SINGULARITY FORMATION OF COMPLETE RICCI FLOW
SOLUTIONS
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ABSTRACT. We study singularity formation of complete Ricci flow solutions,
motivated by two applications: (A) improving the understanding of the be-
havior of the essential blowup sequences of Enders—Miiller—Topping [EMT11]
on noncompact manifolds, and (B) obtaining further evidence in favor of the
conjectured stability of generalized cylinders as Ricci flow singularity models.
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1. INTRODUCTION

1.1. Motivations. Much is known about Ricci flow in dimensions n = 2,3 and
on compact manifolds. Much less is known about solutions on higher-dimensional
or noncompact manifolds. In this paper, using multiply-warped products, we in-
vestigate various phenomena that occur in singularity formation on complete non-
compact solutions (J\/[, g(t)) of Ricci flow in arbitrary dimensions. We are most
interested in singularities for which noncompactness plays an essential role in the
precise sense that the metric on any compact subset K C M remains nonsingu-
lar. Our most significant results for solutions of this type are found in Theorem 5,
Theorem 6, and Corollary 7 below.

An application of those results, which is our main motivation for writing this
paper, is as follows: we show that standard sequences of parabolic dilations at a
singularity, which produce predictable subsequential limits on compact solutions,
as shown by Enders—Miiller—Topping [EMT11], can yield unexpected limits for non-
compact solutions unless additional criteria are imposed. We state this application
above the discussion of our main theorems. In a second application, introduced
below that discussion, we prove a weak stability result for generalized cylinders

JI thanks the NSF for support in PHY-1707427. DK thanks the Simons Foundation for support
in Award 635293. NS thanks the NSF for support in DMS-0905749 and DMS-1056387.
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evolving by Ricci flow, one that is motivated by well-known and much stronger
results of Colding—Minicozzi [CM12, CM15] for mean curvature flow.

1.2. Application: essential blowup sequences on noncompact manifolds.
The main application of Theorem 6 and Corollary 7 that we have in mind in this
paper is to obtain new insights into blowup limits of singularities on complete
noncompact manifolds. We rigorously explore the phenomena that occur if finite-
time singularities form at spatial infinity on noncompact manifolds. More precisely,
we construct complete Ricci flow solutions for which Type-I singularities occur at
spatial infinity and which do not have any Type-I singular points. The existence of
such (singly-warped) examples has been conjectured in [EMT11]. We show that for
each of our (doubly-warped) examples, taking a blowup limit along some essential
blow up sequence (see Section 4 for precise definitions) yields a gradient shrinking
Ricci soliton in the subsequential limit, whereas taking a subsequential limit along
some other essential blow up sequence yields a complete ancient solution that is
not a soliton. We summarize these results in the following theorem:

1. Theorem. For any p > 2, there exist complete, noncompact, k-noncollapsed
Ricci flow solutions (M, g(t)), with M := R x 8 x 8P, that develop Type-I singulari-
ties at spatial infinity. For each of these solutions, the set of Type-I singular points
is empty.

Furthermore, on each of these solutions, there exist essential blowup sequences
along which a blowup limit yields a nontrivial gradient shrinking Ricci soliton, and
there exist essential blowup sequences along which no blowup limit can be a gradient
shrinking Ricci soliton.

The key idea is that on noncompact Ricci flow solutions, there can be essential
blowup sequences with no Type-I singular point limit, and these sequences may or
may not have nontrivial gradient Ricci soliton limits.! However, one can obtain
soliton limits by imposing another condition. Indeed, we show the following in the
proof of Theorem 1:

2. Corollary. Under the conditions of Theorem 1, a blowup limit of the flow along
a sequence (xj,t;) with |z;| — oo and t; — a, < 00 is a nontrivial gradient soliton
if and only if
(1) | |Rm(z, )] _

j—oo supye | Rm(-, 1)
In other words, to obtain a nontrivial gradient shrinking soliton limit, it is both
necessary and sufficient that | Rm(z;,t;)| — supy | Rm(-,¢;)] as |z;| — oo. Clearly,
the subsequences we construct in Theorem 1 that fail to have soliton limits do not
satisfy this condition. For noncompact solutions on which the set of Type-I singular
points is empty, we conjecture that (1) is sufficient to obtain gradient soliton limits
for all singularities that form, not just those satisfying the multiply-warped Ansatz
we employ in this paper.

We obtain a related result for solutions on M = R x 8! x 87, These are not
k-noncollapsed, hence do not have blowup limits except as étale groupoids, in the
sense considered by Lott [Lott10].

LWWhile singly-warped examples may also exhibit singularities that form at spatial infinity, we
use the doubly-warped hypothesis in the proof to rule out the existence of nontrivial gradient
Ricci soliton limits.
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We believe that the arguments we use to prove Theorem 1 could easily be ex-
tended to construct x-noncollapsed examples on RF x 87 x 8P for any k > 1 and
p > 2 with the same properties that (a) their singularities occur at spatial infinity
and (b) distinct subsequential blowup limits are possible.

1.3. Manifolds. We now proceed to discuss our general results. Let (B", gs)
be a complete noncompact Riemannian manifold. For o € {1,..., 4 < oo}, let
(37 gs.) be a collection of space forms,> and let u, be constants such that
tagy., = 2Re[gs,]. Given functions u, : B™ — Ry, there is a warped product
metric g on the manifold MY = B" x F* x - x F44, where N = n + Zézlna,
given by

A
(2) g=9s+ Z UagF, -

a=1
For brevity, we omit the dimensions of the manifold M and its factors F7« in
what follows.

Under Ricci flow, the structure (2) of the multiply-warped product metric is

preserved, and the base metric g5 and warping functions u, evolve by the coupled
diffusion-reaction system

A
(3a) Orgp +2Relgn] = =2 naug 2V (ul/?),

a=1

(3b) (O — A) g = — o — uy | Vual|?, (e e{1,...,A}).

3. Remark. Throughout this paper, undecorated geometric quantities are computed
with respect to the metric g on M and its Levi—-Civita connection. In particular,
the Laplacian in (3) denotes that of the metric g, i.e., A = Ay, rather than the
Laplacian Ag of the metric gg on the base. Given any smooth function p(z)
depending only on x € B, the two differential operators are related by

A
1
(4) Anp =Anp+ = Z natiy (Viy, Vi),
2 a=1
as follows easily from Claim 32 of Appendiz A. In keeping with this convention, the
undecorated symbol V? above denotes the covariant Hessian on M.

If some wu, (z,0) is a constant a,, then us(x,t) = an — paot is an explicit solution
of (3b) for as long as the flow remains smooth. Since we are interested in studying
perturbations (though not necessarily small everywhere) of spatially homogeneous
solutions, we set a, = inf es uq(z,0) and define v, (+,0) : B — R, by

(5) va(z,O):ua(z,O)—am
for a € {1,..., A}. We observe that for as long as a smooth solution of system (3)
exists, the metric has the form
A
(6) g9(z,1) :g’B(xat)+Z{(aa_uat)+va(xvt)}gﬁ"av
a=1

20ur theorems in this paper directly imply the same results in the more general case that the
factors F,* are Einstein manifolds, but the space form hypothesis facilitates the explicit curvature
calculations that we perform in Appendix A.



4 TIMOTHY CARSON, JAMES ISENBERG, DAN KNOPF, AND NATASA SESUM

where uq (2,t) = (a0 — pat) + Vo, t).

4. Remark. The construction outlined above ensures that inf,cp vo(z,0) = 0.
Because our solutions are not compact, it is not automatic that inf,cs vo(x,t) =0
for those t > 0 for which a solution exists. However, this is true and follows from
results we prove below.

In Appendix A, we compute the curvatures of (M, g). Here, for « € {1,..., A}
and all ¢ > 0 that a Ricci flow solution exists, we define the functions

(73) ’}/a(l‘,t) = |V1}a(17,t)‘2,
(7h) Xa(@,1) = [V2va (2, )2,
(T) p(z,t) = | Rmlgs](z,t)[ ,

where the second and third norms are computed with respect to gz.%> To motivate
these quantities, we note that it follows from Remark 34 in Appendix A that there
is a universal constant C' depending only on the dimensions such that

A
<C {,o”? +> (ua?va + u;lxiﬂ)} :
g a=1

where ¢ is the metric on the total space M. So in any open set in which the
quantities v, are small relative to u, (which need not be true globally but is always
true sufficiently close to spatial infinity), control of p, v, /u2, and Y /u? indicates
that the curvature is pointwise close to that of an un-warped product.

(8)  [Rmlg] = ) ua Run[gs,]

1.4. Main results. In this paper, we assume that v,, x«, and p are bounded on
our initial data in terms of a constant Cj,;; and functions G, and H, in a manner
that we call our Main Assumptions and make precise in Section 2.1. (Specifically,
we use G, to bound 7, and H, to bound x,.)

Our first general result provides an asymptotic description of all solutions of Ricci
flow originating from initial data gj,;+ that satisfy those assumptions. Specifically,
it shows in a precise sense that the asymptotics of the original data are preserved:

5. Theorem. Let (J\/Lg(t)) be a solution of the Ricci flow system (3) that originates
from initial data giniy satisfying our Main Assumptions and exists for t € [0, Tsman]-

There exists Cy = Cy(n,ng, Cinit) such that for t € [0, min{Tyman, C; 1)), the
metric can be written as

9(@,t) = g5(z,1)
+§1{(aa ) + <1+o (W)) va<x,o>}g%,
where 1/C, < |gs(x,t)| < C..

3Strictly speaking, these are the norms of the projections of V2v, and Rm, respectively, onto
the subspace of Ty ® -+ ® Ty on which g(gl is positive definite. We follow this notational
simplification freely below. The terms that do not appear in these norms can be seen explicitly
in Claim 31 and equation (66). (Because Vv, is the same on the base as it is on the total space,
it does not matter which metric is used for the first norm.)
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It follows from the Main assumptions that the terms Gq (va(z,0))/v2(z,0) are
bounded. By those assumptions, those terms bound |V log v, (z,0)|?, which in turn
implies that the functions v, (-, 0) can decay at most exponentially (specifically, see
Remark 11 below). In fact, if the functions G, are chosen so that the quantities
Ga(va(z,0))/vZ(z,0) are comparable to [V log vs(z,0)[?, then Gq(z,0)/v2 (z,0) N\
0 as v (z,0) N\, 0 if and only if v,(+,0) decays more slowly than exponentially.

We prove Theorem 5 in the course of proving the following stronger but more
technical result:

6. Theorem. Let (M, ginit) satisfy the Main Assumptions stated in Section 2.1.
Then there exists a constant Cy, = Cy(n,ng, Cinit) such that the following are true:
A solution

A
g(z,t) = gn(z,t) + > 01 {@a — pat +va(z,t) }g7.,

of the Ricci flow initial value problem with g(x,0) = ginit(x) exists with curvatures
bounded in space at all times t € [0,T), where Ty := min{Tyng, C:1}, and Tsing 15
the (finite) singularity time, i.e., the mazimal existence time of a smooth solution
with bounded curvature.

The v, are uniformly equivalent for t € [0,Ty). Specifically, one has

C—Ua(x,t) < 0 (2,0) < Cyvg(z,t).
Moreover, for each x € B and t € [0,T), one has
(9a) p(x,t) < Cinit (1 4 Cit),

and for a € {1,..., A},

Ga(va(z, 1))
(9b) Ya(z,t) < Cinit (1 +Ct BT
(QC) Xa(xv t) S Cinit (]- + C*t) Ha ('Ua(x, t)),

where G, and H, are functions specified in the Main Assumptions.

> Go(va(z,t)),

We prove Theorem 6 in Section 3.3 below after precisely stating our assumptions
in Section 2.1 and establishing preliminary estimates in Sections 2.2-3.2.

If C;l < Tiing, then the theorem above cannot describe the solution up to the
singular time. However, by appropriately modifying the initial data in such a way
that Tiing may be reduced if necessary, we can always arrange that our results do
apply up to Tiing, as we now explain.

A key strength of the theorem is that the constant C, is independent of the
quantities a,. One sees from (8) that the curvature can be very large if some a,
is very small. But even in that case, the bounds (9) persist. This leads directly to
our next result. We let ¢ be such that ac/pc = min{ay/ta: o > 0}. By (6), the
metric on ¢ has the form {(ac — pct) +v¢(z,t) }g7.. By Remark 4, inf v (-,0) =0,
and by Theorem 6, this infimum is preserved. Thus the solution cannot exist past
the formal singularity time Tiorm = ac/uc. Hence we have the following corollary:

7. Corollary. There exist initial data (M, gl.,.) satisfying the Main Assumptions
stated in Section 2.1 with the same constant Cini, the same initial values v,, the
same real-valued functions G, and H,, but with possibly changed constants a,, such
that the conclusions of Theorem 6 hold for the Ricci flow evolution of (M, ¢l.;) at



6 TIMOTHY CARSON, JAMES ISENBERG, DAN KNOPF, AND NATASA SESUM

all times [0, Tsing). Moreover, Tyng = Ttorm; there are no finite singular points in
space; and the singularity is Type-I and occurs at spatial infinity.

