Contents

Lab 1: Slope Fields and Solution Curves
Lab 2: Numerical Methods of Euler
Lab 3: The Runge-Kutta Method
Lab 4: Numerical Methods for Systems
Lab 5: MATLAB and 2nd-order Differential Equations
Computer Lab 1: Slope Fields and Solution Curves

The equation \(y' = f(x, y) \) determines a slope field (or direction field) in the \(xy \)-plane: the value \(f(x, y) \) is the slope of a tiny line segment at the point \((x, y)\). It has geometrical significance for solution curves which are simply graphs of solutions \(y(x) \) of the equation: at each point \((x_0, y_0)\) on a solution curve, \(f(x_0, y_0) \) is the slope of the tangent line to the curve. If we sketch the slope field, and then try to draw curves which are tangent to this field at each point, we get a good idea how the various solutions behave. In particular, if we pick \((x_0, y_0)\) and try to draw a curve passing through \((x_0, y_0)\) which is everywhere tangent to the slope field, we should get the graph of the solution of the initial-value problem \(y' = f(x, y), \ y(x_0) = y_0. \)

I. SKETCHING BY COMPUTER. The sketching of the slope field is tedious by hand, and is expedited by using a computer; the appropriate software will also enable us to plot solution curves. One such program called “Diffs” uses MATLAB for its computations, and is available on most of the computers in the Math Dept Computer Lab, 553 Lake Hall. (We shall encounter MATLAB more directly in Lab 5, but no knowledge of MATLAB is required for this Lab.) To access Diffs, open up MATLAB; then enter “difs” at the MATLAB prompt `>>`

Diffs is fairly self-explanatory, and assistance is available from the lab mentors, but we shall illustrate its operation with an example.

Example 1. \(y' = y^2 - xy. \)

1. After “\(y' = f(x, y) = \)”, type “\(y^2 - y \times x \)”. (Quotation marks not part of input.)
2. After “\(x \text{ min}=\)” , type “\(0 \)” , and after “\(x \text{ max}=\)” , type “\(4 \)” ; this tells MATLAB to use \(0 \leq x \leq 4 \) for plotting purposes. Similarly, enter \(y \text{ min} = -1 \) and \(y \text{ max} = 4 \) to get the plotting range \(-1 \leq y \leq 4\). Then click on DRAW, and the screen displays a sketch of the direction field in the rectangle \(0 \leq x \leq 4, -1 \leq y \leq 4\).
3. Select an initial value \((x_0, y_0)\) for your solution in one of two ways:
 i) enter the values for \(x_0 \) and \(y_0 \), and then click Sketch; or
 ii) use the mouse to move the cursor to select an initial value, and then click to sketch the solution curve.

 For example, select \((x_0, y_0) = (0, 1)\) and sketch the solution curve.
4. Sketch as many solution curves as you need to see the “phase portrait” of your equation. In particular, you will be able to see “rivers,” which are places where solution curves concentrate so as to become indistinguishable on the screen.

Exercise 1. \(y' = y - x^2 \)

(a) Use Diffs to plot the slope field for \(-3 \leq x \leq 3, -1 \leq y \leq 4\).
(b) Notice that at some points \((x, y)\) there are horizontal tangents, i.e. \(y' = 0 \). Approximate some of these points using the cross hairs. Can you find exactly the curve of points where \(y' = 0? \) (This is the \(\theta\)-isocline for the equation.)
(c) Consider the initial condition \(y(0) = 0\). From looking at the slope field near \((0,0)\), what do you expect the solution curve to do as \(x \) increases? Check this by selecting an initial condition very close to \((0,0)\) and plotting the solution curve.
(d) Choose many more initial conditions until you see the phase portrait and the rivers.

(e) Now consider the initial condition $y(0) = 1.5$. From looking at the slope field near $(0, 1.5)$, what do you expect the solution curve to do as x increases? Check this by plotting a solution curve. (You may want to increase the x, y range to something like $-3 \leq x \leq 5$.)

HAND IN: Written answers to the questions in parts (b), (c), and (e). (In (b), for example, “The curve of points where $y' = 0$ is . . .”.) You may also hand in print-outs of your plots, but your written answers are the most important thing.

II. ASYMPTOTIC BEHAVIOR. Example 1 and Exercise 1 raise an interesting issue: what happens to a solution $y(x)$ of an initial value problem $y' = f(x, y)$, $y(x_0) = y_0$ as x increases? For example, $y' = y$, $y(0) = y_0$ has the solution $y(x) = y_0e^x$ which is defined for all values x (although $y(x) \to \infty$ as $x \to \infty$). On the other hand, for another equation it may be that a solution $y(x)$ escapes to infinity or blows up in that $y(x) \to \pm \infty$ as x increases to some finite value x_1.

Example 2. $y' = y^2$. If we use Diffs to plot the slope field, we cannot tell if a solution curve escapes to infinity or not. For example, with the initial condition $y(0) = 1$, the solution curve looks somewhat like exponential growth, but it may actually grow so rapidly that the solution reaches $+\infty$ at a finite value of x. To settle the question, notice that the equation is separable and so is easily solved:

$$
\frac{dy}{dx} = y^2 \Rightarrow \int \frac{dy}{y^2} = \int dx \Rightarrow -\frac{1}{y} = x + C.
$$

The initial condition $y(0) = 1$ determines $C = -1$, so the solution is $y(x) = 1/(1 - x)$. We see that indeed the solution blows up at $x = 1$: $y(x) \to +\infty$ as $x \to 1$.

