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SUMMARY

• There are new “abelian” objects in differential geometry which are
local, so can serve as fields in the sense of physics. In our work:
twistings of K-theory and its cousins, twisted spin structures and
spinor fields, twisted differential KR-objects, . . .

• Underlying topological objects lie in a twisted cohomology theory.

• Two theories: worldsheet (short distance, fundamental, 2d) and
spacetime (long distance, effective, 10d).

• In the foundational theory of orientifolds we are proving two
theorems which are topological:

• Ramond-Ramond charge due to gravitational orientifold background
(localization in equivariant KO-theory, KO Wu class)

• anomaly cancellation on the worldsheet (exotic notion of orientation)
Proofs: new variations on old themes in K-theory and index theory.

• Most intricate matching we know between topological features in a
short distance theory and its long distance approximation.



TWISTINGS OF KR-THEORY

There are many approaches to twistings of K-theory: Donovan-Karoubi,
Rosenberg, Atiyah-Segal, Bouwknegt-Carey-Mathai-Murray-Stevenson,
etc. We adapt F.-Hopkins-Teleman (arXiv:0711.1906) to KR-theory.

Let X be a local quotient groupoid in the sense that locally it is
isomorphic to S{{G for S a nice space (e.g. manifold) and G a compact
Lie group. We write

X : X0 X1
p0

oo
p1oo

Specify a double cover π : Xw Ñ X by a homomorphism φ : X1 Ñ Z{2Z.
Then Xw is represented by the groupoid

Xw : X0 X 1
1p0

oo
p1oo

where X 1
1 � tpa

f
ÝÑ bq P X1 : φpfq � 0u is the kernel of φ. It is classified

by w P H1pX; Z{2Zq (cohomology of geometric realization).



Pictured is the groupoid X. Yellow arrows f satisfy φpfq � 0; red
arrows f satisfy φpfq � 1. The groupoid Xw has only the yellow arrows.



Extend the groupoid to a simplicial space by fiber products:

X : X0 X1oooo X2oooo
oo

X3 � � �oooo
oooo

For V is a complex vector space, φ P Z{2Z, set

φV �

#
V, φ � 0;
V , φ � 1.

Definition: A twisting of KRpXwq is a triple τ � pd, L, θq consisting of
a locally constant function d : X0 Ñ Z, a Z{2Z-graded complex line

bundle LÑ X1, and for pa f
ÝÑ b

g
ÝÑ cq P X2 an isomorphism

θ : φpfqLg b Lf
�
ÝÝÑ Lgf .

There are consistency conditions for d on X1 and for θ on X3.

Warning: In general, we replace X by a locally equivalent groupoid.



d=2 d=2

d=1

LgLf
Lgf

The degree d is the same on components of X0 connected by an arrow.
There is an isomorphism θ : Lg b Lf Ñ Lgf for the labeled arrows.



Another picture: L

��

θ

X0

d

��

X1

ε
��

oooo X2oooo
oo

X3 � � �oooo
oooo

Z Z{2Z

We define a (higher) groupoid of twistings and commutative composition
law. Isomorphism classes of twistings of KRpXwq are classified by

H0pX; Zq �H1pX; Z{2Zq �Hw�3pX; Zq,
d ε pL, θq

where the last factor is cohomology in a local system. This is an
isomorphism of sets but not of abelian groups.

Key point: We can realize twistings as objects in a cohomology
theory. Special case: involution on Xw acts trivially—so twistings of
KOpXq—twistings classified by Postnikov truncation ko   0 � � � 2 ¡ of
connective ko with homotopy groups πt0,1,2u � tZ , Z{2Z , Z{2Zu.



An object in twisted KRqpXq may be represented by a pair pE,ψq,
where E Ñ X0 is a Z{2Z-graded Cliffordq-module and for each

pa
f
ÝÑ bq P X1 we have an isomorphism

ψ : φpfqpLf b Eaq
�
ÝÝÑ Eb

There is a consistency condition on X2.

Warning: In general we need to use a more sophisticated model in
which E has infinite rank and an odd skew-adjoint Fredholm operator.