A proof of this corollary is found in Section 3.3, following the proof of Theorem 6.

A schematic outline of our proof of Theorem 6 is as follows. The proof relies on
two pairs of supporting results, with Propositions 14 and 20 composing the first
pair and Propositions 21 and 22 composing the second. In the process, we obtain
Theorem 5 as a consequence of the arguments we employ to prove Proposition 21.

Standard short-time existence results give us a smooth Ricci flow solution on
some time interval [0, Tinin|, with some curvature bound. Propositions 14 and 20
take as their input a curvature bound on [0, T,iy]; they output linear growth es-
timates for p, Yo, Xa on an interval [0, T1] C [0, Tiin], albeit with a possibly large
constant that depends on the input curvature bound. As noted below the state-
ment of Theorem 6, we ultimately do not want estimates that directly depend on
the curvature. The fact that we get linear growth estimates for p, ., Xa, however,
lets us then apply Propositions 21 and 22, which take as their input uniform bounds
on a suitable subinterval [0, 73] C [0,7}] and yield the conclusions of the theorem
on some time interval [0, 73] C [0,T5]. Finally, we use an “open-closed” argument
to show that the supremum of ¢ > 0 such that the theorem holds cannot be too
small, i.e., that it extends to min{ZTyng, C;'}.

1.5. Application: weak stability of generalized cylinders. Our second appli-
cation of our main results concerns stability of cylinders R* x 8? under Ricci flow.
This is a subtle question. Even though a round cylinder R* x 8P is expected to be
a stable singularity model in a suitable sense, it is not immediately clear how to
define its stability.

For mean curvature flow, there is a rich collection of recent results addressing
the stability of generalized cylinders. For example, it is shown in [CM12] that the
only entropy-stable? shrinkers are spheres, hyperplanes, and generalized cylinders.
See also [SS20], [SZ20], and [Zhu20].

Currently, we know of no analogue of such powerful results for Ricci flow. Ac-
cordingly, we adopt the following;:

8. Definition. We say a solution g(-,t) of Ricci flow is weakly stable if for every
€ > 0, there exists § > 0 such that for any other Ricci flow solution §(-,t) satisfying
llg(-,0) — g(-,0)llg0y < &, one has [|g(-;t) — G(-;t)|lget) < € for all t > O that both
solutions exist.

For “outer” perturbations (i.e., those for which ¢(0) > g¢cy1(0) and such that
the cylindrical ends are preserved in a C” sense) that also satisfy the admissable
conditions of Definition 23, we prove the following result, which is stated more
precisely as Theorem 29 in the text below.

9. Theorem. Ricci flow of a direct product metric gey1 on RF x 8P is weakly stable
with respect to admissible perturbations of gey.

Moreover, if g(-,0) is an admissible perturbation of gey(-,0), then both flows
g(-,t) and geyi(-,t) develop a singularity at the same finite time and remain close
to each other in the C° norm up to that singular time.

See §4.2 for further context regarding this result.

4See definitions (0.5) and (0.6) in [CM12].
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10. Remark. We note that the proof and conclusion of Theorem 9 also apply for
any direct product metric on R x 87 x 8%, for any nonnegative integers p, q, as long
as at least one of them is nonzero.

Acknowledgment. We sincerely thank the referees for several suggestions to improve
the presentation of our results in this paper.
2. ASSUMPTIONS AND PRELIMINARY ESTIMATES

2.1. Assumptions. We begin by establishing some notation.
Given a smooth function ¢ : Ry — Ry, we define

slo'(s 20" (s
|mumf:wp0+ EAOIn w<n>

S€R+ QO(S) (IO(S)
We caution the reader that this is not a norm. The double bars are a reminder
that || - [|2,mon 1S & supremum rather than a pointwise bound. The subscript is a

reminder that ||¢||2,mon depends on two derivatives of ¢, and that the quantity in
parenthesis is constant if ¢ is a monomial.
Given a smooth function 9 : B x [0,7] — R, we define

@ -2 oy

(U P2
The single bars in |- |2 cxp are a reminder that it is a pointwise bound, i.e., a function
of z € B rather than a supremum. The subscript is a reminder that |- |2 exp depends
on two derivatives, and that |V1|?/1? is constant in space if ¥(x,t) = edatn) (@',7)
for some z’ € B, where dg(t)(x’ ,x) represents distance with respect to the metric

g(t).
In Section 2.2, we state some useful properties satisfied by || - ||2,mon and | - |2,exp-

|¢|27exp -

We next define

(10) §= {G Ry = Ryt ||Glg := ||G]|2,mon + sup G(zs) < oo} .
s€ERy S
We note that s2 € G, so G # (). We again caution the reader that we are once more
using nonstandard notation: the symbol || - ||g defined here is not a norm, and § is
not a vector space.
Any choices of G, € G generate associated functions H, € G defined by

A

(11) Huls1,...,54](sa) = ZC’Y‘?S(Q;” Ga(sa).
B=1

The notation reflects the fact that H, is intended to control the geometry on the
fiber F,, but inputs information from the functions Gi,...,G 4 used to control
the geometry of all fibers JF1,...,F4. For brevity, we write Hy[s1,...,54](84) =
H, (s4) below. The mnemonic theme is that we find it convenient to use G, Hy, € G
to control gradient and Hessian terms in (12b) and (12c¢), respectively. We assume
below that our choices of G, satisfy the inequalities |G ||g < C,, for some constants

Coya€{l,...,A}.
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Throughout this paper, we assume that our initial data consist of a metric
A
ginit(l') = 9B (-T7 0) + Zazl {aa + Vo (fIJ, O)}gf}'a
on the manifold M = B x F; X - -+ x Fy satisfying the following:

Main Assumptions. There exist a constant Ciyy and functions G, € G such that
forae{l,... A},

(12a) |Galls < Cinits

(12b) Ya(,0) < Cinit Ga (va(z,0)) for all x € B,
(12¢) Xa(2,0) < Cinit Ha (va(z,0)) for all x € B,
(12d) p(x,0) < Cinie for all x € B.

We further assume that [V Rm[g(-,0)]|4(. 0y is bounded and that at least one o > 0,
i.e., that at least one fiber is a space form of positive Ricci curvature.

We note that our choices of G, € § may depend on the initial data, and that it
follows from our main results that the choice u, > 0 forces a singularity at a time
Tsing < 0.

11. Remark. We observe that part (12b) of the Main Assumptions requires that
|V log vminit|2 is bounded, which implies that inf u, inic cannot be attained. This
means that Theorem 6 and Corollary 7 are primarily useful in analyzing singulari-
ties that occur at spatial infinity.

Given initial data in which inf u, is attained in a compact set, one could adjust
G init downward in order to apply those results. However, their output would not
be sharp in that case, because it then cannot describe the developing singularity all
the way up to the singular time.

2.2. Basic inequalities. It is not difficult to verify the following useful properties
of [| - [l2,mon and [ - [2,exp:
o1 + @2
llp1602
ll1 © w2(l2,mon < ||901||2,m0n||502||§,mon7
lpo w|2,eXp < ||‘P||§,mon|¢|2,exp’
[P102]2,0xp < [¥12,exp + [¥2]2,0xps
P01 + Yal2.exp < 2 (|Y1]2,exp + [Y2]2,exp)-
We explicitly verify the fourth inequality, whose proof is slightly less straightforward
than the proofs of the others.
Proof. Let ¢ : M x [0,T] — Ry and ¢ : Ry — Ry. Then (po ) = ¢ (¢)Yr,
Vilp o) = ¢ (¥)Vih, and A(p o) = ¢ (¥)A¢ + ¢" (1) Vi[>, Thus one has
(0, — A)(p o) Vo) _ ') (8 — A)p — " () [V |? AR
poy (po)? e(1) (p())?
_ @) (0= A)Y 4P () VUl
) v e) Y
{W’(w) }2 [Vy|?
e(1) P2

2,mon < [|¢1]2,mon + [|¥2]
2,mon < 2”()01

2,mon>

2,mon ||<P2|

2,mon>

(13)

+
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from which it is easy to see that | 0 |2 exp < O

2.3. Differential inequalities. We now estimate the evolution equations of the
quantities we work with throughout this paper: 74, Xa, and p.

12. Lemma. If 74, Xa, and p are as in (7), then there exists a uniform constant
Cy that depends only on the dimension vector N = (n,n.) such that we have the
estimates

1 |V7al? Ve
_ < -Z A
(14) (0 — A)va R + 6 (Ui Yo
1 |Vxa
(15) (6t_ )Xag_§| X | +CNLX0¢+CNLZ —5 Yas
Xa = s
and
1|Vpl?
(16) (0 —A)p < — 2' L eNS)
where
A 1/2
L:=p"/2+ +ZX6
i R

The useful structure here is that we have negative gradient terms appearing on
the right-hand sides of all three inequalities. In (14) and (15), we also have what
may be regarded as linear terms with coefficients that can be bounded in terms of
the quantities under consideration; in (15) and (16), we have inhomogeneous terms
that may be similarly bounded.

Proof. In the proof, we use the same symbol Cy to denote constants that might

differ from line to line but that all depend only on the dimension vector N = (n,ny).
An easy computation (see Appendix C) implies that

|Vva|4 .y V204 (VUa, Vg)

Ugy

(0 = A)va = =2|V?0o |* +2

Using Cauchy—Schwarz and Kato’s inequality (|[V|Vva|| < [V2v4|), we get (14).
To obtain (15), note that in Appendix C we compute that
(0 — A)xa < —2|V3UQ\E,B + 4Rmg (V0a, VZ04) + 2u % Va Xa
—2u 3 (Va, Vya)Va + 4u, 2 (V04, Ve @ Va)

1
- 2ugl<v2va7 v2'7a>g'3 + NU(EQWQ{ — Xa + ZU;1<V Va, V'Ya>}

A
+Ox (D IV 10g ual?) V2001V 200 g -
a=1

An easy computation using results about the Levi-Civita connection I' derived in
Appendix A yields
2 2
‘V ‘V va|9)3 9B |VX0‘ 9B _ ‘VXOAP

—|V30a|? =— =
[V valgs < 2Xa 2Xa 2Xa
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and

Ugy U

X3/2 ’71/2X1/2
‘u;1<v2vavv27a>gBlch< — |V3Uoc|g'3>

«

3/2
<Oy <Xa 4 Lo X“) + V302,
Ug, u?
Again using results about the Hessian from Appendix A, we see that

1/2
V2, < On (x}]? 415 73/2> ,
uﬂ )

implying that

‘ U(MHV 'Ua|gg < C'N Xa Z 72 Yo | 5
p=1 "8

where we use the Cauchy—Schwarz inequality. Putting these estimates together
yields

IVXal® /2 4 1/2 3 B
O — A)xa < ——2 + CnXa 2 :7
(t )X = 2Xa + NX P ua = %
xa 2 Z v
+Cn = 3 <+ ( ﬁ) Yo
U u?
(03 B 1 ﬂ
|V | A 1/2
S 2X0¢ + C’N LXa + C’N Yo E ’Yﬁ E § 75
Xa =1 5 =1
Vxal®

| /\

+CnLxa+CnL Z% Yas

2X o 51 UB

as claimed.

Finally, as in Appendix C, we denote by H the (integrable) horizontal distribu-
tion of M and by Rmggg¢ the restriction

Rmg(gsc := Rm |:H®T:M®TM®:}C'

Our computation in Appendix C shows that p evolves by
(0 — A)p < —2|VRm |2, + Cpnp®/?

A
+2 Z na{u;2 Rmg (V204, VZ04)
a=1
— 2u;3 Rms (Vzva, Vg ® Vva)}

A
+ CN(Z |Vlogua|2)|Rm|g,B | Rmycgsc|q-

a=1
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Claim 35 in Appendix C shows that V Rm vanishes if exactly one index is vertical.
Thus by Kato’s inequality for tensors, we have
1Vols, 1|Vp|?
2 2 _ g3 _
_|VRm|gB S_‘V‘Rmbﬂs 93*_1 P 2 7—1 P .
Moreover, using our computations of curvature components in Appendix A, we
immediately get

A ~ A X1/2
R < (C £+ L+ 1/2
|Rmgascly < Cn | D u? > w TP
B=1 p=1

All of these together imply that
A 1/2,1/2

V
/371 ug ﬂ T
1/2
Cn 1/2 'Y,B 1/2

TOn ) Z P TP

/3—1 B=1

1
< - 2|Vp| + CnL?,

yielding (16). This completes the proof. O
3. ANALYSIS

In this section, we prove estimates for solutions of parabolic equations on non-
compact manifolds evolving by Ricci flow. Among the results we obtain below are
Propositions 14, 20, 21, and 22 which, as discussed in the introduction, play a major
role in the proof of Theorem 6.