On the other hand, not all solutions of the equation blow up. In fact, with initial condition $y(x_0) = 0$ we have the trivial solution $y(x) \equiv 0$. This solution appears in the slope field as the horizontal solution curve along the x-axis.

Example 2 has also illustrated a special kind of solution when the equation is *autonomous*, i.e. the function f depends on y but not on x: $y' = f(y)$. Values of y for which $f(y) = 0$ are called critical points. If $y = c$ is a critical point, then the constant function $y(x) \equiv c$ defines an equilibrium solution whose solution curve is just the horizontal straight line $y = c$ in the xy-plane. In Example 2, $y(x) \equiv 0$ is an equilibrium solution. But notice that if we take y_0 very close to zero, then the solution with initial condition $y(x_0) = y_0$ does not remain close to the equilibrium solution, but in fact escapes to infinity at some $x_1 > x_0$. Such equilibrium solutions are called *unstable*. On the other hand, if all solution curves which begin near an equilibrium solution $y(x) \equiv c$ remain near the equilibrium, then the equilibrium is call *stable*; in fact, if all nearby solution curves satisfy $\lim_{x \to \infty} y(x) = c$, then the equilibrium is called *asymptotically stable*.

Exercise 2. $y' = y(y - 2)$

(a) Use Diffs to plot the slope field for $0 \leq x \leq 4$, $-2 \leq y \leq 4$.
(b) Notice that the equation is autonomous; what are the equilibrium solutions of the equation? Determine if each one is unstable or asymptotically stable.

(c) If we take the initial condition \(y(0) = 1 \), what happens to \(y(x) \) as \(x \) increases? Does \(y(x) \) escape to infinity? Is there a limit of \(y \) as \(x \to \infty \)?

(d) If we take the initial condition \(y(0) = 3 \), what happens to \(y(x) \) as \(x \) increases? Can you show that \(y(x) \) escapes to infinity? \textit{Hint:} The equation is separable, and leads to an integration by partial fractions.

\textbf{HAND IN:} Written answers to the questions in parts (b), (c), and (d). (In (b), for example, “There is an equilibrium point at ... which is ... (unstable or asymptotically stable). There is also an equilibrium at ...”)

\section*{III. UNIQUENESS.} Notice that the solution of the initial value problem

\begin{align*}
(IVP) \quad \begin{cases}
\frac{dy}{dx} &= f(x, y) \\
y(x_0) &= y_0
\end{cases}
\end{align*}

may escape to infinity, but it should exist at least near the point \((x_0, y_0)\), provided \(f(x, y)\) is continuous at \((x_0, y_0)\). Indeed, this is guaranteed by the fundamental Existence and Uniqueness Theorem on page 23 of the Edwards and Penney textbook. Notice that uniqueness of the solution requires \(\partial f/\partial y\) to be continuous near \((x_0, y_0)\): if \(\partial f/\partial y\) is not continuous at \((x_0, y_0)\), then uniqueness may fail.

\textbf{Exercise 3.} \(y' = y^{2/3} \)

(a) Use Diffs to plot the slope field on \(0 \leq x \leq 4, -1 \leq y \leq 8\).

(b) Use Diffs to sketch the solution curve for the initial condition \(y(0) = y_0 \) with \(y_0 > 0 \) as close to zero as you can get. (Note: do not use \(y_0 < 0 \), because the program will have trouble evaluating it.) The result should suggest that the initial value problem \(y' = y^{2/3}, y(0) = 0 \) has a solution with \(y(x) \to \infty \) as \(x \to x_1 \), where \(x_1 \) is either a finite value or possibly \(x_1 = \infty \). Use separation of variables to find the solution and the value of \(x_1 \).

(c) Observe that \(y(x) \equiv 0 \) is also a solution of \(y' = y^{2/3}, y(0) = 0 \). Thus uniqueness fails. Would you expect uniqueness to hold for the problem \(y' = y^{2/3}, y(0) = 1 \)?

\textbf{HAND IN:} Written answers to the questions in parts (b) and (c).
A numerical method for approximating the solution of the initial-value problem

\[
\begin{cases}
 y' = f(x, y) \\
y(a) = y_0
\end{cases}
\]

involves replacing the continuous variable \(x \) by a set of discrete values \(x_0 = a, \ x_1 = x_0 + h, \ x_2 = x_1 + h = x_0 + 2h, \ldots \) with uniform step size \(h \). The goal is to produce suitable approximations \(y_1, y_2, \ldots \) to the true values \(y(x_1), y(x_2), \ldots \) of the solution \(y(x) \) evaluated at the points \(x_1, x_2, \ldots \). Usually, the approximations \(y_1, y_2, \ldots \) are defined using an iteration scheme: assuming we have found \(y_1, y_2, \ldots, y_n \), what is the recipe for finding \(y_{n+1} \)? Since we are given \(y_0 \) in the initial condition, we can find \(y_1 \), and then using \(y_0 \) and \(y_1 \) we find \(y_2 \), etc. The different numerical methods discussed below all follow this pattern, and only differ in the particular iteration scheme. (Any one method may be made more accurate by decreasing the step size \(h \).)

