The Geometry and Topology of Orientifolds II

Dan Freed
University of Texas at Austin

May 21, 2009

Ongoing joint work with Jacques Distler and Greg Moore

And there are simply too many slides, that's all. Just cut a few and it will be perfect. (Emperor Joseph II)

We mock the thing we are to be. (Mel Brooks)

SUMMARY

- There are new "abelian" objects in differential geometry which are local, so can serve as fields in the sense of physics. In our work: twistings of K-theory and its cousins, twisted spin structures and spinor fields, twisted differential $K R$-objects, ...
- Underlying topological objects lie in a twisted cohomology theory.
- Two theories: worldsheet (short distance, fundamental, 2d) and spacetime (long distance, effective, 10d).
- In the foundational theory of orientifolds we are proving two theorems which are topological:

Ramond-Ramond charge due to gravitational orientifold background (localization in equivariant $K O$-theory, $K O$ Wu class)
anomaly cancellation on the worldsheet (exotic notion of orientation)
Proofs: new variations on old themes in K-theory and index theory.

- Most intricate matching we know between topological features in a short distance theory and its long distance approximation.

TWISTINGS OF $K R$-THEORY

There are many approaches to twistings of K-theory: Donovan-Karoubi, Rosenberg, Atiyah-Segal, Bouwknegt-Carey-Mathai-Murray-Stevenson, etc. We adapt F.-Hopkins-Teleman (arXiv:0711.1906) to $K R$-theory.

Let X be a local quotient groupoid in the sense that locally it is isomorphic to $S / / G$ for S a nice space (e.g. manifold) and G a compact Lie group. We write

$$
X: \quad X_{0} \underset{p_{0}}{p_{1}} X_{1}
$$

Specify a double cover $\pi: X_{w} \rightarrow X$ by a homomorphism $\phi: X_{1} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. Then X_{w} is represented by the groupoid

$$
X_{w}: \quad X_{0} \underset{p_{0}}{p_{1}} X_{1}^{\prime}
$$

where $X_{1}^{\prime}=\left\{(a \xrightarrow{f} b) \in X_{1}: \phi(f)=0\right\}$ is the kernel of ϕ. It is classified by $w \in H^{1}(X ; \mathbb{Z} / 2 \mathbb{Z})$ (cohomology of geometric realization).

Pictured is the groupoid X. Yellow arrows f satisfy $\phi(f)=0$; red arrows f satisfy
. The groupoid X_{w} has only the yellow arrows.

Extend the groupoid to a simplicial space by fiber products:

$$
X: \quad X_{0} \longleftarrow X_{1} \longleftarrow X_{2}{ }_{2}{ }^{\longleftarrow} X_{3} \cdots
$$

For V is a complex vector space, $\phi \in \mathbb{Z} / 2 \mathbb{Z}$, set

$$
\phi^{\phi} V= \begin{cases}V, & \phi=0 \\ \bar{V}, & \phi=1\end{cases}
$$

Definition: A twisting of $K R\left(X_{w}\right)$ is a triple $\tau=(d, L, \theta)$ consisting of a locally constant function $d: X_{0} \rightarrow \mathbb{Z}$, a $\mathbb{Z} / 2 \mathbb{Z}$-graded complex line bundle $L \rightarrow X_{1}$, and for $(a \xrightarrow{f} b \xrightarrow{g} c) \in X_{2}$ an isomorphism

$$
\theta:{ }^{\phi(f)} L_{g} \otimes L_{f} \stackrel{\cong}{\Longrightarrow} L_{g f} .
$$

There are consistency conditions for d on X_{1} and for θ on X_{3}.
In general, we replace X by a locally equivalent groupoid.

The degree d is the same on components of X_{0} connected by an arrow. There is an isomorphism $\theta: \overline{L_{g}} \otimes L_{f} \rightarrow L_{g f}$ for the labeled arrows.