3.1. A noncompact maximum principle. The goal of our first result, Lemma 13
is to obtain estimates for a function U in terms of a “comparison function” V and a
“control function” W. For example, we often take U to be a function that we want
to estimate on a short time interval [tg, t1], V to be the same function at the initial
time tg, and W to be a large constant that depends on bounds for the curvatures
on [tg,t1]. Our proof of the lemma proceeds by applying a noncompact maximum
principle to the quantity U/V, thereby allowing us to bound it suitably from above.
We use Lemma 13 extensively in the proofs below.

3

13. Lemma. Let (M, g(t)) be a smooth solution of Ricci flow for t € [0,T], and let
UV, W :Mx [0,T] = Ry be smooth functions. Suppose that there exist constants
0 < ¢« C such that

2
(0 —A)U <CUW + VW) — c|vg| :
(@ —A)V] vV
% + 5 S COW,
|8 — A)W |+ [VW > < CW,
w<C,

where the Laplacian and norms above are computed with respect to the solution g(t)

of Ricci flow.
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Then there exist A = A¢,C) and T = T'(¢,C,T) € (0,T] such that for all

te0,T],
(at—A){g—At(l—&—g) W} <0,

Moreover, if there exist a point ' € B and a constant C' such that one has

Uz, t) < C’ec,d-le(ﬂ(r/’z)\/(x,t) on [0,T"], then fort € [0,T],

U(z,t) U(y,0) U(y,0)
< sup + 2XtW (z,t) | 1+ sup .
V(l’,t) yeM V(y70) ( ) yeM V(y70)
Proof. We define X = U/V and compute that
(0 —A)U (VU,VV) Vv (@ - A)V
O—A)X=—F+2X—F—+ —-2X - X .
(0= 4) v uv V2 v
We split the second term on the RHS above as follows:
(VU,VV) (VU,VV) (VU,VV)
17 2X—F =(2-0)X X .
(a7) ov Xy ey

In what follows, we denote by C’ = C’(¢, C) a constant that may change from line
to line. We use the weighted Cauchy—Schwarz inequality to estimate the first term
on the RHS of (17) by

(YU, VV)| _ e |VUP

_ V]2
Q=X <5y T %

and rewrite the second term as

(VU,VV) ¢ /|VU]? IVV|2  |VX|?
X = — X _
“ v 2( ov_ e X )
obtaining
1 VU2 ‘(@—A)V! vV | e vx)?
-A)X < — - A — X — —— .
(9,—A) —V{@ U +c¢ i }+ v +C 7 5 X
Thus our assumptions on U and V imply that
X2
(8t—A)X§M+C'CWX—E|V ‘
2 X
VX|?
1 <cew+x) - VEE
(18) <C'CW(1+X) 5%

Now for A = A(¢,C) > 0 to be chosen, we define Y = X — (At)(1 + X)W and
compute that
(0, —A)Y = (1= XW) (8, — A)X — M(1+X) (9, — A)W
— A1+ X)W +2X(VX, V).

Ift <Ty:=1/(AC), then 1 — XtW > 0, so we may apply estimate (18) to the first
term on the RHS above. We then use our assumption on |(8t — A)W| to estimate
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the second term and apply Cauchy—Schwarz to the last term, obtaining

2
(8, — A)Y < (1 AW) {c’cwu Fx)- & ‘V)"f'

} + CAW (1 + X)

VX

—AW(1+ X)+ X\t ( < I + X|VW|2>

By using our assumption that [VW|? < CW, we simplify this to
(0 —A)Y <WQA+X){ =X+ CC'(1 - XW) + 20Xt}
|VX 2

{—f (1 — XtW) + At}.

Then choosing A = 2CC" and using our upper bound for W, we obtain
X
(0 =AY <W(Q1+X)CC'(—1+4Ct) + —— |V i {-= + CC'(Cc+ 2)t}.

The RHS is nonpositive provided that ¢t < Ty = E and t < T3 :=
Thus we choose T7 = min{T7, T, T3}.

Finally, we justify applying the weak maximum principle on the noncompact
manifold M in the form detailed in Theorem 12.22 of [CCGO8]. Specifically, since

W is bounded, the assumption that U(z,t)/V (z,t) < O 0 (@' 2) implies easily
that Theorem 12.22 applies to Y (z,t) — sup,cy Y (y,0), allowing us to conclude

X(z,t) < MW (z,t)(1+ X (x,t)) +sup X (y,0),

200/(0c+2) :

implying that
Y 1

X(z,t) < TWW(x,t)+

_ X .
T (0] b 0

We can decrease T” if necessary to make AtW(z,t) small enough for all ¢ € [0,7”]
so that the following holds:

X(z,t) < )\t(l + 2)\tW(x,t)) W, t) + (1 oMW (z, t)) sup X (y,0)

= sup X (y,0) + W(x,t) ()\t + 2022 W (2, ) + 2Xt sup X (y, O))

yeM yeM
< sup X(y,0) + 2 W (x,t) (1 + sup X(y,O)).
yeM yeM
This completes the proof. ([l

3.2. Main estimates. We now establish two pairs of Propositions that provide
the key results we need to prove Theorem 6.

In Propositions 14 and 20, we obtain bounds for v, x, and p on a solution that is
smooth on a compact time interval [tg,1].> A strength of these results is that they
allow us to extend bounds that hold at ¢y to the entire interval [to, 1], which cannot
be taken for granted because M is noncompact; a weakness is that the constant we
obtain for these bounds depends on an upper bound for the full curvature tensor
on [to, tl}.

5In Step 1 of our proof of Theorem 6, we initially apply Propositions 14 and 20 with tg = 0.
In Step 2 however, we need to apply them at some tg > 0.
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In Propositions 21 and 22, we show that if the functions v, and their derivatives
satisfy uniform bounds on an interval [0,7], then those bounds can be improved,
independent of the curvature, at least on an interval [0, T,], with 0 < T}, < T.

14. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1.
Suppose a solution g(t) of Ricci flow exists for [to,t1], satisfying the bounds

p(x,to) < CoCinit and

(19)

Va(2,t0) > 0,  Yal(z,t0) < CoCinit Ga (va(®,t0)),  Xal(®,to) < CoCinit Ha (va(z,t0)),

for some Cy > 1,° along with a uniform bound SUP(4,1)eB x[to,t,] | Rm(z, )| < C1.
Then there exists C' = C'(Cinit, Co, C1) and T" = T'(Cinit,, Co, C1) € (to,t1] such
that for all t € [to,T"], one has

Vo (X, t
(20a) Vo, t) > HCS(tO)tO)
(20b) Yal,t) < CoChnit(1 + C" (t — t0)) Ga(va(z,t0)),
(20c) Xa(2,t) < CoCinit(1 + C'(t — t)) Ha (va(z, t0)),
(20d) p(x,t) < CoChnit (14 C'(t — 1p)).

Because its proof is lengthy, we prove Proposition 14 in a series of steps that are
contained in Lemmas 15-19. In the course of the proof, we use the same symbols
C’ and T’ for possibly different constants that depend only on Cini;, Co, and Cy
— with C" allowed to grow but remain finite, and 7" allowed to shrink but remain
positive.

Our first observation is needed because to prove our main results (Theorem 6
and Corollary 7), we need to apply Lemma 13 in cases where V' may be independent
of time, but AV and |[VV|? are computed with respect to g(t).

15. Lemma. Suppose that the assumptions of Proposition 14 hold.
Then there are a constant C'(Cinit, Co, C1) and time T'(Cinit, Co, C1) € (o, t1]
such that on [to,T’], we have

<
Q
—~
\.& -
~
(=)
~— ~—| —

Note that the final two collections of inequalities can be summarized as
(21) |Uoz(xat0)|27exp S C/-

Proof. If tg > 0, our assumed bound on | Rm | at time ¢ = ¢y and regularity theory
for Ricci flow imply the stated bound for |V Rm|. If t; = 0, we note that the Main
Assumptions outlined in Section 2.1 include an upper bound for |V Rm/| at time
t = 0. Then Theorem 14.16 of [CCGO08]) lets us bound |[VRm| on [to,T"].

The subsequent inequalities follow because they hold at time ¢g, and because 0;g
and O, are controlled by our bounds on |Rm | and |V Rm|. O

SWe take Co = 1 if tg = 0 but allow Cy > 1 if tg > 0.
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16. Lemma. Suppose that the assumptions of Proposition 14 hold.

Then there exist a constant C'(Ciyit, Co, C1) and time T'(Cinit, Co, C1) € (to, t1]
so that for all t € [to, T"], estimate (20a) holds.
Proof. First we claim there exists a 7" so that v, > 0 on M x [to, T"].

The Ricci flow equation restricted to the metric on F, is
8t(uo¢ga) = —2Rc |a’

where Re |a denotes the Ricci curvature of planes tangent to F,. Using the fact
that g, is independent of time, we can rewrite this as
Ot(log ug)uaga = —2Re |a.

Since |Rm[g(t)]| < C1 on [to, 1], we get a comparable bound for |Re|, implying
that

|0 log ua| < C',
where C' = C’(C1). Hence for all ¢ € [tg, 1], we have

(22) Ua(,t) > e~ ¢ (t=t0) (aa — pato)-

To prove the claim that v remains nonnegative for a short time, we first show
that given any § > 0, we have v, > —dt on a time interval [ty,T’], where T" could
possibly decrease in the proof but is independent of §.

Equation (22) implies that u, > (aq — fato) (1 — C'(t —to)), so
(23) Va (7, 1) = ug — (a0 — pat) > —C' (t — to).

We fix T' so that T" — tg < (a — pat1)/(2C1) and let 7 € [tg, T'] be arbitrary.
Because C1 (1 —to) < C1(T" — tg) < $(aq — pt1), we may let

(24) €Ec (Cl(T — to), Qo — ,Ufatl)

be arbitrary. Then v, + € > 0 on [tg, 7], so each function v, . = (vy + €) 7! is well

defined on that time interval. Using that v, (z,t) evolves by
(25) N

(63

a straightforward computation yields

(0 — A)va,e = |V10g v, e|*Va,e (Uau+ € _ 2) )

e

Our choice of € implies that
Ua-i-E: Vo + € < Vo + € <1
Uey Vo + Qo — Hat Vo + Qo — Hall

for all t € [to, T'] and thus that

B |VUa.e|?
Vae
Let U(z,t) = vae(x,t), V(x,t) = va.(z,t0), and W = C’. Observing that V is
independent of time and using Lemma 15, one sees that
@ = A)V] IVVP_ Bgra(@to)l | VPaleto)lie
(26) 14 V2 7 wa(x,tg) +e (va(z, to) + €)?
<.

(0 — A)va,e < —|V10gva,e[*va,e =
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Note in particular that (26) is independent of e. For a sufficiently short time,
Va,e < (€ — C'(T — )™ < 00. So U is bounded in space, and the bound (26)
implies |V log V| is bounded, so V' decays at most exponentially. Thus, Lemma 13
can be applied to U, V, and W as defined above to conclude that

Va,e(x,t) < (14 C' (t = t0)) Va,e(z, to), t € [to, 7],

where C" = C'(Cinit, Co, C1) is independent of e. Letting € N\, C1 (7 — tp), which is
the lower bound imposed by (24), we find that

Cl(T — to) Cl (7_ — t())
o —to) = 2 '
Vo + C1 (T — 1o) 14+C (1 —to) — 1+C"(t, —to)

Because T € [tg,T"] is arbitrary, this implies that

1
UQZ_(l_lJrC’(tlto)>Cl(t_t0)

for all ¢ € [to,T'], which improves (23) by a fixed factor. Repeating this bootstrap
argument k times (which can be done without changing T"), where

1 k
- - <
<1 1+Cl(t1 —t())) G < 6’

proves that v, > —d(t — to) on [to,T']. Because 6 > 0 is arbitrary and 1" is
independent of 4, it follows that v, > 0 on [tg,T’], as claimed.

We next prove a better quantitative lower bound for v,, as long as v, (z,t) > 0
holds, that is, for t € [to, T'], where T” is some possibly smaller time 7" (Cipit, Co, C1).