I. EULER’S METHOD. The idea of this method is to approximate the curve \(y(x) \) on \([x_n, x_{n+1}]\) by a straight line with slope \(s = \Delta y/\Delta x = (y_{n+1} - y_n)/h = f(x_n, y_n) \). Solving for \(y_{n+1} \) we obtain the simple iteration scheme

\[
y_{n+1} = y_n + hf(x_n, y_n).
\]

Computing the values \(y_1, y_2, \ldots \) can be time-consuming by hand, but is a simple task for a computer. One can write a simple computer program (say in PASCAL or BASIC) to compute the sequence \(y_1, y_2, \ldots \), but we shall carry out the iteration on a spreadsheet program such as EXCEL, which is available on all the machines in the Math computer lab in 553 LA. (On PCs running Windows NT, use the Start button and look under NUNet Applications (Installed Locally) for Microsoft Office. On Macs, there is an MS Office folder on the hard disk.) Spreadsheets have the advantage of giving a clear visual display of the procedure, as well as a graphical representation of the outcome.

Let us discuss a simple example.

Example 1. Use Euler’s method to approximate the solution of \(y' = x + y, \ y(0) = 1 \) with step size \(h = 0.1 \) on the interval \(0 \leq x \leq 1 \).

1. Introduce a vertical indexing column \(n = 0, 1, \ldots, 10 \) and then a vertical column of the corresponding values of \(x_n \).
 (In EXCEL, this can easily be achieved by the following: Type “n” in cell A1 to label the column, type “0” in cell A2, type “=A2+1” in cell A3, drag down to select cells A3-A12, and select “Fill Down” from the Edit menu. Type “xn” in cell B1, type “0” in cell B2, type “=B2+.1” in cell B3, drag down to select cells B3-B12, and select “Fill Down” from the Edit menu.)

2. In the next vertical column, place the values of \(y_n \).
 (In EXCEL, this is achieved by labelling column C as “yn”, typing “1” in cell C2, typing “=C2+.1*D2” in C3, and filling down C3 into C4-C12. Do not worry about the values that appear in column C at this point.)
3. In the next vertical column, place the values of the slopes \(s_n = f(x_n, y_n) \).
 (In EXCEL, this is achieved by labelling column D as “\(s_n = f(x_n, y_n) \)”, typing “=B2+C2” in cell D2, and filling down D2 into D3-D12: notice that this affects the C column as well.)

4. Now that the approximations \(y_1, \ldots, y_{10} \) have been found, they may be graphed versus \(x_1, \ldots, x_{10} \). The result should approximate the graph of the actual solution \(y(x) \).
 (In EXCEL, this is achieved by dragging the cursor over the \(xn \) and \(yn \) values to select these columns, then clicking on the Chart Wizard icon which has a picture of a chart and a magic wand, and should be second from the right on the control bar above your worksheet. Next use the mouse to select a rectangular section of your worksheet where the graph will appear. A series of dialogue boxes will set the parameters. Step 1: check the variable range; if OK click on “Next”. Step 2: select Line as chart type; click on “Next”. Step 3: select 1 as the format; click on “Next”. Step 4: be sure “Use first column for:” has “Category X Axis Labels” selected; click “Next”. Step 5: you do not need a legend at this point, but you could entitle the chart “Euler’s Method” and the X axis “\(xn \)” and the Y axis “\(yn \)”.)

 The result looks like the following:

 ![Euler's Method Graph](image)

To investigate the accuracy of Euler’s method, let us compare the approximations \(y_1, y_2, \ldots \) with the actual solution values \(y(x_1), y(x_2), \ldots \). Of course, if we can actually solve (*), then we do not even need a numerical method. But for experimental purposes, let us consider a linear equation \(y' + P(x)y = Q(x) \) for which the solution is given in the text (Edwards & Penney, Section 1.5). In particular, for the initial value problem of Example 1, \(y' = x + y \), \(y(0) = 1 \), we find the solution is \(y(x) = 2e^x - x - 1 \).

Example 1 (cont’d). Compare the approximations \(y_1, \ldots, y_{10} \) with the actual values \(y(x_1), \ldots, y(x_{10}) \).

5. Create column E for the values \(y(x_n) \).
 (In EXCEL, use the formula “=2*exp(B2)-B2-1” in cell E2, and then fill down into E3-E12.)

6. Create column F for the difference \(y(x_n) - y_n \).
(In EXCEL, use the formula “= E2 – C2” in cell F2, and then fill down into F3-F12.)

Your spreadsheet should now look like the following:

<table>
<thead>
<tr>
<th>n</th>
<th>xn</th>
<th>yn</th>
<th>sn = f(xn, yn)</th>
<th>y(xn)</th>
<th>y(xn) – yn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.10342</td>
<td>0.010342</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.22</td>
<td>1.42</td>
<td>1.242806</td>
<td>0.022806</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.362</td>
<td>1.662</td>
<td>1.399718</td>
<td>0.037718</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.5282</td>
<td>1.9282</td>
<td>1.583649</td>
<td>0.055449</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.72102</td>
<td>2.22102</td>
<td>1.797443</td>
<td>0.076423</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.943122</td>
<td>2.543122</td>
<td>2.044238</td>
<td>0.101116</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>2.197434</td>
<td>2.897434</td>
<td>2.327505</td>
<td>0.130071</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>2.487178</td>
<td>3.287178</td>
<td>2.651082</td>
<td>0.163904</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>2.815895</td>
<td>3.715895</td>
<td>3.019206</td>
<td>0.203311</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.187485</td>
<td>4.187485</td>
<td>3.436564</td>
<td>0.249079</td>
</tr>
</tbody>
</table>

Notice that the differences $y(x_n) - y_n$ get larger as n increases; in other words, the accuracy of the approximations gets worse as we get further away from the initial value (a, y_0).

Exercise 1. Consider the initial-value problem $y' - 2y = 3e^{2x}$, $y(0) = 0$.

(a) Use Euler’s method with step size $h = .1$ on the interval $0 \leq x \leq 2$ to find the approximations y_1, \ldots, y_{20}. What is the approximation for $y(2)$ that you have obtained?

