Remarks on Fully Extended 3-Dimensional Topological Field Theories

Dan Freed
University of Texas at Austin

June 6, 2011

Work in progress with Constantin Teleman
Manifolds and Algebra: Abelian Groups

Pontrjagin and Thom introduced abelian groups Ω_k of manifolds called bordism groups—equivalence classes of closed k-manifolds:

The abelian group operation is disjoint union. (Cartesian product defines a ring structure on $\oplus_k \Omega_k$)

Thom showed how to compute Ω_k via homotopy theory: $\Omega_k = \pi_k MO$. Different answers for different flavors of manifolds: oriented, spin, almost complex, framed, ...

Many applications in homotopy theory: (i) framed bordism groups are stable homotopy groups of spheres (Pontrjagin-Thom construction); (ii) complex cobordism is universal among certain cohomology theories (Quillen)
A more elaborate algebraic structure is obtained if we (i) do not identify bordant manifolds and (ii) remember the bordisms. So fix n and introduce a bordism category Bo_n whose objects are closed $(n - 1)$-manifolds and morphisms are compact n-manifolds $X : Y_0 \to Y_1$.

Identify diffeomorphic bordisms. Composition is gluing of manifolds:

Disjoint union gives a symmetric monoidal structure on Bo_n.

Recover the abelian group Ω_{n-1} by declaring all morphisms to be invertible=iso morphisms. New information from non-invertibility.
Topological Quantum Field Theory

\(\textbf{Vect}_\mathbb{C} = \) symmetric monoidal category (\(\otimes \)) of complex vector spaces.

Definition: An \(n \)-dimensional TQFT is a homomorphism

\[
F : \text{Bo}_n \longrightarrow \textbf{Vect}_\mathbb{C}
\]

This slick definition encodes an algebraic understanding of field theory descended from Witten, Quillen, Segal, Atiyah, Segal defines conformal and more general QFTs via geometric bordism categories.

locality (compositions)

multiplicativity (monoidal structure)

\(E_n \)-algebra structure on \(S^{n-1} \in \text{Bo}_n \) via the generalized “pair of pants”:

\[
D^n \backslash (D^n \sqcup D^n) : S^{n-1} \sqcup S^{n-1} \longrightarrow S^{n-1}
\]

Therefore, \(F(S^{n-1}) \in \textbf{Vect}_\mathbb{C} \) is also an \(E_n \)-algebra (OPE)
Manifolds and Algebra: Topological Categories

A more refined version of B_n is a topological category with a space of n-dimensional bordisms between fixed $(n-1)$-manifolds.

Algebraic topology provides a construction which inverts all morphisms: topological category \rightarrow topological space. With abelian group structure: symmetric monoidal topological category \rightarrow spectrum.

Galatius-Madsen-Tillmann-Weiss (2006) identify the spectrum $|B_n| = MT$. For framed manifolds it is the sphere spectrum.

Remark: Topological spaces give rise to (higher) categories in which all morphisms are invertible: the fundamental groupoid

Definition (F.-Moore): A field theory $\alpha: B_n \rightarrow \text{Vect}_\mathbb{C}$ is invertible if $\alpha(Y^{n-1}) \in \text{Vect}_\mathbb{C}$ is a line and $\alpha(X^n)$ is an isomorphism between lines for all Y, X.

α factors through MT spectrum \Rightarrow homotopy theory techniques
Extended Field Theories

The notion of extended QFT was explored in various guises in the early ’90s by several mathematicians and has great current interest:

- 2-dimensional theories often include categories attached to a point: D-branes, Fukaya category, ...
- 4-dimensional supersymmetric gauge theories have categories of line operators. Also, the category attached to a surface plays a key role in the geometric Langlands story.
- Chern-Simons (1-2-3) theory F has a linear category $F(S^1)$. For gauge group G two descriptions of $F(S^1)$: positive energy representations of LG, or representations of a quantum group.

A fully extended theory (down to 0-manifolds) is completely local \Rightarrow powerful computational techniques, simpler classification

Longstanding Question: Can 1-2-3 Chern-Simons theory be extended to a 0-1-2-3 theory? If so, what is attached to a point?