The method is very close to that used in the proof of the claim that v, > 0, so
we avoid unnecessary repetition. Let € € (0, an — pat1) be arbitrary, and again let
Ve = (Vo + €)1, Note that in contrast to the previous argument, where (24) is
needed, we have proven that v, > 0 above, hence we know that v,  is well-defined
and bounded by e~! for all € > 0. Then as in the arguments above, we find that

2
(at _ A)Ua,e < _M.

Va,e

Now let U(x,t) = vae(z,t), V(x,t) = vac(z,to), and W = C’. Again using
equation (26) and the fact that U is bounded, we can apply Lemma 13 to obtain

Va,e(w,t) < (14 C'(t —to)) va,e(, to),
where C' = C'(Cipnit, Co, C1) is independent of e. We let € N\, 0 to conclude that

va(z,to)
_ T <
1L+C'(t—to) — Va(2,t)

on M x [to, T']. O

17. Lemma. Under the assumptions of Proposition 14, there exist C'(Cinit, Co, C1)
and T' = T'(Cinit, Co, C1) € (to,t1] such that for all t € [to,T'], estimate (20b)
holds.

Proof. Since we have (22), we can find 7" sufficiently small so that

(27) U (x,t) > —infu,(-,to) >0 for t€ [to,T"].
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Recalling that” Rm[gy,] = co g7, ® g7, and using formula (67), which we derive
in Lemma 33 in Appendix A, one sees easily that the bound | Rm[g(¢)]| < Cy on
[to, t1] implies that

1
eatiz? = 51V (logul/?)| < 1.

(e

Combining this with (27) implies the existence of C' = C’(infy ua (-, to), C1) such
that

(28) Z—g = 4|V(logu/?)2 < ¢’
for all (z,t) € M x [to, T']. Using (14) and (28) yields

1 ol?
(20) (0~ Ay < C'yo — 'VJ i

We apply Lemma 13 to (29) with U(xz,t) = va(z,t), V(z,t) = G4 (va(x,to)), and
W(z,t) = C’. To see that all assumptions of Lemma 13 are satisfied, we need to
check that |V|2 exp is bounded by C’. Indeed, by (13) and (21) we have

(30) Vigexp < [|Gar

|2,mon |U(X($at0)|2,exp S Cl-

We also need to check that 3%2 < €' eC U0 @m0) for ¢ € [ty, T'], where zq is

some fixed point in B. Indeed, since Vu, = Vv,, (28) implies that for every
t € [to, T'], the function u, (-, t) grows at most exponentially in space and thus, for
every t € [to,T"], U(z,t) = va(x,t) grows at most exponentially in space as well.
On the other hand, by (30), |V log V| is bounded, so V' (x, t) has at most exponential
decay. Hence,

%(w,t) < A w0) on M x [to, t1],

as desired.
We can finally apply Lemma 13 as indicated above to conclude that for ¢ €
[to, T"], we have

(31) Ya (@, 1) < (14 C" (t = o)) CoCinitGa(va(2; to));
as desired. O

18. Lemma. Under the assumptions of Proposition 14, there exist a constant C' =
C'(Cinis, Co, C1) and a time T' = T'(Cinis, Co, C1) € (to,t1] such that for all times
t € [to, T'], estimate (20c) holds.

Proof. Assume T" € (to,t1] is chosen so that both (20a) and (20b) hold on [tg, T"].
Recall that in Lemma 12, we compute that y, evolves by

([~ 1 [Vxal?
(0 — A)Xa < ONLxa +CONLY (25 | Yo — 5 —22-,
B=1 Ug 2 Xa

1/2
where L := 22:1 14 22:1 Xs_ 4 p/2 p:=|Rms |2, and Cy depends only on

w3 s

the dimension vector N = (n,7n4). The curvature bound | Rm[g(#)]| < Cy implies

See (65) for our normalization of the Kulkarni-Nomizu product .
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that the terms in (67d) are bounded. Then using estimate (28) and increasing C’
if necessary, we find that |L| < C" on M x [tg, T’]. Hence we have

1 |Vxal?
(0 Ao < O+ € [ 3222 ] 0 - LVl
= 1uﬁ 2 Xa

By (20a) and (20b), we see that for ¢ € [to,T"],

A A
gl N Gslvs (e, to))
5 o < C — 9/ .\ Ga a at .
2 | =L Ty Celteln )
Let U (2, ) = Xa(2:1), V(1) = X5y 255" Galva(@, 1)) = Ho(va(w,t0)),
and W = C’. We verify that V(x,t) satisfies the hypotheses of Lemma 13. By using
estimate (13), we obtain

Gs(vg(z,to)
|V|2exp§‘z B /3 O

02 (z, o) + |Galva(z,t0))]2,
B=1 B

2,exp

+ [Ga(va(z, tO))|2,eXP~

2,exp

Note that by (13) and ( )
|Ga(va(2,t0))|2.exp < [Gall3mon [va(@,t0)|2.exp < CAC".

Gp(vs(2,to))
v3(2,t0)

and vg(z,to). Then using (13) again, we obtain
Gﬁ(vﬂ(ma to))
’U% (l‘, to) 2,exp
By (21), we have |vg(x,t0)|2,exp < C'. It is easy to see that
sely _ slG(s)
vs — Gpls)

5%|¢js | s?|Ga(s)] s|G(s)]
pp(s ) ~ Ggls) Gp(s)

These imply that
Gﬂ(vﬁ('T?tO)) <
’U% (.I‘, to) 2,exp

we also have

Moreover, we may regard as a composition of functions ¢g(s) := %

S ||<p5||g,mon |’Uﬁ(l’7 t0)|2,eXP'

+2<Cs+2

and

+6 <5C5 + 6.

and hence that
(32) ‘V|2’exp <.

Recall that in this proof, we choose U = xo = |VVuq|g,. Our assumption
that the curvature is bounded by C; implies in particular (by Remark 34) that
|u=tVVu, — 1/2u;?Vu, ® Vu,| is bounded by C’. Then (28) implies firstly that
lu;'VVu,| < €', and secondly that u, grows at most exponentially in space, so
that x, grows at most exponentially in space. On the other hand, by (32), we have
that V' (z,t) decays at most exponentially in space. These two estimates yield the
bound % < e dyy (@0),
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We can now apply Lemma 13 to our choice of U(x,t), V(z,t), and W(x,t) to
conclude
Xa(z,t) < CoCinit (1 + C' (t — t9))Ha(va(x, to)),
where we use the initial condition that x,(x,to) < CoCinit Ha (va (z, to)). O

19. Lemma. Under the assumptions of Proposition 14, there exist a constant C' =
C'(Cinis, Co, C1) and a time T' = T'(Cinit, Co, C1) € (to,t1] such that for all times
t € [to, T"], estimate (20d) holds.

Proof. Recall that in Lemma 12, we compute that p(x,t) = | Rm[gs](z, )| evolves
by

2
(0 - a)p < coyrd - V2L

1/2
where L = Z?=1 o+ 22=1 Xa_ 4 pl/2 and Cy depends only on the dimension

vector N = (n,nq). As in the proof of Lemma 18, we conclude that |L| < ¢’ on
M x [tg,t1] and hence that

2
(@ —A)p< oL~ VP

By Lemma 17 and Lemma 18, there exist constants C’ and T € (¢o,t1] so that for
all t € [to,T'], we have

A 1

L<c (i Gao(va(z,t0)) +Z Ho/:(va(x,to)) Jrp1/2>

Ugé(x,to) (.’L‘,to)

< O/(C’a + p1/2)a

a=1 a=

where C' is a bound on SUDy_ ew, (ZA Galsa) 4 22:1 Has(asa)

a=1" 57 ), i.e., a uniform

constant. Hence,

2
(0 —A)p<C.C" (p+1) — Vol

We apply Lemma 13 with U(z,t) = p(z,t), V(z,t) = 1, and W(x,t) = C’ to
conclude that for all ¢ € [to,T"], we have

p(x,t) < CoCinit(1 + C'(t — tg)).

Combining Lemmas 15-19 completes the proof of Proposition 14.

Recall that the estimates (20b) and (20c¢) for v4(x,t) and x4 (x,t), respectively,
which we prove in Proposition 14 have v, (x,tg) on the RHS. Our next result im-
proves those by substituting v, (z,t) for vy (x,tg).

20. Proposition. Suppose the assumptions of Proposition 14 hold.
Then there exists C' = C’'(Cinit, Co, C1,t1 — to) so that we have

’ya(.’E, t) < (1 + C/(t - tO)) COCinitGoz(voz(x7 t))a
Xa(z,t) < (14 C'(t —t9)) CoChnit Ha (va (1)),

for all t € [tog, T'], where T" is the same as in Proposition 1.
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Proof. By the chain rule, we have
O (Ga (Ua)) = G:x (Va) Orva,

which implies that

4G, 1) = | 2 e el )] Colteleel) o )
» < CaGalva(z,t)) (IV?va(ar,t) IVva(a:,t)IQ)
> Laba(Vall, ’Ua(il',t) vg(x,t) .

By (20a) and (20b), which hold for ¢ € [to, T'], we have
Voo *(z,t) < (14 C" (t — t0))CoCinitCavi(z, o)
< (14 C' (t —t0))*CoCinisCav’i(z, 1)
for all t € [tg, T']. This yields
[Vva|?

2
Vo

(34) <(1+C' (t—1)2CoCinisCs for t e [to, T'].

To bound ‘vjj‘(*%;t)l, we note that by (20a) and (20c), we have
xa(a:, t) S (1 + O/ (t — to))CQCinitHa(Ua(l‘, to))
< (1+C (t —t0))CoCinisCoav2 (, to)
< (1 + Cl (t - to))gcocinitéavu(xa t)27
implying that
|V20, |2

2
Vo

3 _
< (1 + Cl (t — to)) COCinitCa, for t ¢ [to,T’],

where C,, is a uniform constant. Combining this estimate with (34) and (33) yields
|01 log G (Ve (2, 1)) < (14 C (t — t0))? CoCinitCas
and hence
(35) Go(va(z,t) < (14 C'(t —t0)) Ga(va(, to)) for all t € [to,T"].
We combine (20b) and (35) to conclude that for all ¢ € [tg, T'], we have
Yo, t) < (1 + C" (t — t9))CoChnit Ga(va(,1)).
Finally, using (20a), (20c), and (35) yields
Xa(z,t) < (14 C" (t —10))CoChnit Ha (va(z, 1))

for all ¢ € [tg,T"], as claimed. O

We now prove our second pair of Propositions, which provide control of the
curvatures by a constant that depends only on the initial data. Specifically, in
contrast to Propositions 14 and 20, the constant we obtain below is independent of
the bound sup(, 4)esx[to,4,] | Rm(z, )| < C1.
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21. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1.
Suppose a solution g(t) of Ricci flow exists for [0, T satisfying v (x,0) > 0 and

(36a) Yo (,t) < 2 Cinit Go (va(z, 1)),
(36D) Xa(2,t) < 2Cinig Ha (va(z,1)),
(36¢) plx,t) < 2Cinit

fort e [0,T].

Then there exists C, depending only on Ciy and N = (n,nq) such that for
t € [0, min{T, C;1}], one has the bounds

a2, 1) < CinisGalva(z, 1)) (1 + C.tE, (va(x,t))>,

on(xa t) < Cinit Ha (Ua(xy t)) (1 + C* t),
p(l",t) S C(init (1 + C* t)a
where ( )
Go(va(z,t)
Ea e at = o
(va(z,1)) Vo (2, 1)2
is bounded by our Main Assumptions.

Proof. The proof is very similar to the proof of Proposition 14. We let C. =
C!(Cinit) be a uniform constant that may increase from line to line, whereas C, is
the final constant that appears in the statement above.

To obtain the desired bound for v,, we recall estimate (14),

Yo 1 | ;A/aP
— < — — — .
(8t A)’ya <6 (1)2) Yo~ 5 o~

By (36), we have
Ya(z,1) < 2CinitGa(va(z, 1)),

and hence

1|V7yal®

2 Yo

Our goal is to apply Lemma 13 to U(x,t) = yo(x,t), V(z,t) = Go(va(z,t)), and
W(z,t) = Eq(va(x,t)). In order to do this, we need to verify that the hypotheses
of Lemma 13 are satisfied. By (13), we have

(at - A)’Ya S C; Ea(va) Yo

|Goc(voc)|2,eXp < ||G06||g,mon |va|2,exr> < C; |Ua|2,GXP
and

(38) |Ua|2,exp = 227(21 < C; Ea(”a)-

e

Thus,
|Ga(va)|2,exp S C!k Ea(’l)a).