(b) Find the actual solution $y(x)$ using Section 1.5 in the text. What is the actual value $y(2)$?

(c) Use Euler’s method with step size $h = .05$ on the interval $0 \leq x \leq 2$ to find approximations y_1, \ldots, y_{40}. What is the approximation for $y(2)$ that you have obtained?

(d) Which of the approximations (a) or (c) is closer to the actual value (b)? How could you improve the approximation even more?

Hand In: A print-out of your EXCEL worksheet and your answers to all five of the questions asked in (a-d). (Be very complete in your answer to the last question.)

II. IMPROVED EULER’S METHOD. As we have seen, inaccuracies in Euler’s method develop quickly with successive steps. This is partly due to the asymmetry in using the slope at x_n to approximate y_{n+1} without taking into account the slope at x_{n+1}. Consider, instead, the following iteration scheme:

$$
\begin{align*}
y_{n+1} &= y_n + h(k_1 + k_2)/2 \\
k_1 &= f(x_n, y_n) \\
k_2 &= f(x_{n+1}, y_n + hk_1).
\end{align*}
$$

(E*)

Notice that k_1, which we formerly called s_n, is the slope at the starting point (x_n, y_n), and k_2 is the slope at the point $(x_{n+1}, y_n + hk_1)$ which the Euler method produced. The
improved Euler method \((E^*) \) uses the average of these two slopes to produce the new value \(y_{n+1} \).

If we use EXCEL to perform the improved Euler method on the problem of Example 1, we obtain the following display:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(y(x_n))</th>
<th>(y(x_n) - y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.2</td>
<td>1</td>
<td>1.110342</td>
<td>0.000342</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.11</td>
<td>1.21</td>
<td>1.431</td>
<td>1.242806</td>
<td>0.000756</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.24205</td>
<td>1.44205</td>
<td>1.686255</td>
<td>1.399718</td>
<td>0.001252</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.398465</td>
<td>1.698465</td>
<td>1.968312</td>
<td>1.583649</td>
<td>0.001845</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.581804</td>
<td>1.981804</td>
<td>2.279985</td>
<td>1.797443</td>
<td>0.002549</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.794894</td>
<td>2.294894</td>
<td>2.624383</td>
<td>2.044238</td>
<td>0.003380</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>2.040857</td>
<td>2.640857</td>
<td>3.004943</td>
<td>2.327505</td>
<td>0.004358</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>2.323147</td>
<td>3.023147</td>
<td>3.425462</td>
<td>2.651082</td>
<td>0.005504</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>2.645578</td>
<td>3.445578</td>
<td>3.890136</td>
<td>3.019206</td>
<td>0.006843</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>3.012364</td>
<td>3.912364</td>
<td>4.40360</td>
<td>3.436564</td>
<td>0.008402</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3.428162</td>
<td>4.428162</td>
<td>3.870978</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

where, as before, \(y_n \) are the approximations, and \(y(x_n) \) are the exact values. (Notice that the value of \(k_2 \) in the last line is suspicious, since it decreased from the previous line. This is because the formula for the \(n \)th line of \(k_2 \) requires the value \(x_{n+1} \), which does not exist for \(n = 10 \); so EXCEL assigns the default value 0, making this value for \(k_2 \) incorrect! However, this value for \(k_2 \) is irrelevant for the other values in the table (do you see why?).

The last column shows the accuracy of the method. Notice that the improved Euler method is indeed much more accurate than the ordinary Euler method; however, even here the method becomes less accurate with successive steps.

Exercise 2. Use the improved Euler method with step size \(h = 0.1 \) on the interval \(0 \leq x \leq 2 \) to find numerical approximations for the same problem as in Exercise 1. Graph the values \(y_n \) versus \(x_n \), and compute the accuracy \(y(x_n) - y_n \). Are these results more accurate than those of Exercise 1?

Hand In: A print-out of your EXCEL worksheet showing the values of \(x_n, y_n, k_1, k_2, y(x_n), \) and \(y(x_n) - y_n \), and the graph of \(y_n \) versus \(x_n \); also a complete-sentence answer to the question.

III. ERROR ESTIMATES. As we have seen with both the Euler method \((E) \) and the improved Euler method \((E^*) \), errors creep in at each step and accumulate with successive steps to limit the accuracy of the numerical values. The error at each step is called the local error, and the accumulated error at the last step is called the global or cumulative error. For a given step size \(h \), we would like to estimate these errors.

The local error, \(e(h) \), is easy to estimate using Taylor’s formula with remainder:

\[
y(x) = y(a) + y'(a)(x-a) + \frac{1}{2}y''(c)(x-a)^2 \quad \text{where } c \text{ lies between } x \text{ and } a.
\]