Manifolds and Algebra: (∞, n)-Categories

A new algebraic gadget: the bordism (∞, n)-category Bord_n.

Bo_n: $(n - 1)$-manifolds and n-manifolds with boundary
Bord_n: 0-, 1-, ..., n-manifolds with corners

Objects are compact 0-manifolds, 1-morphisms are compact 1-manifolds with boundary, 2-morphisms are compact 2-manifolds with corners, ...

![Diagram](attachment:image.png)

Definition: An extended n-dimensional TQFT is a homomorphism

$$F: \text{Bord}_n \longrightarrow \mathcal{C}$$

for some (∞, n)-category \mathcal{C}.

For example, if $n = 3$ then typically $F(S^1)$ is a \mathcal{C}-linear category, also an E_2-algebra. $E_2(\text{Cat}_\mathcal{C}) = \beta \otimes \text{Cat}_\mathcal{C}$ are braided tensor categories.
The Cobordism Hypothesis

A powerful theorem in topological field theory, conjectured by Baez-Dolan then elaborated and proved by Lurie (w/Hopkins for \(n = 2 \)), asserts that an extended TQFT is determined by its value on a point.

Theorem: For framed manifolds the map

\[\text{Hom}(\text{Bord}_n, \mathcal{C}) \longrightarrow \mathcal{C} \]

\[F \longmapsto F(\text{pt}) \]

is an isomorphism onto the fully dualizable objects in \(\mathcal{C} \).

Remark: This is really a theorem about framed \(\text{Bord}_n \), asserting that it is freely generated by a single generator.

The proof, only sketched heretofore, has at its heart a contractibility theorem in *Morse theory* (Igusa, Galatius). There are variations for other bordism categories of manifolds, also manifolds with singularities.

Full dualizable is a finiteness condition. For example, in a TQFT the vector spaces attached to closed \((n - 1)\)-manifolds are finite dimensional. In an extended theory \(F(\text{pt}) \) satisfies analogous finiteness conditions.
Spheres and Invertibility

Theorem (F.-Teleman): Let $\alpha : \text{Bord}_n \to \mathcal{C}$ be an extended TQFT such that $\alpha(S^k)$ is invertible. Then if $n \geq 2k$ the field theory α is invertible.

Thus $\alpha(X)$ is invertible for all manifolds X. This means α factors through the Madsen-Tillmann spectrum constructed from Bord_n, so is amenable to homotopy theory techniques.

Remark 1: We have only checked the details carefully for oriented manifolds; it is probably true for stably framed manifolds as well.

Remark 2: Again this is a theorem about Bord_n, asserting that if we localize by inverting S^k, then every manifold is inverted.

Remark 3: As I explain later we apply this to $n = 4$, $k = 2$, and $\mathcal{C} = \beta \otimes \text{Cat}_C$ the symmetric monoidal 4-category of braided tensor categories. Then α is the anomaly theory for Chern-Simons, and we construct Chern-Simons as a 0-1-2-3 anomalous theory.
Proof Sketch

First, by the cobordism hypothesis (easy part) it suffices to prove that $\alpha(\text{pt}_+)$ is invertible; ‘+’ denotes the orientation. We omit ‘α’ and simply say ‘pt_+ is invertible’.

We prove the 0-manifolds pt_+ and pt_- are inverse:

\[S^0 = \text{pt}_+ \amalg \text{pt}_- = \text{pt}_+ \otimes \text{pt}_- \cong \emptyset^0 = 1 \]

with inverse isomorphisms given by

\[f = D^1 : 1 \longrightarrow S^0 \]
\[f^\vee = D^1 : S^0 \longrightarrow 1 \]

We arrive at a statement about 1-manifolds: the compositions

\[f^\vee \circ f = S^1 : 1 \longrightarrow 1 \]
\[f \circ f^\vee : S^0 \longrightarrow S^0 \]

are the identity.
Let's now consider \(n = 2 \) where we assume that \(S^1 \) is invertible. We apply an easy algebraic lemma which asserts that invertible objects are dualizable and the dualization data is invertible. For \(S^1 \) these data are dual cylinders, and so the composition \(S^1 \times S^1 \) is also invertible.