On the other hand, E,(vs) < [|Gallg < Cq and
|Ea(va)l2.exp < [|Eal

It is easy to see that E,(s) = G‘;—és) < C satisfies ||[Eqll2,mon < C. and that
E,(vq) < C. is bounded. Hence we have

|Ea(va)|2,cxp S Ciy

2
2,m0n|v04 2,exp-
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implying by definition of | - |2 exp that
[V Ea(va)l®
E.(va)

Then using the fact that |E,(v,)| is bounded and increasing C. if necessary, we
obtain

(8 — A) Eq(va)| + < O} Eq(va).

(8 — A) Eq(va)| + [VEa(va)]? < CL Eq(va).
We can now apply Lemma 13 as indicated above to conclude that there exists
Cl = C}(Cinit, N) and Ty = Ti(Cinit, V) so that for all ¢ € [0, min{T,T}], we have

Ya(, ) /
-~ 7 N S Cini + C*t (1 + C’ini )Ea Ua(xat)
(39) Ga (Uoz (LE, t)) ‘ ‘ ( )
< Cinit (1 + Cy t Eq (val(z, t)))
This yields
Ya(#,1) < Ciaie Galval@,1)) (1+ C.t B (va(2,1)))
for ¢ € [0, min{T, T }], as claimed.
To obtain the bound for x,, we recall estimate (15), namely
1 |Vxal

A
(8t_A)Xa§CNLXa+CNLZZ%'7a  xn

p=1 8

1/2
where L = 22:1 24 22:1 X6 4 p1/2 and the constant Cy depends only on

u% ug

N = (n,ng). By the assumptions in (36), we have L < C’ and

A
Z ng Ya < Ci Ho(va),

p=1 8
where C. is a uniform constant depending only on Ci,;;. Thus,
1 |Vxal?
(at - A)Xoc < CVN Xa + C’N Hoc(voc) - 5 |XX|
«

We want to apply Lemma 13 to U(z,t) = xa(z,t), V(z,t) = Ha(va(z,t)), and
W(x,t) = C,. By (13), the fact that ||Gal2.mon + || Eall2,mon < C%, (36), and (38),
we have

|Ha(va)|2,exp < | ZEﬁ(Uﬂ)|2,eXp + |Ga(va)|2,exp
< QZ |Es(vs)l2,exp + |Ga(va)l2,exp

Vo |?
S Ci "Uoz|2,cxp - 20; | 2a|
/UOt
Ga(va)
<C. ”‘vz 2L <O

By Lemma 13 applied as above, there exist C, = C(Cinit, Cn) and Ty = Ty (Cinit, Cn, )
such that for all ¢ € [0, min{T, T\ }], we have

Xal(z,t)

AN <O ! L
Ha(’Ua(I,t)) = Clnlt + C* t (1 + Clnlt)7
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which implies that
Xa(z,t) < Cinit Ho(va(z,t)) (1 4+ Cit).

To obtain the desired bound for p(z,t), we recall estimate (16),

2
(0 - a)p < coyrd - V2L

where L is as above, and C'y depends only on N= (n,n4). Hence,

2
(@ —A)p<crr?— VoL
p
As in Lemma 19, using (36), we obtain
\V4 2
(0 =A)p<Cllp+1) ey 2L

We take U(x,t) = p(z,t), V(z,t) =1 and W(z,t) = C, and apply Lemma 13.
It gives us the existence of C, = C}(Cinit, T, Cn) and Ty = Ty (Cinit, T, Cv) such
that for all ¢ € [0, min{T, T\ }], we have

p(,t) < Cinie + Cit (1 + Cinit),
implying that
P(Ia t) S C’init (1 + C* t);
for all ¢ € [0, min{7,T%}], where C, is a uniform constant.

Finally, we increase C, if necessary so that C,T, > 1. This concludes the proof
of Proposition 21. O

Next, we improve Proposition 14 by showing in a precise sense that the quantities
v, are uniformly equivalent for ¢ € [0, min{T, C;1}], where [0, T is the time interval
on which the hypotheses of Proposition 21 hold. As we note in the Introduction,
Theorem 5 follows easily from the arguments that we use to prove Proposition 22.

22. Proposition. Let (M, ginit) satisfy the Main Assumptions in Section 2.1, and
let T and C, be as in the statement of Proposition 21. Then the quantities v, are
uniformly equivalent: for t € [0, min{T,C;'}], we have

C—va(x,t) < va(x,0) < Cuvg(z,t).
Furthermore, if in addition to the Main Assumptions, it is also true that
Ga
(40) ) o1 57,0,

then for all t € [0, min{T,C;1}],
oz, t) = (1 + o(1; vo(z,0) N\ O)) Vo (x,0).
Proof. Tt follows easily from (3b) that there exists Cy = Cn(n,ny) such that

(41)
2 2
<Oy <|V Vo n Vg, Vg >Ua-

Vo l|?
|0sva| = |Avy — [Vl 5
Ve Ao — Mol + Vo V5

(€2 _Mat+va
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By Claim 32, there exists C, such that

A 71/2
V2va| < X&/2+CL Y L a2
— Us
B=1
Then we may apply Proposition 21 to obtain
1/2 1/2 1/2
|v2v04| XOé _|_ Cl Z ’}/ﬁ Yo < C/ HOt (Ua(x, t))

Vo Vg Vo Vo (2, )2

515

Applying Proposition 21 again to bound the gradient term, we find that the absolute
value of the quantity in parentheses on the RHs of (41) is bounded by

Ha (’Ua (JJ, t)) + G(x (Uoz(x’ t))

(42) C. Ve (2,t)? Ve (2,t)?

It follows that
|0iva| < ONCy||Gallg va-

This proves the first claim.

To prove the second claim, we observe that it follows from assumption (40) at
t = 0 and the first claim that for any € > 0, there exists § > 0 such that if
Vo (x,0) < 8, then G (va(w,t)) < evZ(z,t) uniformly for ¢ € [0,T). At any z with
Vo (2,0) < d, one can then bound the quantity in parentheses on the RHS of (41) in
absolute value by

H, (Ua(:r, t)) G, (va (z, t))
Vo (T, 1)2 Vo (T, 1)2 sé

Hence at such z, one has dyvs(x,t) < eCnva(z,t). The second claim follows. O
3.3. Proofs of main results. In this section, we prove Theorem 6 and Corollary 7.

Proof of Theorem 6. We define
Toup = sup{T € [0, Tsing): the conclusions of Theorem 6 hold on [0,T]}.

We prove the theorem in two steps.

Step 1. We claim that Ty, > 0. To see this, we recall that by [Shi89] and [CZ06],
there exists Tinin(n, Mo, Cinit) > 0 such that Ricci flow with initial data (M, ginit)
has a unique smooth solution on [0, Tiin]. We first apply Propositions 14 and 20
with tg = 0, t1 = Tmin, Co = 1, and C; = C1(Thin) < 00. They yield a constant C”
and a time T} € (0, Thyin] such that the estimates
Vo (2, 0)
1+Ct’

t) let (1 + C/t)a
Ya(@, 1) < Cinit (1 4 C't) Go (va(z, ),
Xa(,t) < Cnit(1+ C't) Ho (va (2, 1)),

hold on [0,77]. We may then choose Ty € (0,T7] small enough that C'Ty < 1. This
ensures that the hypotheses of Propositions 21 and 22 are satisfied on [0, T5].

x,t)

Y

Vo

(
p(z,
(
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Next we apply Propositions 21 and 22 on [0, T5]. They yield a time T3 € (0, T%]
depending only on {Cinit, 7, 1o } such that the estimates claimed in Theorem 6 hold
on [0, T3). It follows that Ty, > T3 > 0, thus proving the claim.

Step 2. We next claim that Ty, > min{ZTyng, C;'}. We prove the claim by
contradiction, so we may suppose that Tg,, < min{Tsing,C’*_ 1}. Then because
Tsup < Tiing and the inequalities in Theorem 6 are of the form < rather than <,
they hold on [0, Ty,p] by continuity. So we may apply Propositions 14 and 20 with
to = Tsup, t1 = T1 € (Tsup, Tsing) arbitrary, Cy = 1+C\ Tgyp, and C1 = C1(T1) < oc.
They yield a constant C” and a time Ty € (Tyup, 71] such that the estimates

Vo, Ty Vo (x, 0
va(®,t) = 7 C("(t - ;zup) A C’E’(t —) Tap))’
p(,t) < (14 CuTaup) Cinit (1 + C”(t — Tap))
Ya(@,t) < (14 CiTp) Cinit (1 + C”(t — Toup)) Ga (va(x, 1)),
Xo(2, 1) < (1 4+ CiTaup) Cinit (1 + C" (t — Taup)) Ha (va(z,1)),

hold on [0, T4]. Because 1+ C.Ty,p < 2 by assumption, these estimates let us apply
Propositions 21 and 22 and thus obtain the conclusions of Theorem 6 on [0, T3] for
some 15 > Ty,,. By definition of T, this is a contradiction, which proves the
claim. O

Proof of Corollary 7. We recall that by assumption, at least one fiber is a positively
curved space form, and that we have chosen ¢ so that Z—i = min{Z—Z t e > 0}
Because the constant C, in Theorem 6 depends only on our Main Assumptions,
which are independent of a., we may without creating circular dependencies shrink
ac (where, abusing notation, we continue to denote this quantity by a.) to create
new initial data g ;, for which ac = p./C,. Note that we do not change v, (-,0).

Now we apply Theorem 6 to Ricci flow originating from ¢/ ;. The Theorem
controls the evolving metric on [0, min{Zyye, C;'}), for the same constant C.
Since the v, are uniformly equivalent in time on [0, min{Zking, C;'}), the condition
that inf,ep vo(x,t) = 0, which holds at ¢ = 0 by construction (see Remark 4),
also holds on that entire interval. But this means that T, can be no larger
than the formal vanishing time Tiorm = a./puc = C;!. This in particular implies
that the conclusion of Theorem 6 holds for all ¢ € [O,Tsing). However, we have
Tuing = Ttorm, because for ¢ € [0, C1), Theorem 6 implies positivity of v, hence
that uc > ac — puct > 0, and gives control on the remaining curvatures.

Next we prove that solutions originating from initial data satisfying our Main As-
sumptions develop Type-I singularities at spatial infinity. We recall inequality (8):

A A
’Rm[g] 2t Rm[g?“]’ = {p1/2 + D (g + ualxi/Q)} .
a=1 9

a=1

Theorem 6 implies that the RHS is bounded by a constant C’ depending only on
C.,=0C, (C’init, N = (N, na)) and Tging. Thus we find that as t 7 Tying,

A
(43) [Rm|- )" = <,

a=1 "¢
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where the constants ¢, depend only on N and the Ricci constants e Moreover,
Proposition 22 implies that on any compact set, the functions
Ua(2,1) = (aa — pat) + va(z, 1)

are bounded from below, and thus the curvature is bounded from above. But by
Remark 4, inf v, (z,0) = 0, and by Theorem 6, this remains true for all ¢ > 0 that
the solution exists. Thus at any such time, the warping function of the fiber .
satisfies

sup uz (a,1) = (ag — pet) ™,

z€B

which shows that the singularity is Type-I and forms at spatial infinity, as claimed.
O

4. APPLICATIONS

4.1. Essential blowup sequences on noncompact manifolds. Assume that
a Ricci flow solution (M, g(t)) develops a singularity at some time 7" < oo. This
means that limsup, -y R(t) = oo, where R(t) := supy | Rm[g(t)]|. A Ricci flow
solution (M, g(t)) that becomes singular at 7' < oo is called Type-I if there exists
a constant C' > 0 such that for all ¢ € [0,T'), one has R(t) < 7.

If (M, g(t)) is a Type-I Ricci flow solution, then a point p € M is called a Type-1
singular point if there exists an essential blowup sequence (p;,t;) € M x [0,T) so
that lim; , p; = p and lim; , ¢t; = T. By definition, to be an essential blowup
sequence means that there exists a constant ¢ > 0 such that

| Rmg(t:)]lg(e,) (pis ti) =

c
T—t;

Because %fR(t) < C,R%(t), the curvature of a developing singularity always grows
at least at a Type-I rate, and so such sequences always exist. If M is noncompact,
however, it might be the case that an essential blowup sequence does not limit to
any Type-I singular point in M.