Assuming \(y(x_n) = y_n \) is accurate, let \(a = x_n, x = x_{n+1}, h = x_{n+1} - x_n, \) and \(y'(a) = \]
\(y'(x_n) = f(x_n, y_n)\) to obtain
\[
y(x_{n+1}) = y(x_n) + f(x_n, y_n) h + \frac{1}{2} y''(c) h^2.
\]
Comparing this with \(E\), we see that the local error \(e(h) = |y(x_{n+1}) - y_{n+1}|\) for Euler’s method is given by
\[e(h) \leq Mh^2, \quad \text{where} \quad M = \frac{1}{2} \max\{|y''(x)| : x_n \leq c \leq x_{n+1}\}.
\]
Of course, we have no idea how big \(M\) is, since it depends on \(y''(x)\) which we do not know in practice. But, as an estimate of how the accuracy depends on the step size \(h\), this means that the local error goes to zero like \(h^2\), as \(h \to 0\). This is sometimes written as
\[e(h) = O(h^2) \quad \text{as} \quad h \to 0.
\]
The global error, \(E(h)\), is of course more important than the local error since it measures the accuracy of our final numerical answer, say at \(x = b\) where \(b > a\). Of course, it is more complicated to estimate, because the local error at each step can be different. One way around this is to assume the constant \(M\) above works for every \(n\):
\[M = \frac{1}{2} \max\{|y''(x)| : a \leq x \leq b\}.
\]
The number of steps \(N\) is related to the step size \(h\) by \(N = L_\text{h}^{-1}\), where \(L = b - a\) is the total length of the \(x\)-values. (In Example 1, \(L = 1\) and \(N = 10\).) Since the local errors accumulate \(N\) times, we find that
\[E(h) \leq Ne(h) = Lh^{-1}e(h) \leq Lh^{-1}Mh^2 = LMh;
\]
without trying to compute \(M\), we can at least conclude that
\[E(h) = O(h) \quad \text{as} \quad h \to 0.
\]
This is expressed by saying that Euler’s method is a first-order method.

Let us illustrate this error analysis with our example.

Example 1 (cont’d). Compare the local error and global error for various step sizes in the Euler approximations for the solution of \(y' = x + y, \ y(0) = 1\), taking \(N = 10, \ N = 20, \ N = 30, \ N = 40, \ \text{and} \ N = 50\). Based on these, what errors would you expect for \(N = 100\)?

1. We have already taken \(N = 10\) (\(h = .1\)), so let us take \(N = 20\) (\(h = .05\)).

(Increased the length of the “n” column to end with \(n = 20\). Then revise the “xn” column to reflect \(x_{n+1} = x_n + .05\), and the “yn” column to reflect \(y_{n+1} = y_n + .05f(x_n, y_n)\); in both cases, you may change the first entry, and then “fill down”. We shall also need to “fill down” the three remaining columns to fill the table.)

An abbreviated version of your table is the following:
The important information for our purposes is the error \(y(x_n) - y_n \) for \(n = 1 \), which represents the local error in the first step, and \(y(x_n) - y_n \) for \(n = 20 \) (which represents the global error). In other words, from this and our previous Euler approximation with \(N = 10 \), we find the following values for \(e(h) \) and \(E(h) \):

\[
\begin{align*}
e(0.1) &= 0.010342, \\
e(0.05) &= 0.002542, \\
E(0.1) &= 0.249079, \\
E(0.05) &= 0.1299682.
\end{align*}
\]

2. Now let us repeat the same procedure with \(N = 30 \), \(N = 40 \), and \(N = 50 \); for \(N = 30 \), we are careful to use \(h = 1/30 \) and not the approximation \(h = 0.033 \). Let us record the results in the following table:

\[
\begin{array}{|c|c|c|c|}
\hline
N & h & e(h) & E(h) \\
\hline
10 & 0.1 & 0.010342 & 0.249079 \\
20 & 0.05 & 0.002542 & 0.129968 \\
30 & 0.033 & 0.001157 & 0.091426 \\
40 & 0.025 & 0.000630 & 0.066436 \\
50 & 0.02 & 0.000403 & 0.053388 \\
\hline
\end{array}
\]

3. What sort of error might we expect for \(N = 100 \)? Let us suppose \(E(h) \approx Kh \) for some constant \(K \). Then we expect \(E(h) = K h \approx K \frac{h}{2} \approx \frac{1}{2} E(h) \), i.e. halving the step size \(h \) should roughly halve the global error. Since increasing \(N \) from 50 to 100 involves halving \(h = .02 \) to \(h = .01 \), we expect for \(N = 100 \) to have \(E(0.01) \approx \frac{1}{2} E(0.02) \approx 0.026694 \).

4. To check this error estimate we can actually compute \(E(0.01) \), using EXCEL as before. We find \(E(0.01) = 0.026936 \). Not too bad!

Exercise 3. In Exercise 1, you used the Euler method for the initial-value problem \(y' - 2y = 3e^{2x}, \ y(0) = 0 \), with \(h = 0.1 \) (\(N = 20 \)) and \(h = 0.05 \) (\(N = 40 \)). Now take \(h = 0.033 \) (\(N = 60 \)) and \(h = 0.025 \) (\(N = 80 \)), and fill in the following table.

\[
\begin{array}{|c|c|c|}
\hline
N & h & e(h) & E(h) \\
\hline
20 & 0.1 & & \\
40 & 0.05 & & \\
60 & 0.033 & & \\
80 & 0.025 & & \\
\hline
\end{array}
\]

On the basis of this, approximate the global error \(E(0.01) \) (\(N=200 \)).

Hand In: A copy of the filled-in table, and your estimate for \(E(0.01) \) with an explanation of why and how you obtained it.

Of course, you will now want to know what sort of error estimates pertain for the improved Euler method. To distinguish from the Euler method, let us denote the local and global errors for the improved Euler method by \(e^*(h) \) and \(E^*(h) \) respectively (this is not standardized notation!) Let us proceed first numerically, by generating the local error and global error for our example.
Example 1 (cont’d). Compare the local error and global error for various step sizes in the improved Euler approximations of the solution of $y' = x + y$, $y(0) = 1$, taking $N = 10$, $N = 20$, $N = 30$, $N = 40$, and $N = 50$. Based on these, what errors would you expect for $N = 100$?

