor fields on Σ, . . .

10d long distance approximation on X: metric and other fields on X . . .

The fields on X are background data for the 2d theory, so play a dual
role. Their topological features have manifestations in both theories, and
can serve as a guide to construct the long distance approximation.
Example in 4-dimensional gauge theories: ’t Hooft anomaly matching.

The orientifold construction plays an important role in string
phonomenology, the landscape, etc. The Type I superstring is a special
case. Our formulation includes the orbifold construction of string theory.



Let Y be a smooth compact 10-manifold with involution σ : Y Ñ Y .
The spacetime X is the quotient Y {{ pZ{2Zq in the sense of orbifolds in
differential geometry. Two analogs of Maxwell fields:

• The Neveu-Schwarz B-field whose field strength is a
3-form H P Ω3pY q with σ˚H “ ´H.

• The Ramond-Ramond field whose currents are differential forms
on Y of various degrees, invariant or anti-invariant under σ.

The geometry imposes a background RR current, which was computed
by Morales-Scrucca-Serrone (1999) in the 2d worldsheet theory. Let
i : F ãÑ Y be the fixed point set of σ. Their RR charge formula is

´i˚

#

25´r

d

L1pF q

L1pνq

+

L1 “
ź x{4

tanhx{4
,

where r : F Ñ Z is the codimension, ν Ñ F is the normal bundle, and
L1 is a modified Hirzebruch L-genus—Hirzebruch has 2 in place of 4.



RR CHARGE QUANTIZATION

´i˚

#

25´r

d

L1pF q

L1pνq

+

The formula may be interpreted as a de Rham current supported on the
fixed point set F . Or it may be interpreted as a real cohomology class,
which is the RR charge.

Dirac charge quantization implies that there is a refinement to an
integral generalized cohomology group.

Plan: Give geometric models for the B-field and RR field which encode
charge quantization. Interpret and compute the background RR charge
in the abelian group and recover above formula in the vector space.

We go further and define precisely all fields and the action for both the
2d and 10d theories for general orientifolds.



SPECIAL CASE: TYPE I SUPERSTRING

Y compact spin 10-manifold H “ 0
σ the trivial involution (F “ Y ) RR currents of degrees 4,8.

Quantization of RR charge: In the mid ’90s it was realized
(Minasian-Moore, Witten, . . . ) that Ramond-Ramond charge is
quantized by K-theory. For Type I the appropriate flavor is KO-theory.
The RR charge lies in KO0pY q.

Recover differential forms by tensoring with R. Recall

KOppt; Rq – Rru˘2
c s,

where u2
c has degree 4. (We recall uc later.) The Chern character

KO0pY q
ch
ÝÑ H

`

Y ; Rru˘2
c s

˘0
– H0pY ; Rq ‘H4pY ; Rqu´2

c ‘H8pY ; Rqu´4
c

is an iso after tensoring with R. Currents in Ωt0,4,8u
pY qu

t0,´2,´4u
c .

Problem: Too many charges. Throw out degree 0 (no field strength in
degree ´1). But both magnetic and electric currents in degrees 4 and 8.



SELF-DUAL FIELDS

The electromagnetic duality of the classical Maxwell equations persists
in the (free) quantum theory and allows us to define self-dual fields.

• Quantization of charge by a Pontrjagin self-dual cohomology theory.
• There is a specified isomorphism from the magnetic charge group to

the electric charge group. This single abelian group is the self-dual
charge group.

• For non-self-dual abelian gauge fields there is a bilinear pairing
between magnetic and electric charges. For self-dual fields a
specified quadratic form q on the self-dual charge group refines this
bilinear form. It has center of symmetry µ determined by q.

µ Self-dual charge

q

• The background self-dual charge is ´µ.



RR FIELD IN TYPE I

The quadratic form q is most easily defined on an auxiliary compact,
spin 12-manifold M where it is integer-valued:

q : KO0pMq ÝÑ KO´12pptq – Z
x ÞÝÑ πM

˚

`

λ2pxq
˘

x ÞÑ λ2pxq is the second exterior square, a quadratic function.
πM : M Ñ pt and πM

˚ is the induced pushforward (integration) on KO.

Define a KO-theoretic Wu class ΞpMq P KO0pMq by

πM
˚

`

ψ2pxq
˘

“ πM
˚

`

ΞpMqx
˘

, x P KO0pMq.

x ÞÑ ψ2pxq is the Adams operation, a homomorphism.

Theorem (F.-Hopkins, 2000): The center µ of q satisfies

2µ “ ΞpMq.



This theorem determines the background RR charge ´µ up to torsion of
order 2. A standard computation in KO-theory gives the formula in
rational cohomology

´

b

ÂpY q chµ “ ´25
b

L1pY q, L1 “
ź x{4uc

tanhx{4uc
(˚)

We include a normalizing factor
a

Â “
ś x{2uc

sinhx{2uc
. Only even

powers of uc occur in Â and L1.