In [EMT11], it is proven that if (M, g(t)) is a Type-I Ricci flow on [0, T), and if p €
M is a Type-I singular point, then for every sequence A; — oo, the corresponding
rescaled Ricci flows (M, g;(t),p), defined on [—\;T,0) by g;(t) := X; g(T + A;lt)
subconverge to a normalized nontrivial gradient shrinking Ricci soliton in canonical
form. This is a solution (N, g, f) that exists on a time interval (—oo, T| and satisfies

1 0
RC+V2f = mg and E = |Vf|2

The result in [EMT11] applies in the case that (M, g(t)) is a Type-I Ricci flow
on a compact manifold M, or if M is noncompact and p € M is a Type-I singular
point. On the other hand, if M is noncompact and (M, g(t)) is a Type-I flow
with a singularity forming at spatial infinity, then a Type-I singular point may not
exist — see the example suggested in Remark 1.3 of [EMT11]. In this case, the
results of [EMT11] do not preclude the possibility that the limit along some blow
up sequences is a nontrivial gradient shrinking Ricci soliton, while along some other
blow up sequences it is not. Our goal in this section is to use the results we have
proven here to produce an example exhibiting this phenomenon.

Assume that (M, g(t)) is a complete noncompact Type-I Ricci flow that develops
a singularity at spatial infinity at some time T' < co. That is, there exist sequences
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pj € M, t; € [0,T), and a uniform constant ¢o > 0 such that (p;,t;) — (c0,T) as
j — oo, and
€o

T—t;

This in particular implies that (p;,t;) is an essential blow up sequence for the
singularity developing at spatial infinity at time 7. If A; is a sequence such that
lim; 00 Aj = 00 and if g;(-,t) :== A\ 9(-, T + tA;l), then a blowup limit of the flow
along the sequence p; is a pointed subsequential limit of (M, g;(-,T), p;), if it exists.

| Rm |(p;,t;) >

We now explore what blowup limits are possible for a particular family of non-
compact Ricci flow solutions of the type considered in this paper.

23. Definition. Let gpue denote the Euclidean metric on R*. A family of functions
do(x) : R¥ — R, specifies an admissible perturbation of ¢ = gguc + 22=1 Ao Ggno
on RF x F™M x ... x Fra if lim| 3|00 6 (2) = 0 and there exist functions G, € G
satisfying®

Ga(da(z)) - .
63(33) - 0(17504(x) \0)
such that the metric
A
(44) Jinit = JEucl + Z (aa + 50( (.1?)) ggna
a=1

satisfies the Main Assumptions.”

We define the set
(45) A := {0.(z) : R¥ = R, : §,(z) is admissible in the sense of Definition 23}.
24. Lemma. For any manifold R* x 8P x 89, the set A is nonempty.

Proof. In polar coordinates on R¥, choose rotationally-symmetric warping func-
3

tions 01(r) = da(r) = H%’ along with control functions G1(s) = Ga(s) = 1.

Then it is straightforward to verify that the Main Assumptions are satisfied for the

metric (44), because

472 4
(e = 6& 2= < < « 504 5
10(1) = V801 = oz < g < 5Galdalr)
and
(1) = |VV6a(r)|? < Cini ! + rt
Xa - [e% = init (1 +T2)4 (1 -|—7’2)6
Chnit
< —5 < ini Ha 0 .
< s < CuHa(0(r)
Here we use the fact that H,(da(r)) > m, which is easy to check. We also
have p = 0 for the Euclidean metric. Thus we conclude that 1,2 € A. O

8We write 0(1; 04 (x) N\ 0) to denote a quantity that becomes arbitrarily small as 84 (z) N\ 0,
i.e., as |z| = co. We use similar expressions below, mutatis mutandis.

9We note that by Remark 11, satisfying the Main Assumptions forces the functions d, to be
strictly positive everywhere.
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For the purpose of the applications that we discuss in this subsection, it suffices
to consider a doubly-warped product. Thus we fix kK = 1, A = 2, and spherical
fibers F™ = F"2 = 8P (p > 2) in the remainder of this subsection.

To prove Theorem 1, we consider M = R x 87 x 8P (p > 2), with initial metric

(46) Jinit = (d$)2 + (a* + Ul(xv 0)) gsp + (a* + v?(xa O)) gsr,

where gs» is the round metric scaled so that 2Rcy,, = gsr, and vy(z,0) = 61(z)
and va(z,0) = d3(z), where 1,02 € A are functions such that

51(1') =7 €R+\{0,1}'

|z|—o00 o (m)
The fact that a, > 0 ensures that the curvatures of giy;x are uniformly bounded,
hence that Ricci flow with this initial data has short-time existence.
We require 7 > 0 to ensure that §; and d, remain comparable, so that we may
take appropriate limits. We further require that n # 1 to demonstrate the existence
of sequences that cannot limit to nontrivial gradient shrinking Ricci solitons.

A slight modification of the construction in this section shows that there exist
noncompact Ricci flow solutions that develop Type-I singularities for which there
can be no blowup limits (Mo, goo). Indeed, if we consider M = R x 8! x 8 with
an initial metric that is not x-noncollapsed and has curvatures uniformly bounded
by C = C(a.),

Ginit = (dz)? + 01 (2)(d6)? + (ax + 0a(x))gsr,
where 1,62 € A, then Ricci flow starting at gi,;; has short-time existence, and
our work in proving Theorem 1 goes through, mutatis mutandis, establishing the
following:

25. Remark. There exist complete, noncompact, collapsed Ricci flow solutions
(M,g(t)) that develop Type-I singularities at spatial infinity. For each of these
solutions, Type-I blowups have no Cheeger—Gromouv limits.

As we note in the introduction, blowup limits may exist as étale groupoids, in
the sense considered in [Lott10].

We now show how Theorem 6 and Corollary 7 lead to our main application, as
stated in Theorem 1 and Corollary 2.

Proof of Theorem 1. By the proof of Corollary 7, we may choose a, > 0 sufficiently
small so that the estimates of Theorem 6 hold for the solution originating from
initial data (46) up to the singular time Tgng = @+, at which time it encounters a
Type-I singularity. For as long as it exists, the Ricci flow solution has the form

(47) g(x,t) = da® + (a* —t+ vl(x,t)) gsr + (a* —t+ vo(x, t)) gsp.
By the second part of Proposition 22, we have
(48) Va(z,t) = (14 0(1; 6a(z) \, 0)) da(x)

for all t € [0, a.).
Initially, we consider any sequence (z;,t;) — (00, a,) for which
0o (;
(49) lim dal;) =: ¢y € (0,00), (a=1,2).
J—00 a* — t]
Then our curvature estimates above easily imply that there exists a uniform con-

stant ¢y > 0 such that |Rm(z;,t;)| > a*c_tj. Let A\; — oo be any sequence such
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that limsup;_, (T — ;) A\j < oo, and let g;(t) = A;j g(a. + t)\j_l). This rescaling
ensures that each g; exists up to ¢ = 0; indeed, because we have shown that the
singularity is Type-1, it immediately follows that

(50) [Rmg; (1)) < <

for a uniform constant C'. Note that in our discussion of convergence below, we
always mean in the sense of subsequential convergence, even if we do not explicitly
pass to subsequences.

We rewrite g;(t) = dy* + u1; gs» + us; gse, where
Uaj(y,t) = Aj oz +yA; " an + A1)
= (—t) + A\jva(z; + y)\;17a* + tA;l).

Because our manifold is M = R x 8P x 87 with p > 2, the metrics g; are k-
noncollapsed. Hence by (50), a pointed sequence of Ricci flow solutions (M, g;(¢), ;)
smoothly converges in the Cheeger—Gromov sense to an ancient Ricci flow solution
(Moo, goo(t), 0) that exists for t € (—o0,0).

26. Claim. There exist smooth limits taco(y,t) of Ua;(y,t) as j — 0.
Thus the limit of the convergent subsequence (M, g;(t), ;) is Mo = R x 8P x 8P
with the metric

9oo (ys 1) = dy” + 10 (y, 1)gsr + uze0 () gsr-
Proof. Recall that by Theorem 6, we have
e bo(@j +yA; 1, 0) S vala; + YA aw + A1) < Cuba(z; +yA; 1, 0)
for uniform constants c,, C.. Putting y = 0 = o as above, this yields
A j0a(25,0) < vqj(0,t) < Cuhjda(x;,0).

Oa ()
ax—t;

Because lim;_, oo = ¢o € (0,00) and 0 < limsup;_, o A\j(T —t;) < oo, we

immediately get
(51) Co S 'Uaj(Oﬂf) S CO

for all t € (—asA;,0), for uniform constants 0 < ¢y < Cy < 0.
On the other hand, by Theorem 6, we also have

Vva(z,t)> < Co G(valz, b)) for all t€0,a4),
where Cj is another uniform constant. This in particular implies that
(52) |V log U (z,t)|? < |Vioguva(z,t))? < Co on M x [0, ay).

Estimates (51) and (52) imply that va;(y,t) converges uniformly to vaeo(y,t) on
compact sets of M x [—a,);,0) as j — oo, in a C%* norm, for some p € (0,1). This
together with smooth Cheeger—Gromov convergence implies the claim. (]

27. Claim. For o € {1,2} and every t € (—00,0), both uneo(y,t) are constant in
space.

Proof. We fix any ¢t € (—o00,0), and let t; = a, + t)\j_l. Then we observe that
estimate (52) scales as follows:

A?\ng(tj) 10gu&j|2 < Co.
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Taking j — oo and using the smooth convergence of the metrics proves that log uqeo
is constant in space. ([

To finish the proof of the first part of Theorem 1, we need to show that the limit
(M, goo (-, ), 0) cannot be a gradient shrinking Ricci soliton if

. Oi(x)
A By ~ M E O

and if the spacetime sequence (z;,t;) is such that the constants lim;_, o i”*(_xgj) =cCq

defined in (49) satisfy ¢; = con with n € Ry \{0, 1}. Using Proposition 22 and (47),
we have

u1; (0, =(ax = t5)N;) _ wa(z),t;)
uz; (0, —(ax —t;)A;)  ua(zj,t))
O« —tj + (1 +O 1 61 xj) \0)) 51($j)
(53) (¢ —tj+(1+0 1 52 l'j)\()))(sg(l'j)
- (1 o(L61(a;) \0)) B2
C 1+ (1+0(1,65(x5) N\, 0)) e

Recall that lim;_,(ar —t;)A; = —to € (0,00). We let j — oo in (53) to obtain
uloo(O,to) _ 1+ Cam 75 1
U260 (07 to) 1 + C2 ’

In particular, by Claim 27, we have

t 1
(54) 00 (Y to) _ 1t #1 forall yeR.

U200 (Y, t0) 1+4+co

28. Claim. At no time t € (—00,0) s goo(+,t) a gradient shrinking Ricci soliton.
Proof. Recall that a gradient shrinking soliton is a metric g that satisfies
—2Rc+Lx(g) = Ag,

where X is the gradient vector field of a potential function and A < 0. Restricting

the equation above to a spherical fiber, we find that any fiberwise components of

Lx(g) must be multiples of g restricted to the fibers, hence must be constant.

Therefore, in analyzing the soliton structure, we may assume that X = f(y) -2
It is shown in [AK19] that a metric

EDN

9= (dy)* + @1(y)*gsm + p2(y)*gsr:

on a doubly-warped product R x 8P* x 8P2 is a gradient shrinking soliton with vector
field X = f(y) % if and only if the functions f, ¢1, @2 satisfy the ODE system

(55a) fy=m )y ), P2y
1 Y2
_ 2
(55b) M — (pr — 1)1 (;01);; s (¢1)y(02)y n (<p1)yf+ A
#1 1 P1¥2 1

—~

(55¢)

1— 2
P2 ¥3 P1p2 P2
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The only solutions of this system with ¢; and 2 constant in space are

p1—1 p2—1
fw)=-N,  pl="— and gf="

S0 if goo = dy? + U100gsr + Ussegs» Were a gradient shrinking Ricci soliton at some
t € (00,0), then the constants w10, and uss would have to be equal. But this
contradicts (54). O

We now prove the remainder of Theorem 1 and Corollary 2 by obtaining neces-
sary and sufficient conditions for a limit to be a gradient shrinking soliton.
If \; — oo is such that lim; o A\j(as —t;) = —to > 0, estimate (53) implies that

uloo(O, t()) -
(56) i (0.10) 1

if and only if (x;,t;) is a sequence converging to (0o, a) such that

(57) )

i =0 for «oe€{1,2},
in contrast to (49).

If (57) holds, then Claim 27 implies that for every ¢ € (—o00,0), we have
Utoo (Y, t) = Useo(y,t) = u(t), where u depends only on time. Thus w100 = Uzee =
—A(p — 1) and f(y) = —Ay satisfy the system (55), implying that the metric
Goo = Ay + U1oe gsr + Uaeo gsr is a gradient shrinking Ricci soliton.