1. From our previous work, we know e^* (0.1) = 0.000342 and E^* (0.1) = 0.008402 when $N = 10$. If we repeat the procedure for $N = 20$, $N = 30$, $N = 40$, and $N = 50$, we generate the following table.

<table>
<thead>
<tr>
<th>N</th>
<th>h</th>
<th>$e^*(h)$</th>
<th>$E^*(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.000342</td>
<td>0.008402</td>
</tr>
<tr>
<td>20</td>
<td>0.05</td>
<td>0.000042</td>
<td>0.002182</td>
</tr>
<tr>
<td>30</td>
<td>0.033</td>
<td>0.000012</td>
<td>0.000982</td>
</tr>
<tr>
<td>40</td>
<td>0.025</td>
<td>0.000005</td>
<td>0.000556</td>
</tr>
<tr>
<td>50</td>
<td>0.02</td>
<td>0.0000026</td>
<td>0.000357</td>
</tr>
</tbody>
</table>

2. How does the global error $E^*(h)$ change with h? Between $N = 10$ and $N = 20$, we have divided the step size from $h = 0.1$ to 0.05, but the global error has been roughly divided by 4! Similarly, from $N = 20$ to $N = 40$, the step size has been divided by 2, but the global error is roughly divided by 4! The pattern seems to be $E^*(h) \approx \frac{1}{4} E^*(h_0)$, which suggests $E^*(h) = O(h^2)$. Based on this, we would expect for $N = 100$ to have $E^*(0.01) \approx \frac{1}{4} E^*(0.02) = 0.000089$.

3. Of course, we know how to check this error estimate, by computing for $N = 100$ that $E^*(0.01) = 0.000090$. Again, pretty darn good!

Our experience with computing the error for the improved Euler method for Example 1 leads us to expect that the global error behaves like h^2:

$$E^*(h) = O(h^2) \quad \text{as} \quad h \to 0.$$

This in turn suggests that the local error behaves like h^3:

$$e^*(h) = O(h^3) \quad \text{as} \quad h \to 0.$$

Indeed, it is not difficult to use Taylor’s formula with remainder to prove this behavior for the local and global errors. The property $E^*(h) = O(h^2)$ is expressed by saying that the improved Euler method is a second-order method.

Exercise 4. In Exercise 2, you used the improved Euler method for the initial-value problem $y' - 2y = 3e^{2x}$, $y(0) = 0$, with $h = 0.1$ ($N = 20$). Now take $h = 0.05$ ($N = 40$), $h = 0.033$ ($N = 60$), and $h = 0.025$ ($N = 80$), and fill in the following table.

<table>
<thead>
<tr>
<th>N</th>
<th>h</th>
<th>$e^*(h)$</th>
<th>$E^*(h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the basis of this, approximate the global error $E^*(0.01)$ ($N = 200$).

Hand In: A copy of the filled-in table, and your estimate for $E^*(0.01)$ with an explanation of why and how you obtained it.
Computer Lab 3: The Runge-Kutta Method

In Lab 2, we encountered Euler’s method and the improved Euler method as iteration schemes to approximate the solutions of first-order differential equations. However, there is another iteration scheme which is far more accurate than either of these; in fact, the Runge-Kutta method is used to plot solution curves in the program Diffs used in Lab 1. Although the Runge-Kutta iteration scheme appears to be rather complicated, it is simply based on Simpson’s Rule for numerical integration. Recall that if we approximate the graph of \(u(x) \) on the interval \([x_0, x_0 + h]\) by the parabola passing through the three values \(u(x_0), u(x_0 + h/2), u(x_0 + h) \), then

\[
\int_{x_0}^{x_0+h} u(x) \, dx \approx \frac{h}{6}[u(x_0) + 4u(x_0 + \frac{h}{2}) + u(x_0 + h)].
\]

I. THE RUNGE-KUTTA METHOD. Suppose we want to approximate the solution of the initial-value problem

\[
\begin{align*}
\frac{dy}{dx} &= f(x, y) \\
y(x_0) &= y_0.
\end{align*}
\]

Let us apply (1) to \(u(x) = y'(x) \) and \(x_0 + h = x_1 \):

\[
y(x_1) - y(x_0) = \int_{x_0}^{x_1} y'(x) \, dx \\
\approx \frac{h}{6}(y'(x_0) + 2y'(x_0 + \frac{h}{2}) + 2y'(x_0 + \frac{h}{2}) + y'(x_1))
\]

where we have split up \(4y'(x_0 + \frac{h}{2}) \) into two parts because we shall approximate them differently. But equation (2) suggests that we take

\[
y_1 = y_0 + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)
\]

as an approximation for \(y(x_1) \), where \(k_1, k_2, k_3, k_4 \) are approximations of the slope at the appropriate values of \(x \). In fact, we shall take

\[
\begin{align*}
k_1 &= f(x_0, y_0) \\
k_2 &= f(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1) \\
k_3 &= f(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_2) \\
k_4 &= f(x_1, y_0 + hk_3).
\end{align*}
\]
Notice that $k_1 = y'(x_0)$, and k_2 is the slope of y at the point produced by the Euler method on $[x_0, x_0 + h/2]$; this much is similar to the improved Euler method. In fact, k_3 is just the slope of y at the point produced by the Euler method on $[x_0, x_0 + h/2]$ with slope k_2 instead of k_1, and k_4 is the slope of y at the point produced by the Euler method on $[x_0, x_1]$ with slope k_3.

The formulas (4) and (5) give us the value of y_1, which we can then use to compute y_2, etc. However, the Runge-Kutta method is so good, we shall not need to take the value h as small as we did for the Euler and improved Euler methods. This means that fewer steps need to be taken to get a good approximation of $y(x)$.