The theorem refines the Green-Schwarz anomaly cancellation
mechanism to the integers; their formulas are recovered from (˚) which
gives the rational characteristic classes of the real “gauge bundle” on Y .
For example, it has rank 25 “ 32. See hep-th/0011220 for details.

As a preliminary to general orientifolds we describe a model for the
B-field and RR charges.



TWISTINGS OF KR-THEORY

There are many approaches to twistings of K-theory: Donovan-Karoubi,
Rosenberg, Atiyah-Segal, Bouwknegt-Carey-Mathai-Murray-Stevenson,
etc. We adapt F.-Hopkins-Teleman (arXiv:0711.1906) to KR-theory
and include degree shifts as twistings.

Let X be a local quotient groupoid in the sense that locally it is
isomorphic to S{{G for S a nice space (e.g. manifold) and G a compact
Lie group. We write

X : X0 X1
p0

oo
p1oo

Specify a double cover π : Xw Ñ X by a homomorphism φ : X1 Ñ Z{2Z.
Then Xw is represented by the groupoid

Xw : X0 X 1
1p0

oo
p1oo

where X 1
1 “ tpa

f
ÝÑ bq P X1 : φpfq “ 0u is the kernel of φ. It is classified

by w P H1pX; Z{2Zq (cohomology of geometric realization).



Pictured is the groupoid X. Yellow arrows f satisfy φpfq “ 0; red
arrows f satisfy φpfq “ 1. The groupoid Xw has only the yellow arrows.



Extend the groupoid to a simplicial space with Xn the space of
compositions of n arrows.

X : X0 X1oooo X2oooo
oo

X3 ¨ ¨ ¨oooo
oooo

For V is a complex vector space, φ P Z{2Z, set

φV “

#

V, φ “ 0;
V , φ “ 1.

Definition: A twisting of KRpXwq is a triple β “ pd, L, θq consisting
of a locally constant function d : X0 Ñ Z, a Z{2Z-graded complex line

bundle L Ñ X1, and for pa
f
ÝÑ b

g
ÝÑ cq P X2 an isomorphism

θ : φpfq
Lg b Lf

–
ÝÝÑ Lgf .

There are consistency conditions for d on X1 and for θ on X3.

Warning: In general, we replace X by a locally equivalent groupoid.



d=2 d=2

d=1

LgLf
Lgf

Consistency conditions:
• The degree d is equal on components of X0 connected by an arrow.
• There is an isomorphism θ : Lg b Lf Ñ Lgf for the labeled arrows.



Another picture: L

��

θ

X0

d

��

X1

ε
��

oooo X2oooo
oo

X3 ¨ ¨ ¨oooo
oooo

Z Z{2Z

We define a 2-groupoid of twistings with a commutative composition
law. Isomorphism classes of twistings of KRpXwq are classified by

H0pX; Zq ˆH1pX; Z{2Zq ˆHw`3pX; Zq,

d ε pL, θq

where the last factor is cohomology in the local system defined by
Xw Ñ X. This is an isomorphism of sets but not of abelian groups.

Key point: We can realize twistings as objects in a cohomology
theory. Special case: involution on Xw acts trivially—so twistings of
KOpXq—twistings classified by Postnikov truncation ko ă 0 ¨ ¨ ¨ 2 ą of
connective ko with homotopy groups π

t0,1,2u
“ tZ , Z{2Z , Z{2Zu.



An object in twisted KRqpXwq may be represented by a pair pE,ψq,

with E Ñ X0 a Z{2Z-graded Cliffordq-module, for pa
f
ÝÑ bq P X1

ψ : φpfq
pLf b Eaq

–
ÝÝÑ Eb

Consistency condition on X2:

d=1

LgLf
Lgf

Ea

a

b c

Eb Ecψf

ψg

Warning: In general we need to use a more sophisticated model in
which E has infinite rank and an odd skew-adjoint Fredholm operator.



TWISTED KR‚pptq

X “ pt {{ pZ{2Zq d “ 0
E “ E0 ‘ E1 complex Z{2Z-graded σ : E Ñ E antilinear

4 twistings: σ even/odd and σ2 “ ˘1.

A cyclic group of order 4 with generator β1: σ odd, σ2 “ ´1. So the
group of isomorphism classes of twistings of KRpptq is Z{4Z ˆ Z.
Denote β` “ `β1, ` P Z.

Bott class: u P KRβ1`2pptq modeled as C1|1 “ C ‘ C with

γ1 “

ˆ

0 1
1 0

˙

, γ2 “

ˆ

0 ´i
i 0

˙

, σpz0, z1q “ p´z1, z0q.

u is invertible: multiplication by u is real Bott periodicity in KR.
Drop σ to obtain the complex Bott element uc P K2pptq.