We define a (higher) groupoid of twistings and commutative composition law. Isomorphism classes of twistings of $K R\left(X_{w}\right)$ are classified by

$$
\begin{gathered}
H^{0}(X ; \mathbb{Z}) \times H^{1}(X ; \mathbb{Z} / 2 \mathbb{Z}) \times H^{w+3}(X ; \mathbb{Z}), \\
d
\end{gathered}
$$

where the last factor is cohomology in a local system. This is an isomorphism of sets but not of abelian groups.

Key point: We can realize twistings as objects in a cohomology theory. Special case: involution on X_{w} acts trivially-so twistings of $K O(X)$-twistings classified by Postnikov truncation $k o<0 \cdots 2>$ of connective $k o$ with homotopy groups $\pi_{\{0,1,2\}}=\{\mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}\}$.

An object in twisted $K R^{q}(X)$ may be represented by a pair (E, ψ), where $E \rightarrow X_{0}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-graded Clifford q^{-}-module and for each $(a \stackrel{f}{\rightarrow} b) \in X_{1}$ we have an isomorphism

$$
\psi:{ }^{\phi(f)}\left(L_{f} \otimes E_{a}\right) \xrightarrow{\cong} E_{b}
$$

There is a consistency condition on X_{2}.
In general we need to use a more sophisticated model in which E has infinite rank and an odd skew-adjoint Fredholm operator.

Definition: A differential twisting of $K R\left(X_{w}\right)$ is a quintet $\check{\tau}=(d, L, \theta, \nabla, B)$ where $\tau=(d, L, \theta)$ is a twisting, ∇ is a covariant derivative on L, and $B \in \Omega^{2}\left(X_{0}\right)$ satisfies

$$
(-1)^{\phi} p_{1}^{*} B-p_{0}^{*} B=\frac{i}{2 \pi} \operatorname{curv}(\nabla) \quad \text { on } X_{1} .
$$

The 3 -form $H=d B$ is a global twisted form: $(-1)^{\phi} p_{1}^{*} H=p_{0}^{*} H$. It is the curvature of $\check{\tau}$. (Ungraded version in Schreiber-Schweigert-Waldorf).

Remarks:

- We could continue and give a finite dimensional model for objects in the twisted differential $K R$-theory $\widetilde{K R}^{\tau}\left(X_{w}\right)$. We have not developed an infinite dimensional model along these lines.
- Because these objects have cohomological significance, we can give topological models. For the differential objects we can give models following Hopkins-Singer. Can develop products, pushforwards, etc.
- Other models of differential objects in ordinary cohomology and K-theory are being developed. (Deligne, Simons-Sullivan, Bunke-Kreck-Schick-Schroeder-Wiethaup, ...)
- There is not yet a general equivariant theory of differential objects. There is some work for ordinary cohomology (Gomi) and for finite group actions in K-theory (Szabo-Valentino, Ortiz).

We leave this general discussion to return to orientifolds, where the foregoing provides an explicit model of the B-field. We formulate everything in a model-independent manner.

NSNS SUPERSTRING BACKGROUND

The $\left(\right.$ Neveu-Schwarz) ${ }^{2}=$ NSNS fields are relevant for both the worldsheet (2d) and spacetime (10d) theories. As in Jacques' lecture we have the following concise

Definition: An NSNS superstring background consists of:
(i) a 10-dimensional smooth orbifold X together with Riemannian metric and real-valued scalar (dilaton) field;
(ii) a double cover $\pi: X_{w} \rightarrow X$ (orientation double cover);
(iii) a differential twisting $\breve{\beta}$ of $K R\left(X_{w}\right)(B$-field);
(iv) and a twisted spin structure $\kappa: \Re(\beta) \rightarrow \tau^{K O}(T X-2)$.

- An orbifold (in the sense of Satake) is presented by a local quotient groupoid which is locally $S / / \Gamma$ with Γ finite.
- We do not have time today to explicate κ, an isomorphism of twistings of $K O(X)$.
- This compact and precise definition is one of our main offerings.

THEOREM 1: RR BACKGROUND CHARGE

The (Ramond) ${ }^{2}=\mathrm{RR}$ current on spacetime is self-dual. Its definition requires an extra topological datum: a quadratic form. We fix an NSNS superstring background.