Let us use the Runge-Kutta method on the same equation as we encountered in the Example of Lab 2:

Example 1. Use the Runge-Kutta method to approximate the solution of $y' = x + y$, $y(0) = 1$ with step size $h = 0.5$ on the interval $0 \leq x \leq 1$.

1. In your worksheet (in EXCEL or other spreadsheet program), create seven columns labelled n, x_n, y_n, k_1, k_2, k_3, and k_4.
2. In the n column, enter 3 rows: 0 in cell A2, 1 in cell A3, and 2 in cell A4.
3. In the x_n column, enter 3 rows for the values $x = 0$, 0.5, and 1: 0 in cell B2, “=B2+.5” and ENTER in cell B3, and Fill Down B3 into B4.
4. In the y_n column, enter 3 rows: 1 in cell C2 for the initial condition $y0 = y(0) = 1$, “=C2+.5*(D2+2*E2+2*F2+G2)/6” and ENTER in cell C3 to implement equation (4), and then Fill Down C3 into C4.
5. To assign the values for k_1, k_2, k_3, k_4, first consider $n = 0$, and assign the values

\[
\begin{align*}
 k_1 &= x_0 + y_0 \quad \text{(in cell D2 type “=B2+C2” and ENTER)}, \\
 k_2 &= x_0 + .25 + y_0 + .25 \cdot k_1 \quad \text{ (“=B2+.25+C2+.25*D2”),} \\
 k_3 &= x_0 + .25 + y_0 + .25 \cdot k_2 \quad \text{ (“=B2+.25+C2+.25*E2”),} \\
 k_4 &= x_1 + y_0 + .5 \cdot k_3 \quad \text{ (“=B3+C2+.5*F2”).}
\end{align*}
\]

6. Fill Down the formula in cell D2 into D3. Do the same for the k_2, k_3, and k_4 columns. At this point your spreadsheet should look like the following:

<table>
<thead>
<tr>
<th>n</th>
<th>x_n</th>
<th>y_n</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
<td>1.625</td>
<td>2.3125</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>1.796875</td>
<td>2.296875</td>
<td>3.121094</td>
<td>3.327148</td>
<td>4.460449</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3.434692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Notice that y_2 does not depend on the values of k_1, k_2, k_3, and k_4 for $n = 2$: that is why we have left those k-values blank. If you do not believe this, try filling down cell D3 into D4; does the value in C4 change?)

Notice that the procedure has yielded the approximation 3.4347 for the value of $y(1)$ which has the exact value 3.436564 (as we found in Lab 2). This approximation is much better than the Euler method with $h = .1$ which produced $y(1) \approx 3.1875$, or the improved Euler method which produced $y(1) \approx 3.4281$, even though both of these used ten steps instead of
the two steps employed by Runge-Kutta. **Conclusion:** Runge-Kutta is much more efficient than the Euler methods.

Exercise 1. In Lab 2, we used the Euler and improved Euler methods to approximate \(y(2) \) for the solution of \(y' - 2y = 3e^{2x} \) with various values of \(h \) (\(h = 0.1, 0.05, 0.033\ldots, 0.025 \)). Use the Runge-Kutta method with \(h = 0.1 \) to approximate \(y(2) \). How does this compare with the Euler and Improved Euler methods?

Hand In: A printout of your worksheet for the Runge-Kutta method, and your answer to the question.

Exercise 2. Consider the initial-value problem: \(y' = (x + y)/x \), \(y(1) = 1 \).

(a) Use the Runge-Kutta method with \(h = 0.5 \) to approximate the solution’s value at \(x = 2 \).

(b) Solve the equation by hand and compare the actual value \(y(2) \) to the approximation obtained in (a).

(Your approximation should be within .001 of the actual value; if not, you must have made a mistake – find it!)

Hand In: A printout of your worksheet for the Runge-Kutta method in (a), and details of your solution by hand in (b).

Numerical methods can be misleading when singularities are involved: this is one good reason for being able to solve equations by hand. The next exercise illustrates this fact.

Exercise 3. Consider the initial-value problem: \(y' = x + \sin y \), \(y(0) = 3/2 \).

(a) Using the Runge-Kutta method with \(h = 0.5 \), what value do you get as an approximation for the solution at \(x = 1 \)? Are you suspicious that something is wrong?

(b) Try using DIFFS to investigate the behavior of the solution. What do you suspect is going on?

(c) Find the actual solution by hand. Now can you explain what has happened?

Hand In: A printout of your worksheet in (a), and an explanation (citing your experiences in (b) and (c)) for what is going on.

II. EQUATIONS WHICH CANNOT BE SOLVED “BY HAND”. Up to this point, we have used numerical methods on equations that we can also solve by hand; this was done so that we could check the accuracy of the method. Of course, the whole reason for numerical methods is to be able to numerically approximate the solutions of equations which cannot be solved by hand. Let us consider an example.

Example 2. Let us consider the equation \(y' = x + \sin y \) with initial condition \(y(0) = 1 \), and try to approximate the value \(y(1) \).

1. The equation is nonlinear, and none of our solution techniques seem to apply: verify this yourself, by trying some techniques. We must turn to a numerical method.