After inverting 2 we have, as a pZ{4Z ˆ Zq-graded ring,

KRr1{2s‚pptq – Zr1{2sru˘1, u˘2
c s{pu4 ´ u4

cq.



DIFFERENTIAL OBJECTS

Definition: A differential twisting of KRpXwq is a quintet
β̌ “ pd, L, θ,∇, Bq where β “ pd, L, θq is a twisting, ∇ is a covariant
derivative on L, and B P Ω2pX0q satisfies

p´1qφp˚
1B ´ p˚

0B “
i

2π
curvp∇q on X1.

The 3-form H “ dB is a global twisted form: p´1qφp˚
1H “ p˚

0H. It is
the curvature of β̌. (Ungraded version in Schreiber-Schweigert-Waldorf).

• D finite dim model of twisted differential KR-theory }KR
β̌

pXwq.
• Cohomological interpretation ùñ topological models for differential

objects (Hopkins-Singer). Products, pushforwards, . . .
• Other models for differential objects in H and K-theory. (Deligne,

Simons-Sullivan, Bunke-Kreck-Schick-Schroeder-Wiethaup, . . . )
• No general equivariant differential theory. Ordinary cohomology

(Gomi). Finite group actions in K-theory (Szabo-Valentino, Ortiz).

The foregoing provides an explicit model of the B-field on an orientifold.
We formulate everything in a model-independent manner.



NSNS SUPERSTRING BACKGROUND

The pNeveu-Schwarzq2 “NSNS fields are relevant for both the
worldsheet (2d) and spacetime (10d) theories.

Definition (Distler-F.-Moore): An NSNS superstring background
consists of:
(i) a 10-dimensional smooth orbifold X together with Riemannian

metric and real-valued scalar (dilaton) field;
(ii) a double cover π : Xw Ñ X (orientifold double cover);
(iii) a differential twisting β̌ of KRpXwq (B-field);
(iv) and a twisted spin structure κ : <pβq Ñ τKOpTX ´ 10q.

• An orbifold (in the sense of Satake) is presented by a local quotient
groupoid which is locally S{{ Γ with S a manifold, Γ finite.

• κ is an isomorphism of twistings of KOpXq whose existence
relates w1pXq, w2pXq to the isomorphism class of β and w.

• Only the underlying topological twisting β enters today.



RAMOND-RAMOND CURRENT

Definition (con’t): An RR current is an object ǰ in }KR
β̌
pXwq with

quadratic form q.

Recall KO0
Z{2Zpptq – ROpZ{2Zq – Zrεs{pε2 ´ 1q, ε “sign representation.

M a 12-manifold with double-cover Mw and twisted spin structure κ.
Quadratic form q:

KRβpMwq

��

j_

��
KO

<pβq

Z{2ZpMwq
κ

ÝÑ
–

KO
τKOpTM´12q

Z{2Z pMwq

πMw
˚

��

κjj_

��
KO´12

Z{2Zpptq – Z ˆ Zε

��

πMw
˚ pκjjq

_

��
Z ε-component πMw

˚ pκjjq



BACKGROUND RR CHARGE

Assume X “ Y {{ pZ{2Zq is the global quotient of a compact 10-manifold
by an involution σ, fixed point set i : F ãÑ Y , normal bundle ν Ñ F .

Theorem (Distler-F.-Moore), in progress: The
center µ P KRβpY q of q localizes to F after inverting 2. The background
charge is

´

b

ÂpY q chµ “ ´i˚

#

p´1qpd`r´2`q{4 25´r upd`r´2`q{2
c u`´r

d

L1pF q

L1pνq

+

d : F Ñ Z
` : F Ñ Z{4Z

*

determined by β
ˇ

ˇ

y
“ β` ` d for y P F

r : F Ñ Z codimension of fixed point set F

2` ” d` r pmod 4q

This 10d derivation generalizes the Morales-Scrucca-Seronne 2d formula
to arbitrary orientifolds and refines the background RR charge to Z.



A TIGHT FITTING SYSTEM

Cyan is data. Yellow is 10d theory. Green is 2d theory.

B-field quantization 
condition

(twist of KR)

RR-field quantization 
condition
(K-theory)

twisted spin structure
(discrete field)

definition of quadratic form for 
RR-field;

background RR charge

reproduce spectrum of 
differential forms 

(incl. twisted sectors)
fermion couplings

classification of 
orientifolds

spacetime anomaly 
cancellation

(special cases known)

signs in sum over 
worldsheet spin 

structures

worldsheet anomaly 
cancellation spectrum of D-branes

NSNS-branes
(some new)fermion couplings