Definition: An $R R$ current is an object \check{j} in $\overline{K R} \check{\boxed{\beta}}\left(X_{w}\right)$. The quadratic form of the self-dual structure is displayed on the next slide.

A quadratic form has an axis of symmetry, so defines a center μ in its domain. Here the domain is the group of topological equivalence classes of currents, or charges. (Sign: The RR background charge is $-\mu$.)

Recall $K O_{\mathbb{Z} / 2 \mathbb{Z}}^{0}(\mathrm{pt}) \cong R O(\mathbb{Z} / 2 \mathbb{Z}) \cong \mathbb{Z}[\epsilon] /\left(\epsilon^{2}-1\right)$, where ϵ is the sign representation. The quadratic form is complicated to describe (Hopkins-Singer); one manifestation is on a 12-manifold M with orientation double-cover M_{w} and twisted spin structure.

Theorem (in progress): In the NSNS superstring background assume X_{w} is a manifold, let $i: F \hookrightarrow X_{w}$ be the fixed point set of the involution, and ν its normal bundle. After inverting 2 the center is

$$
\mu=\frac{1}{2} i_{*}\left(\frac{\kappa^{-1} \Xi(F)}{\psi^{-1}\left(\kappa^{-1} \phi \operatorname{Euler}(\nu)\right)}\right) \in K R[1 / 2]^{\beta}\left(X_{w}\right) .
$$

- $i_{*}: K R[1 / 2]^{]^{*} \beta-\tau^{K O}(\nu)}(F) \longrightarrow K R[1 / 2]^{\beta}\left(X_{w}\right)$.
- We invert the multiplicative set $S=\left\{(1-\epsilon)^{n}\right\}_{n \in \mathbb{Z}>0} \subset R O(\mathbb{Z} / 2 \mathbb{Z})$ and apply a localization theorem à la Atiyah-Segal in twisted $\mathbb{Z} / 2 \mathbb{Z}$-equivariant $K O$-theory. Here $\phi \operatorname{Euler}(\nu)$ is the image of the Euler class of the normal bundle after inverting S.
- ψ is a twisted version of the Adams squaring operation.
- $\Xi(F)$ is $K O$-analog of the Wu class: "commutator" of ψ and Thom.
- Passing to rational cohomology we recover the physicists' formula with the modified Hirzebruch L-genus, as in Jacques' lecture.

THEOREM 2: WORLDSHEET ANOMALY CANCELLATION

To specify a field theory we give a domain category of manifolds, fields, and an action. For the 2d worldsheet theory the fields are contained in

Definition: A worldsheet consists of
(i) a compact smooth 2 -manifold Σ (possibly with boundary) with Riemannian structure;
(ii) a spin structure α on the orientation double cover $\hat{\pi}: \widehat{\Sigma} \rightarrow \Sigma$ whose underlying orientation is that of $\widehat{\Sigma}$ (notation: \hat{w} for $\widehat{\Sigma} \rightarrow \Sigma$);
(iii) a smooth map $\phi: \Sigma \rightarrow X$;
(iv) an isomorphism $\phi^{*} w \rightarrow \hat{w}$, or equivalently a lift of ϕ to an equivariant map $\widehat{\Sigma} \rightarrow X_{w}$;
(v) a positive chirality spinor field ψ on $\widehat{\Sigma}$ with coefficients in $\hat{\pi}^{*} \phi^{*}(T X)$;
(vi) and a negative chirality spinor field χ on $\widehat{\Sigma}$ with coefficients in $T^{*} \widehat{\Sigma}$ (the gravitino).

We focus on two factors in the effective action after integrating out the fermionic fields:

$$
\text { pfaff } D_{\hat{\Sigma}, \alpha}\left(\hat{\pi}^{*} \phi^{*}(T X)-2\right) \cdot \exp \left(i \int_{\Sigma} \zeta \cdot \phi^{*} \hat{\beta}\right) \text {. }
$$

The first factor is the pfaffian of a (real) Dirac operator on the orientation double cover $\widehat{\Sigma}$. The second factor is the integral of the B-field over the worldsheet.