Finally, since we have the bounds p—i—Zf:l Uy Xatus%ve < Cpforallt € [0, a.),
the curvature estimate (8) implies that

Ha Ha
58 sup | Rm|g(t)]| = sup = .
%) W ROl = 5 o e = 23— 1@ =1
Note that to obtain the last identity, we use Proposition 22 and the fact that
lim|;| 00 0o (2) = 0. On the other hand, Proposition 22 also implies that

valws 1) = (14 0(1:8a(2;) \0)) da(ay).
Combining this with (8), we find that
(1+0(1)) fla

@ =12 (14 (1 o(1i0a () N 0) 32

ax—tj

(59) [Rm(z;,t;) =

+0(1).

Thus (58) and (59) imply that

| Rm(z;, )]

N B i A V2 B |
j—oo supy | Rm(-, ¢;)|

if and only if (57) holds. We have seen above that (57) is equivalent to (56), and
that by Claim 27, (56) is equivalent to g, being a gradient shrinking Ricci soliton.
This concludes the proof of Theorem 1 and verifies Corollary 2. (]
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4.2. Weak stability of generalized cylinders under Ricci flow. Stability of
generalized cylinders R* x 87 under Ricci flow is a subtle question. Even though
a round cylinder R* x 87 is expected to be a stable singularity model in some
sense, it is not immediately clear how to define this stability. One reason for
this is the following example. Start with a cylindrical metric gey1 = (dz)? + gs»
on R x 8 with p > 2. Let Ty denote the time at which the spherical fibers
vanish. Now consider an e-perturbation of the initial data gcy1: an initial metric
ge = (dx)?+ (1 +¢€) gs» with |e| < 1. Ricci flow originating from g, will also become
singular but at a different singularity time. If we rescale the perturbed flow by
TO& 7> then the rescaled perturbed solution will encounter a singularity before Tj if
€ < 0 or will become infinitely large as t / Tg if € > 0. In other words, no matter
how small a perturbation is, if we chose a cylinder of a different radius, it will not
naturally converge after rescaling to the solution originating at gey1.

Now let grua denote the flat Euclidean metric on R*, and let 87 be a round
sphere scaled so that 2Rcg,, = gs». We take as initial data gcy1(0) = gruc + a+gse.
Then geyi(t) = grue + (ax — t) gsr is a generalized cylinder that solves Ricci flow
up to time a, > 0. Consider perturbed initial data

(60) g(x, 0) = gBucl + U(.’IJ, 0)98”7
where u(z,0) = a. + §(z), with §(z) € A as defined in (45).
29. Theorem. Choose § from the set A, and let g(x,t) be a Ricci flow solution on

R* x SP with initial metric g(z,0) given in (60). Then there exists a constant C,
depending only on a. so that for all x € R* and all t € [0,a.), one has

1 1
o 0@) = 5 19(2,0) = 9e1(0)lgeyi 0)
(61) < sup [g(2,1) = Gey1(t)]geyi(0)
t€[0,ax)

S C* ‘g(l’, O) - gcyl(0)|gcy1(0) = C* 5(%)7

and

sup [g(x,t) — gey1(t)lg.,000) = (1 +o(1;0(x) N\ 0)) l9(2,0) = gey1(0) g, (0)
(62) t€[0,ax)

- (1 + o(1;0(z) N\, 0)) 6(z),

which implies that the gey,1(0)-distance between a perturbed solution g(x,t) and an
evolving generalized cylinder goy(t) approaches zero as |x| — oo, uniformly in time
t € [0,a.). Moreover, the flow g(x,t) develops a Type-I singularity at spatial infinity
ast /ay.

30. Remark. For § € A, we say a solution g(z,t) on R* x 8P stays in a &(z)-
neighborhood of gey1 if
sup |g(1‘7t) - gcyl(t)|gcy1(0) S 5(':6)
te[0,a4)

Theorem 29 implies that for admissible perturbations, the perturbed solution never
leaves the d(x)-neighborhood of gey1. On the other hand, (61) implies that no matter
how small §(x) > 0 may be, after performing a Type-I rescaling by a*l_t of both flows
g(x,t) and gey(t), the rescaled solutions § and ey, Tespectively, have the property
that §(-,7) does not converge to geyi(T) as T — oo, where T = —log(a, —t). This
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behavior is consistent with the example discussed in the opening paragraph of this
subsection.

Proof of Theorem 29. By Proposition 22, if g(z,t) = a. —t + v(x,t), then there
exists a constant C\(a,) such that v(z,t) < C, 6(z) and

vz, t) = (1 +o(1;8(z) \y 0)) 3(x)

for all t € [0, a,). This implies (61) and (62). This further implies that the distance
between the perturbed solution g(z,t) and an evolving cylinder g.yi(t) approaches
zero as |x| — oo, uniformly in time ¢ € [0, ax).

Arguments exactly like those that prove Theorem 1 establish that the perturbed
solution g(z,t) has the same singular time a, as the generalized cylinder geyi(t);
the singularity is Type-I; and it occurs at spatial infinity. O

APPENDIX A. CURVATURES OF MULTIPLY-WARPED PRODUCTS

We begin by recalling classical formulas for the curvatures'® of a simple warped
product B x F. Let (B, ) and (F,§) be complete Riemannian manifolds. In this
Appendix, unlike the rest of this paper, we do not assume that F is a space form.
Let u: B — Ry be a smooth warping function. To facilitate working in local
coordinates, we denote our warped product metric on B x F by g = § + ug.

We begin by working in local coordinates, using lowercase Roman indices (e.g.,
i,7,k,¢) on the base B, lowercase Greek indices (e.g., o, 7,v,w) on the fiber F, and
allowing capital Roman letters to range over both sets. We denote the Christoffel
symbols of g by

1
Iy = QQKL(aIgJL + 0591 — OL91),

and those of § and g by ffj and f‘ZT, respectively. We follow the same convention for
other geometric quantities, including curvatures. We order the Christoffel symbols
by the number of vertical (Greek) indices that appear (in order: 0,1,2,3) and

calculate that

k rk
(63a) Ik =Tr,
kE _ 1k _ v __
(63b) Fo’j - Fi‘r - Fij - 07
1
(63c) Lo, = =5 ¢"u™" dou (ujor),
1
(63d) Iy = §u*1 diu sy,
1
(63e) Ly = 3 ut Oju b,
(63t) ry, =Ty,

10Throughout this paper, we follow the curvature conventions detailed in Sections 5-6
of [CKO04]. Briefly, R(X,Y)Z = V2Z(X,Y) — V2Z(Y, X) for the (3,1)-tensor, and we lower
the raised index into the fourth position so that, say, Ri221 > 0 on the round 2-sphere.
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Given a function f: B — R, there is a natural function f : B Xy F — R defined
by f(z,y) = f(x). We wish to compare the covariant Hessian of f with respect to
g with that of f with respect to g.

31. Claim. If f and f are as above, then
VVf=VVf+(V(iogu'/?),Vf) (ugs).
Proof. This is a straightforward application of (63). We can write
ViVif =ViVif + (V= V)iV f
=ViVif +9sx(V = V)L V" f.

Since V f is horizontal, the only quantity from (63) that appears in the last term
above is (63¢), which proves the claim. O

We now compute the curvatures of g at the origin of a coordinate system that
is normal for ¢ and g, but not necessarily so for g. That is to say, we may assume
that Ffj =0 and I/, = 0 at the origin, hence that 0;g;x = 0 and 9,G,, = 0 there,
but we must use the full formula

Rrjxkr =gLp (8IF§K — 9Tk + FfQF?K - FIJDQF?K>

to calculate the (4,0)-Riemann curvature tensor of g. Again ordering formulas by
the number of vertical indices that appear (in order: 0,1,2,3,4), we compute that

Rijke = Rijie,
Rojre = Rirke = Rijue = Rijre =0,

Ryrie = 0,
Rirve = Ype (6lrgu - Fgwrzju)

1 1
= (ugw)< — iufl V:Vu + 1 uw2V,u Vgu),

RJTI/Z = 07

Rorvw = G (Rgﬂl + FngTI; - Finzrglu)
" 1 _ R . . .
= URJTVUJ - iu 2|vu|2( (u.gaw) (u.g‘ru) - (u.grw> (u.gm/) )

For use below, we note that the curvature operator vanishes if a horizontal plane
is paired with a plane spanned by two vertical vectors, as follows easily from the
observations

(64) 0=R’ . gjt = Rorkj = Rijor and 0= Rijor g™ = R},

There is a more concise way to write these formulas. Recall that the Kulkarni—
Nomizu product of symmetric (2, 0)-tensors @, ¥ is given by

(65) OOV rsrr =¥y + Py Vi — PV — ¥k
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With this normalization, the (4, 0)-curvature tensor Rm of a metric g of constant
sectional curvature x is given by Rm = %n g @ g. Noting that

w2V (ul/?) = %u_17Vu — iu_QVu ® Vu

and using the identity u=?|Vu|?> = 4|V (logu'/?)|?, one sees that the curvature
formulas above are equivalent to

(66) Rm = Rm 4 uRm — %|V(logu1/2)|2(u§]) ® (ug) — 2ug @® (v 2VVul/?).

We now analyze the curvatures of multiply-warped products of the form (2) on
a manifold M = B X Fyx---xTFy. As abgve, given a function f : B — R, there is
a natural function f: M — R defined by f(x, y1,...,ya4) = f(x).

32. Claim. If f and f are as above, then

A
VVf=VVf+ Z< logul/Q) Vf> (Uuags.,)-

Proof. This follows by induction on the number of fibers in the multiply-warped
product, using Claim 31 as the base case. In the induction step, we regard the
multiply-warped product with A fibers as a singly-warped product over a base that
is a multiply-warped product with A — 1 fibers. O

Our next result provides the curvature formulas we need for this paper. We show
below that it also leads directly to estimate (8). In stating it, we write formula (67)
in terms of u2 Rm[gs, ] and u,gs, because, for fixed g, these have constant norms
with respect to g if we vary u,.

33. Lemma. The (4,0)-tensor Rm of the metric (2) on the multiply-warped product
M is given by

A

(67a) Rmlg] = Rmgs] + Y u;' (uf Rm[gs,])

1 A a=1
(67b) ) Z IOgU1/2 |2 (uag?a ® uag?a)

gt
(67c) - Z <V(log ul/?), V(log u;/2)>(uagga ® upgs,)

a=1p8-1

A

(67d) -2 Z U g5, O ( I/ZVQBV( 1/2))

a=1

Proof. This follows by an induction argument similar to that in Claim 32. The
induction hypothesis is that the claim holds for a metric with A — 1 fibers, which
we denote by ga—1) := gs +Z‘2;11 Ua g7, . We denote the curvature and connection
of g(A—l) by Rm(A_l) and V(A—l)-
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We may apply formula (66) for the curvature of a singly warped product to write
the curvature of g = g(4_1) +uags, in terms of Rm4_y), obtaining

Rm[g] = Rm(4_1) +ua Rm[gs ,]
1 2
— 5| Vllog ") (uags.) ® (uags)

— 2UAgg?A @ (u;l/QV(A_l)VUL/Q).

Using Claim 32, we rewrite the Hessian term in the last line above as

A-1
uy PV sy V= uy PV, Vil + 3 (Vieguy?, Viegul{ ) (usgs,).
B=1
This completes the induction step.
In summary, this induction argument shows that adding an additional fiber to a
multiply-warped product adds an additional term to each (outer) sum in (67). O

34. Remark. [t follows easily from Lemma 33 that there exists a universal constant
C depending only on the dimensions such that

A
Ry < | Rmfgs]lys +C D (uz" |2 Rinfge, ]l + 52| Veal2 + 15 [V Vtalys )-
a=1

Furthermore, one sees readily that

A
<c {p”z + > (w2 + ualxiﬂ)} ,
g

a=1

Rm[g] - Z U Rm[g?a}

where p, Yo, Xo are defined in (7). This is estimate (8).