Lemma: Suppose \(\mathcal{D} \) is a symmetric monoidal category, \(x \in \mathcal{D} \) is invertible, and \(g: 1 \to x \) and \(h: x \to 1 \) satisfy \(h \circ g = \text{id}_1 \). Then \(g \circ h = \text{id}_x \) and so each of \(g, h \) is an isomorphism.

Proof sketch: \(x^{-1} \) is a dual of \(x \), \(g^\vee = x^{-1}g: x^{-1} \to 1 \), \(h^\vee = x^{-1}h: 1 \to x^{-1} \), so the lemma follows from \((h \circ g)^\vee = \text{id}_1 \).

Apply the lemma to the 2-morphisms

\[
g = D^2: 1 \longrightarrow S^1
\]
\[
h = S^1 \times S^1 \backslash D^2: S^1 \longrightarrow 1
\]

Conclude that \(S^1 \cong 1 \) and \(S^2 = g^\vee \circ g \) is invertible. Also, \(g \circ g^\vee = \text{id}_{S^1} \otimes S^2 \), a simple surgery.
Recall that we must prove that the compositions

\[f^\vee \circ f = S^1 : 1 \to 1 \]

\[f \circ f^\vee : S^0 \to S^0 \]

are the identity. We just did the first.

For the second the identity is and we will show that the saddle

\[\sigma : f \circ f^\vee \to \text{id}_{S^0} \]

is an isomorphism with inverse \(\sigma^\vee \otimes S^2 \).

The saddle \(\sigma \) is diffeomorphic to \(D^1 \times D^1 \), which is a manifold with corners. Its dual \(\sigma^\vee \) is the time-reversed bordism.
Inside each composition $\sigma^\vee \circ \sigma$ and $\sigma \circ \sigma^\vee$ we find a cylinder $\text{id}_{S^1} = D^1 \times S^1$, which is $(S^2)^{-1} \otimes g \circ g^\vee = (S^2)^{-1} \otimes (S^0 \times D^2)$ by a previous argument. Making the replacement we get the desired isomorphisms to identity maps.

This completes the proof of the theorem in $n = 2$ dimensions.

In higher dimensions we see a kind of Poincaré duality phenomenon: we prove invertibility by assuming it in the middle dimension. A new ingredient—a dimensional reduction argument—also appears.
Application to Modular Tensor Categories

Let F denote the usual quantum Chern-Simons 1-2-3 theory for some gauge group G. It was introduced by Witten and constructed by Reshetikhin-Turaev from quantum group data. The latter construction works for any modular tensor category A, a braided tensor category which satisfies finiteness conditions (semisimple with finitely many simples, duality, etc.) and a nondegeneracy condition (the S matrix is invertible). Then F is a 1-2-3 theory with $F(S^1) = A$.

Let A be a braided tensor category with braiding $\beta(x, y): x \otimes y \to y \otimes x$.

Theorem: The nondegeneracy condition on A is equivalent to

$$\{ x \in A : \beta(y, x) \circ \beta(x, y) = \text{id}_{x \otimes y} \text{ for all } y \in A \} = \{ \text{multiples of } 1 \in A \}.$$

This is proved by Müger and others.

Recall that $\beta \otimes \text{Cat}_\mathcal{C} = E_2(\text{Cat}_\mathcal{C})$.

Braided tensor categories form the objects of a 4-category!

<table>
<thead>
<tr>
<th>object</th>
<th>category number</th>
</tr>
</thead>
<tbody>
<tr>
<td>element of \mathbb{C}</td>
<td>-1</td>
</tr>
<tr>
<td>\mathbb{C}-vector space</td>
<td>0</td>
</tr>
<tr>
<td>$\text{Vect}_\mathbb{C}$</td>
<td>1</td>
</tr>
<tr>
<td>$\text{Cat}_\mathbb{C}$</td>
<td>2</td>
</tr>
<tr>
<td>$\otimes\text{Cat}\mathbb{C} = E_1(\text{Cat}\mathbb{C})$</td>
<td>3</td>
</tr>
<tr>
<td>$\beta \otimes \text{Cat}\mathbb{C} = E_2(\text{Cat}\mathbb{C})$</td>
<td>4</td>
</tr>
</tbody>
</table>

Morita: Morphisms of tensor categories are bimodules and morphisms of braided tensor categories are tensor categories which are bimodules.