Work over a parameter space S of worldsheets. Then the $\{$ first, second $\}$ factor is a section of a flat hermitian line bundle $\left\{L_{\psi}, L_{B}\right\} \rightarrow S$. The first is the standard pfaffian line bundle with its Quillen metric and Bismut-F. covariant derivative. We discuss the second below.

Theorem (in progress): of the tensor product

There is a canonical geometric trivialization

$$
L_{\psi} \otimes L_{B} \longrightarrow S
$$

which is constructed from the twisted spin structure κ on spacetime X.
pfaff $D_{\widehat{\Sigma}, \alpha}\left(\hat{\pi}^{*} \phi^{*}(T X)-2\right) \cdot \exp \left(i \int_{\Sigma} \check{\zeta} \cdot \phi^{*} \check{\beta}\right): S \longrightarrow L_{\psi} \otimes L_{B}$

- $\widehat{\Sigma}$ has an orientation-reversing isometry which preserves all data except the spin structure α. The line bundle $L_{\psi} \rightarrow S$ can be computed in terms of a torsion class which measures the nonequivariance of α. Variation of Atiyah-Patodi-Singer.
- We implicitly project the pullback $\phi^{*} \breve{\beta}$ of the B-field modulo the Bott periodicity action. This lands in a certain multiplicative cohomology theory R which is the Postnikov section $k o\langle 0 \ldots 4\rangle$, more precisely in $\breve{R}^{\hat{\omega}-1}(\Sigma)$. Sadly, our data does not include an orientation on Σ which would allow us to integrate $\phi^{*} \beta$. This is the genesis of the mysterious ζ. We explain by analogy on next slide.
- Denote the trivialization in the theorem as 1 . Then

$$
\frac{\text { pfaff } D_{\widehat{\Sigma}, \alpha}\left(\hat{\pi}^{*} \phi^{*}(T X)-2\right) \cdot \exp \left(i \int_{\Sigma} \check{\zeta} \cdot \phi^{*} \tilde{\beta}\right)}{1}: S \longrightarrow \mathbb{C}
$$

is a function on S which is part of the "quantum integrand".

Let M be a smooth compact n-manifold. Integration is defined as

$$
\int_{M}: \Omega^{\hat{w}+n}(M) \longrightarrow \mathbb{R}
$$

with domain the space of densities. A density pulls back to an n-form on the orientation double cover $\widehat{M} \rightarrow M$, odd under the involution.

An orientation in ordinary cohomology is a section of $\widehat{M} \rightarrow M$. Then let $o \in \Omega^{\hat{w}}(M)$ be the function on \widehat{M} which is 1 on the image. (Alternative: o is an iso of twistings $0 \rightarrow \hat{w}$ of real cohomology.) Integration on forms is now defined:

$$
\begin{aligned}
\Omega^{n}(M) & \longrightarrow \mathbb{R} \\
\omega & \longmapsto \int_{M} o \omega
\end{aligned}
$$

In $\exp \left(i \int_{\Sigma} \check{\zeta} \cdot \phi^{*} \check{\beta}\right)$ the "orientation data" is an object $\check{\zeta}$ which is a trivialization of an object $\check{\epsilon} \in \breve{R}^{T^{K O}}(T \Sigma)-\hat{w}-1(\Sigma)$. It is closely related to the class which measures the nonequivariance of the spin structure α on $\widehat{\Sigma}$. The details involve explicit models with Clifford modules...

SUMMARY

- There are new "abelian" objects in differential geometry which are local, so can serve as fields in the sense of physics. In our work: twistings of K-theory and its cousins, twisted spin structures and spinor fields, twisted differential $K R$-objects, ...
- Underlying topological objects lie in a twisted cohomology theory.
- Two theories: worldsheet (short distance, fundamental, 2d) and spacetime (long distance, effective, 10d).
- In the foundational theory of orientifolds we are proving two theorems which are topological:

Ramond-Ramond charge due to gravitational orientifold background (localization in equivariant $K O$-theory, $K O$ Wu class)
anomaly cancellation on the worldsheet (exotic notion of orientation)
Proofs: new variations on old themes in K-theory and index theory.

- Most intricate matching we know between topological features in a short distance theory and its long distance approximation.