To conclude, we calculate the components of the Ricci tensor. We obtain

Rij = ¢"" Rijk;

A
. 1 _ 1

(68) =R;; — N <2ualvivjua - 4u02viuavjua) ,

a=1
and on each fiber &,
RTV = R;;Tl/ + RZTV

. 1 1 9 1 A 1/2 N
= (Ra)rv — iABua - iua |Vua|™ + 5 Znﬂ <VumV10gu6 > (Ga)ro-
B=1

In the last formula, the Laplacian on the RHS is computed with respect to the metric
gs on the base. To match the convention used elsewhere in this paper, we rewrite
the expression in terms of the Laplacian A = Ay computed with respect to the
metric g on the total space M. Using (4), we obtain

A 1
(69) Ry = (Ra)ry = 5 (Bt = 145" [Vtal?) (Ga) -

Formulas (68) and (69) directly imply the system (3) of evolution equations that
results if one evolves the metric g on the total space by Ricci flow.
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APPENDIX B. LAPLACIANS OF TENSOR SEMINORMS

For use in Appendix C below, we here compute and estimate the Laplacians of
various tensor seminorms. We continue the conventions of Appendix A, using low-
ercase Roman indices (e.g., i, j, k, ) for horizontal vectors, lowercase Greek indices
(e.g., o,7,v,w) for vertical vectors, and allowing capital Roman letters to range
over both sets of indices. We continue denoting g¢ by ¢ when working in local
coordinates.

Before treating Laplacians of seminorms, we establish some preliminary results
for first derivatives of tensor fields.

35. Claim. If T is an (m,0)-tensor field such that T(Uy,Us,...,Uy) vanishes if
exactly one Uy is vertical, then

-v,, (T‘ )
TMR(TB)™ 2\ rsym

Proof. In the proof, we denote horizontal vector fields by Hy, Ha,... and vertical
vector fields by V, V’. For simplicity, we illustrate the idea of the proof with m = 3.
The generalization to arbitrary m is clear. The key fact is that the only components
of the connection in (63) that differ from those of a direct (i.e., non-warped) product
are those that exchange horizontal and vertical vectors. Specifically, we have

VT(V,Hy, Hy, Hy) = —VU, (H{ HHY Ty ji + H{HSHY Ty + H{HJHST ) = 0.

Hence VT'(U, Hy, Hs, H3) can be nonzero only if U = Hy is horizontal.
We note that the assumption that Hy, Ho, H3 are horizontal is necessary: indeed,

similar reasoning shows that terms like VT'(V, Hy, Hy, V') are nonzero in general.
O

36. Claim. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components, then all components of VT for a warped product are the same
as those for a direct product (i.e., a metric with u constant) except

vi{Z—‘o"r = _U_lviu TO’T7

1 - 1
VO'ET = VJTTi = iuilvjujﬂ’ji Jor — iuilviu TtTTa
which do not vanish in general.
Proof. Direct computation using (63). O

We note for use below that Claim 36 implies easily that all components of Vgs
vanish identically except

1
(70) Vagi‘r = vag'ri = §U_1Viu Gor-

For clarity, before deriving an estimate for multiply-warped products, we first
perform an exact calculation for a singly-warped product. We continue to assume
that T is a symmetric (2,0)-tensor field with no nonzero horizontal-vertical com-
ponents. Then we have

VolTlZ, = 2(Voi™ ) g  T1 T + 25" 67 (Vo T15)Trr
(71) =2¢"% g (VT ) Tkr,
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because o
(Vpg™)g 2 T1 Tk, = Voi " §7 Ty Tre = 0
by assumption. Thus we obtain
AT = 2979V p{g" §7 M (VT Tk}
=2g"Cg K g (VpV T )T + 29799 7" (VpT1)(VoTkL)
+4g"9(Vpg"™ ) g (Vo T1 ) Tk L.
Writing this invariantly, we have
AIT2  =2(AT,T)g, +2|VT|2, +42[T],
where
2[T) = g"?(Vpg"™ ) g (Vo T1s) Tk
= 9°UVed )P (VQT1s)Tre + 979 (Vo i )37 (Vo T0;) The
= 97%Vo3"") 3 (Vo Ty;) The

1 .
= —iu_lgﬂ(vkuTkg)(VTT.,-j).

Note that we use (70) in the final step. We expand the divergence factor, obtaining
dim(F : 1 -
VT = #uqvluﬂ-j - iuflvju(trT),
where trT := ¢°"T,,, denotes the trace of the vertical components of 7. Combining
factors, we write Z[T] invariantly as

w3 T(Vu)|?

gz’

L=2(6 dim(F
2] = Ju”* (GT)(T, Vu® Vu),, — %()
where in the second term, we regard 7" as an endomorphism of the tangent bundle.
This work proves:

37. Lemma. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components on a warped product, then

—A[T|2, = —2(AT, T),, —2|VT[2,
+ dim(F) u™2|T(Vu) 3,3 —u (0 T)T, Vu @ V), .

Generalizing this to the multiply-warped products we study in this paper, one
readily obtains:

38. Corollary. If T is a symmetric (2,0)-tensor field with no nonzero horizontal-
vertical components, then there exists a constant C' depending only on the dimension
vector N = (n,ny) such that
A
~ATE, < —2(AT,T)y, — 29T, +C( Y IViogual?) TIITly, -

a=1

We now proceed to estimate —A| Rm |Z3 on a multiply-warped product. Because
the details are so similar to the previous case, we merely sketch the proof. First,
Claim 35 shows that V Rm vanishes if exactly one index is vertical. Thus we see
by (70) that

Vs|Rm |§,B =2¢"" g X g"Y "2 (Vs Rijrr) Rwxy 2,
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exactly as in (71). Thus we find that
A|Rm|[?, =2(ARm,Rm), +2|VRm|?, +8Z[Rm],
where
(72) Z[Rm] = g7 (V,g™)§"* 55" (Vo R jie) Ry
39. Claim. The (5,0)-tensor field V Rm satisfies
VoRejie = T Rijre + T Rejoy — T2y R ji.

Proof. Using equations (63), (64), and the fact that R, e = 0, we compute that

VoRrjke = —Th Rijee = UL Repee — ULy Rejre — TS Rejir
—T% Rijke — i Rrvie — Dip Rejue — Ty Rejio

= _FZTRijk:Z + FZ—]gRTjZV - FZ—ZRTjICV'

O
We denote by H the (integrable) horizontal distribution of M and by Rmsgcggc
the restriction

Rmgggc := Rm |3{®TM®TM®1}C’
i.e., only those components of Rm having the form R;;xy. Then equation (70),
equation (72), and Claim 39 immediately imply the following;:

40. Corollary. There exists a constant C' depending only on the dimension vector
N = (n,nq) such that

—A|Rm|§E < —2(ARm,Rm)gy, — 2|VRm|§3
A
+ C’(Z \Vlogua\z) |Rm |4, | Rmaycgc | g-
a=1

APPENDIX C. CURVATURE EVOLUTION EQUATIONS AND ESTIMATES

We continue the convention of Appendix A, using lowercase Roman indices (e.g.,
i, 7, k, ) for horizontal vectors, lowercase Greek indices (e.g., o, 7,v,w) for vertical
vectors, and allowing capital Roman letters to range over both sets of indices. We
assume that the metric g is evolving by the Ricci flow system (3).

C.1. The evolution of p. Under Ricci flow, the (4,0)-Riemann curvature tensor
evolves by (see, e.g., Corollary 6.14 of [CK04])
(0: — A)Rpykr = 9" (RY pRuqrL — 2RBr i Rigur + 2Rpiv L RiG )
— (R Rpskr + RYRipkr + R Rispr + R Riskp).

For simplicity, we again begin with an exact calculation for a singly-warped
product and generalize this below to an estimate for multiply-warped products.
We start by computing the evolution of the curvature tensor acting on horizontal
vectors, finding that
(73a) (O — A)Rijre = gab(Rfja ebke — 285 Rjveo + 2Raice Ry,

(73b) + gUT(szaR’wkl - 2gémRzikR;:L——y =+ QRUiWKR;'Y-,—k)

(73c) — (R Rpjre + R} Ripre + R Rijpe + R} Rijip).-
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We note that (73a) consists of the terms one would see if the base alone were
evolving by Ricci flow, while (73c) consists of terms that are cancelled by derivatives
of g7! in our calculation of the evolution of p = | Rm |3B below. So we need only to
examine the three additional terms in (73b).

By (64), the first term in (73b) vanishes. To evaluate the second and third terms
in (73b), we can apply the formulas derived in Appendix A directly, obtaining

1 1
gmeZikR;?"Y = QUT(ZU’lvivkuvngu — gu*QVz—VkuVjquu

1 1
— §u72VnguV¢quu + I—GU*SVZ-UVjquuVﬂQ

and
RUMR}YTJC = 9¢ RgizRij
= Jor (iu_lvivﬁuvjvku - éu_2V¢VguVjquu
— éu_zvjvkuviquu + %u‘gviuvjuvkquu).

Combining terms and tracing by ¢°”, we conclude that

(0: — A) Rijre = 9" (RSj o Revke — 2R3 Rjet + 2Raice RSy)
dim(F
+ %(){u*(viwuvjvku — YV, ViV, V)

(74) + =3 (Vivkuvjquu + V;VouViuViu

DN | =

— VijuViquu - VnguVjquu)}
— (RFRpjre + RfRiPkZ + Ry Rijpe + Ry Rijip).

We now estimate the evolution of p(z,t) = | Rm(z, t)|53 for a multiply-warped
product. We note that in the case of a multiply-warped product, the only possible
nonzero terms in (73b) occur where the vertical coordinates o and 7 are tangent to
the same fiber. Thus we obtain a sum of derivatives of u, in (74), and using our
estimate derived in Corollary 40, we recover the standard estimate for the evolution
of the curvature norm (see, e.g., Lemma 7.4 of [CK04]) modified by additional terms
coming from the warped-product structure, namely

(0 — A)p < —2|VRm 2, + C,,p*/?
A
+ 2 Z na{u;Q ng(v%a, V2va)
a=1
- 2u;3 ng(v%m Ve ® Vva)}

A
+0( Y IV logual?) | Rin g, | Ringcae |y,

a=1

where n, = dim(F,), Rmg denotes the curvature tensor of gg, and C' is a constant
depending only on the dimension vector N = (n,n,).
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C.2. The evolution of v,. We next consider the evolution of the curvature tensor
acting on vertical vectors in an arbitrary fiber &F,. It follows from (67a) and (67b)
that for a multiply-warped product with space-form fibers, it suffices to calculate
the evolution of v, = |[Vuu|? = |[Vu,|*

As elsewhere in this Appendix, we omit the fiber index for convenience in the
computations below. We note that (9; — A)u is given by (3b). It also follows
from (3b) that

Oy = 2{(VAv, Vv) —u""(Vy, Vo) + u>+*} + 2Re(Vo, Vo),

where Rc denotes the Ricci tensor of g acting on horizontal vectors, as in (68).
Recalling that Ay = 2(AVwv, Vo) + 2|VV0|?, we commute covariant derivatives
and conclude that

(76) (0p — A)y = =2|VV0|* — 2u™(V7, Vo) + 2u™ 24>,
Observing that (Vy, Vv) = 2V20(Vv, Vo), we obtain the formula used in Lemma 12.

C.3. The evolution of y,. We move on to controlling x, = \VVUQE,B . By
Remark 34, this is the last quantity needed to control the full curvature tensor. For
simplicity, we again fix a fiber and omit subscripts.
We denote the heat operator with the Lichnerowicz Laplacian of the metric g by
(O — A)L. Using the standard formula (see, e.g., Lemma 2.33 of [CLNO06])
(8t — A)LVIVJ'U = V[VJ(at — A)v,
we compute this heat operator acting on the covariant Hessian of v as follows:
((825 — A)L (ng))u = u_2(V1VJv) v — 2u_3(V1vVJU) ~
+ u*Q(VIUVJ’y +VyVv) — uilvatry.
Now using the identity —A = —A 42 Rm *x—2 Rc %, where Rm and Rc are those
of the metric g, we convert this formula to one using the standard heat operator:
((8,5 —A) V2v) =u"3(ViVu)y — 2u (Vo v)y
ij
+u 2 (VaoVy + ViayViv) —u 'V, V,y
+ 2Rie; VIV — RiV Vv — REV; Vv

1 1
+ NU_Q’}/( — ivivjv + zvivvj"u),

where N := Z?Zl dim Jp is the total dimension of the fibers. We obtain the last
line above by simplifying 2R;,-;V°V7v using the identities

1 1 1
Rigrj =u""gor (— §Vz‘v]"l) + iu_lvivvjv) and VoV7v= au_lvg‘”.

Finally, we apply Corollary 38 to conclude that
(8t — A)X < 72|V3v\£2”j + 4ng(V2v, V2v) +2u %y
—2u™3(Vu, Vy)y + 4u~%(VZ0, Vo @ V)

1
(77) — 2u~ N (V?, Vz’y)g,ﬁ + NU*Q'y{ -x+ Zu%(V v, V’y)}

A
+ C( Z |V log ua|2> V20| V204

a=1
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where Rmg again denotes the curvature tensor of g3, and C'is a constant depending
only on the dimension vector N = (n, ny).
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