So, given sufficient finiteness, a braided tensor category determines (using the cobordism hypothesis) an extended 4-dimensional TQFT

$$\alpha: \text{Bord}_4 \rightarrow \beta \otimes \text{Cat}_\mathbb{C}$$
In the theory α we compute

$$\alpha(S^2) = \{ x \in A : \beta(y, x) \circ \beta(x, y) = \text{id}_{x \otimes y} \text{ for all } y \in A \} \in \text{Cat}_C$$

Recall that for a modular tensor category this “higher center” of A is the tensor unit $1 = \text{Vect}_C$, which in particular is invertible.

Thus, modulo careful verification of finiteness conditions, we have

Corollary: A modular tensor category $A \in \beta \otimes \text{Cat}_C$ is invertible, so determines an invertible field theory $\alpha : \text{Bord}_4 \to \beta \otimes \text{Cat}_C$.

Remark: This is a theorem in algebra, proved using the universal “algebra”, rather (∞, n)-category, of manifolds with corners.

We believe that this is the anomaly theory for a 0-1-2-3 extension of the 1-2-3 theory F with $F(S^1) = A$. In the remainder of the lecture I will explain this idea.
Anomalous Field Theories

The top-level values of an n-dimensional field theory $F: \text{Bo}_n \to \text{Vect}_\mathbb{C}$ are complex numbers $F(X^n) \in \mathbb{C}$, the partition function of a closed n-manifold. In an anomalous field theory f there is a complex line L_X associated to X and the partition function $f(X) \in L_X$ lies in that line.

The lines L_X obey locality and multiplicativity laws, so typically belong to an $(n+1)$-dimensional invertible field theory $\alpha: \text{Bo}_{n+1} \to \text{Vect}_\mathbb{C}$.

f is an n-dimensional theory with values in the $(n+1)$-dimensional theory α. We write $f: 1 \to \alpha$ in the sense that $f(X): 1 \to \alpha(X)$ for all X. (1 is the trivial theory.) If α is invertible we say f is anomalous with anomaly α. The same ideas apply in extended field theories.

Remark: The notion of α-valued field theory makes sense even if α is not invertible and also for non-topological field theories. Examples:

(i) $n = 2$ chiral WZW valued in topological Chern-Simons, (ii) $n = 6$ $(0,2)$-(super)conformal field theory valued in a 7-dimensional theory.

Remark: This is a specialization of the notion of a domain wall.
Fully Extended Chern-Simons

Recall that a modular tensor category A determines an invertible extended field theory $\alpha: \text{Bord}_4 \to \beta \otimes \text{Cat}_C$ with values in the 4-category of braided tensor categories, or equivalently E_2-algebras in Cat_C.

An ordinary algebra A is in a natural way a left A-module. This holds for E_2-algebras, and in that context the module defines a morphism $A: 1 \to A$ in the 4-category $\beta \otimes \text{Cat}_C$.

Let A be a modular tensor category. Modulo careful verification of finiteness conditions, a version of the cobordism hypothesis constructs from the module A a 0-1-2-3-dimensional anomalous field theory $f: 1 \to \alpha$ with anomaly α.

Claim: On 1-, 2-, and 3-dimensional manifolds we can trivialize the anomaly α and so identify f with the Reshetikhin-Turaev 1-2-3 theory F associated to the modular tensor category A.

For example, the composition $1 \xrightarrow{f(S^1)} \alpha(S^1) \xrightarrow{\alpha(D^2)} 1$ is $F(S^1) = A$, where the bordism $D^2: S^1 \to 1$ is used to trivialize the anomaly on S^1.