Definition: A differential twisting of KRpXwq is a quintet
τ̌ � pd, L, θ,∇, Bq where τ � pd, L, θq is a twisting, ∇ is a covariant
derivative on L, and B P Ω2pX0q satisfies

p�1qφp�1B � p�0B �
i

2π
curvp∇q on X1.

The 3-form H � dB is a global twisted form: p�1qφp�1H � p�0H. It is
the curvature of τ̌ . (Ungraded version in Schreiber-Schweigert-Waldorf).



Remarks:
• We could continue and give a finite dimensional model for objects

in the twisted differential KR-theory }KRτ̌ pXwq. We have not
developed an infinite dimensional model along these lines.

• Because these objects have cohomological significance, we can give
topological models. For the differential objects we can give models
following Hopkins-Singer. Can develop products, pushforwards, etc.

• Other models of differential objects in ordinary cohomology and
K-theory are being developed. (Deligne, Simons-Sullivan,
Bunke-Kreck-Schick-Schroeder-Wiethaup, . . . )

• There is not yet a general equivariant theory of differential objects.
There is some work for ordinary cohomology (Gomi) and for finite
group actions in K-theory (Szabo-Valentino, Ortiz).

We leave this general discussion to return to orientifolds, where the
foregoing provides an explicit model of the B-field. We formulate
everything in a model-independent manner.



NSNS SUPERSTRING BACKGROUND

The pNeveu-Schwarzq2 �NSNS fields are relevant for both the
worldsheet (2d) and spacetime (10d) theories. As in Jacques’ lecture we
have the following concise

Definition: An NSNS superstring background consists of:
(i) a 10-dimensional smooth orbifold X together with Riemannian

metric and real-valued scalar (dilaton) field;
(ii) a double cover π : Xw Ñ X (orientation double cover);
(iii) a differential twisting β̌ of KRpXwq (B-field);
(iv) and a twisted spin structure κ : <pβq Ñ τKOpTX � 2q.

• An orbifold (in the sense of Satake) is presented by a local quotient
groupoid which is locally S{{Γ with Γ finite.

• We do not have time today to explicate κ, an isomorphism of
twistings of KOpXq.

• This compact and precise definition is one of our main offerings.



THEOREM 1: RR BACKGROUND CHARGE

The pRamondq2 �RR current on spacetime is self-dual. Its definition
requires an extra topological datum: a quadratic form. We fix an NSNS
superstring background.

Definition: An RR current is an object ǰ in }KR β̌
pXwq. The quadratic

form of the self-dual structure is displayed on the next slide.

A quadratic form has an axis of symmetry, so defines a center µ in its
domain. Here the domain is the group of topological equivalence classes
of currents, or charges. (Sign: The RR background charge is �µ.)

KRβ(Xw)
µ



Recall KO0
Z{2Zpptq � ROpZ{2Zq � Zrεs{pε2 � 1q, where ε is the sign

representation. The quadratic form is complicated to describe
(Hopkins-Singer); one manifestation is on a 12-manifold M with
orientation double-cover Mw and twisted spin structure.

KRβpMwq

��

j_

��
KO

<pβq
Z{2ZpMwq

κ
ÝÑ
�

KO
τKOpTM�4q
Z{2Z pMwq

πMw
�

��

κjj_

��
KO�4

Z{2Zpptq � Z� Zε

��

πMw
� pκjjq

_

��
Z ε-component πMw

� pκjjq



Theorem (in progress): In the NSNS superstring background
assume Xw is a manifold, let i : F ãÑ Xw be the fixed point set of the
involution, and ν its normal bundle. After inverting 2 the center is

µ �
1
2
i�

�
κ�1 ΞpF q

ψ�1
�
κ�1φEulerpνq

�� P KRr1{2sβpXwq.

• i� : KRr1{2si
�β�τKOpνqpF q ÝÑ KRr1{2sβpXwq.

• We invert the multiplicative set S � tp1� εqnunPZ¡0 � ROpZ{2Zq
and apply a localization theorem à la Atiyah-Segal in twisted
Z{2Z-equivariant KO-theory. Here φEulerpνq is the image of the
Euler class of the normal bundle after inverting S.

• ψ is a twisted version of the Adams squaring operation.

• ΞpF q is KO-analog of the Wu class: “commutator” of ψ and Thom.

• Passing to rational cohomology we recover the physicists’ formula
with the modified Hirzebruch L-genus, as in Jacques’ lecture.



THEOREM 2: WORLDSHEET ANOMALY
CANCELLATION

To specify a field theory we give a domain category of manifolds, fields,
and an action. For the 2d worldsheet theory the fields are contained in

Definition: A worldsheet consists of
(i) a compact smooth 2-manifold Σ (possibly with boundary) with

Riemannian structure;
(ii) a spin structure α on the orientation double cover π̂ : pΣ Ñ Σ whose

underlying orientation is that of pΣ (notation: ŵ for pΣ Ñ Σ);
(iii) a smooth map φ : Σ Ñ X;
(iv) an isomorphism φ�w Ñ ŵ, or equivalently a lift of φ to an

equivariant map pΣ Ñ Xw;
(v) a positive chirality spinor field ψ on pΣ with coefficients

in π̂�φ�pTXq;
(vi) and a negative chirality spinor field χ on pΣ with coefficients

in T �pΣ (the gravitino).



We focus on two factors in the effective action after integrating out the
fermionic fields:

pfaffD
pΣ,α

�
π̂�φ�pTXq � 2

�
� exp

�
i

»
Σ
ζ̌ � φ�β̌

	
.

The first factor is the pfaffian of a (real) Dirac operator on the
orientation double cover pΣ. The second factor is the integral of the
B-field over the worldsheet.

Work over a parameter space S of worldsheets. Then the {first, second}
factor is a section of a flat hermitian line bundle tLψ, LBu Ñ S. The
first is the standard pfaffian line bundle with its Quillen metric and
Bismut-F. covariant derivative. We discuss the second below.

Theorem (in progress): There is a canonical geometric trivialization
of the tensor product

Lψ b LB ÝÑ S

which is constructed from the twisted spin structure κ on spacetime X.



pfaffD
pΣ,α

�
π̂�φ�pTXq � 2

�
� exp

�
i

»
Σ
ζ̌ � φ�β̌

	
: S ÝÑ Lψ b LB

• pΣ has an orientation-reversing isometry which preserves all data
except the spin structure α. The line bundle Lψ Ñ S can be
computed in terms of a torsion class which measures the
nonequivariance of α. Variation of Atiyah-Patodi-Singer.

• We implicitly project the pullback φ�β̌ of the B-field modulo the
Bott periodicity action. This lands in a certain multiplicative
cohomology theory R which is the Postnikov section kox0 . . . 4y,
more precisely in qRŵ�1pΣq. Sadly, our data does not include an
orientation on Σ which would allow us to integrate φ�β̌. This is the
genesis of the mysterious ζ̌. We explain by analogy on next slide.

• Denote the trivialization in the theorem as 1. Then

pfaffD
pΣ,α

�
π̂�φ�pTXq � 2

�
� exp

�
i
³
Σ ζ̌ � φ

�β̌
	

1
: S ÝÑ C

is a function on S which is part of the “quantum integrand”.



Let M be a smooth compact n-manifold. Integration is defined as»
M

: Ωŵ�npMq ÝÑ R

with domain the space of densities. A density pulls back to an n-form
on the orientation double cover xM ÑM , odd under the involution.

An orientation in ordinary cohomology is a section of xM ÑM . Then let
o P ΩŵpMq be the function on xM which is 1 on the image. (Alternative:
o is an iso of twistings 0 Ñ ŵ of real cohomology.) Integration on forms
is now defined:

ΩnpMq ÝÑ R

ω ÞÝÑ

»
M
oω

In exp
�
i
³
Σ ζ̌ � φ

�β̌
	

the “orientation data” is an object ζ̌ which is a

trivialization of an object ε̌ P qRτKOpTΣq�ŵ�1pΣq. It is closely related to
the class which measures the nonequivariance of the spin structure α
on pΣ. The details involve explicit models with Clifford modules. . .
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