2. Let us use Runge-Kutta with \(h = 0.5 \). We obtain the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>(x_n)</th>
<th>(y_n)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_3)</th>
<th>(k_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.841471</td>
<td>1.185746</td>
<td>1.212590</td>
<td>1.499370</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>1.594794</td>
<td>1.499712</td>
<td>1.671479</td>
<td>1.653955</td>
<td>1.659250</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.412280</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Naturally, we wonder how accurate is our answer \(y(1) \approx y_2 = 2.412280 \)? We cannot solve the equation by hand to check the accuracy, so what do we do? Let us try Runge-Kutta with \(h = 0.25 \). We obtain the following table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_3)</th>
<th>(k_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.841471</td>
<td>1.018547</td>
<td>1.028265</td>
<td>1.201189</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>1.255678</td>
<td>1.200760</td>
<td>1.361415</td>
<td>1.364514</td>
<td>1.499662</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1.595357</td>
<td>1.499698</td>
<td>1.602607</td>
<td>1.599819</td>
<td>1.661238</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>1.993931</td>
<td>1.661806</td>
<td>1.682520</td>
<td>1.680990</td>
<td>1.664940</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2.412838</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice that \(y(1) \approx y_4 = 2.412838 \) agrees with the previous value 2.412280 to three decimal places. We are fairly confident, therefore, that the approximation \(y(1) \approx 2.412 \) is accurate to within \(\pm 0.001 \); suppose we want to do better.

4. Let us try Runge-Kutta with \(h = 0.1 \). Without displaying the table, the answer is 2.41287465. This agrees with the previous value 2.412838 to four decimal places.

Exercise 4. Consider the initial-value problem \(y' = x^2 + \cos y \), \(y(0) = 0 \).

(a) Use Runge-Kutta with \(h = 0.5 \) and \(h = 0.25 \) to approximate the value \(y(1) \). Give \(y(1) \) to as many decimal places as you feel is accurate.

(b) Use Runge-Kutta with \(h = 0.1 \) to approximate the value \(y(1) \), and give the value to as many decimal places as you feel is accurate.

Hand In: A printout of your worksheet for the Runge-Kutta method with \(h = 0.5, 0.25, 0.1 \), and the values of \(y(1) \) requested in (a) and (b).

III. ERROR ESTIMATES. Using Taylor series, it can be shown that the value \(y_1 \), which is produced by the Runge-Kutta prescription (4)-(5), agrees with the value at \(x_1 \) of the fourth-order Taylor polynomial of \(y \) computed at \(a = x_0 \). By Taylor’s formula with remainder, this means that

\[
y_1 - y(x_1) = y^{(5)}(c) \frac{h^5}{5!},
\]

for some \(x_0 < c < x_1 = x_0 + h \). Applying the same reasoning as for the Euler method, we conclude that the local error for Runge-Kutta satisfies

\[
e(h) = O(h^5) \quad \text{as} \quad h \to 0,
\]

and therefore the global error satisfies

\[
E(h) = O(h^4) \quad \text{as} \quad h \to 0.
\]

For this reason, the Runge-Kutta is sometimes called the *fourth-order Runge-Kutta method*. In fact, there are even higher-order methods, but we shall not discuss them.

Let us see how to use (8) in Example 2 where we cannot solve the equation by hand.

Example 2 (cont’d). Use (8) to estimate the global errors in our Runge-Kutta approximations for the solutions of \(y' = x + \sin y \), \(y(0) = 1 \).
1. For \(h = 0.5 \), we found our approximation \(y(1) \approx 2.412280 \) was accurate to within 0.001, i.e. \(E(0.5) \leq 0.001 \).

2. Using (8), we expect for \(h = 0.25 \) to have

\[
E(0.25) = E\left(\frac{0.5}{2}\right) \approx \frac{1}{2^4} E(0.5) = \frac{0.001}{16} = 0.0000625 = 6.25 \times 10^{-5}.
\]

Indeed, when we compare the value \(y(1) \approx 2.412838 \) for \(h = 0.25 \) with the value \(y(1) \approx 2.41287465 \) for \(h = 0.1 \) (which we assume to be much more accurate, we see that the actual error \(E(0.25) \leq 0.00004 \). Although the error estimate (9) is not “sharp,” it has the significant advantage that it did not require us to run an additional Runge-Kutta procedure!

3. With this last statement in mind, we can also use (8) to estimate the error in our approximation \(y(1) \approx 2.41287465 \) for \(h = 0.1 \). Namely,

\[
E(0.1) = E\left(\frac{0.5}{5}\right) \approx \frac{1}{5^4} E(0.5) = \frac{0.001}{625} = 0.0000016 = 1.6 \times 10^{-6}.
\]

We conclude that \(y(1) = 2.412875 \) is accurate to within \(1.6 \times 10^{-6} \), without running an additional Runge-Kutta!

Exercise 5. Consider the initial-value problem \(y' = x^2 + \cos y \), \(y(0) = 0 \) as in Exercise 4.

(a) For \(h = 0.5 \), how accurate was your value for \(y(1) \)? (I.e. \(E(0.5) \leq \) (what number?).)

(b) Based on your answer in (a), what accuracy would you expect for your value of \(y(1) \) when \(h = 0.25 \)? (I.e. what value do you expect for \(E(0.25) \)?) Was this accuracy achieved? (I.e. compare your values of \(y(1) \) between \(h = 0.25 \) and \(h = 0.1 \).

(c) Based on your answer in (a) and/or (b), what accuracy would you expect for your value of \(y(1) \) when \(h = 0.1 \)? (I.e. what value do you expect for \(E(0.1) \)?)

Hand In: Give answers (in complete sentences) to the questions asked in (a), (b), and (c). Be sure to explain how you obtained your numerical values for \(E \).
The numerical methods, which we have used to obtain numerical values for solutions of a first-order equation, work equally well for a *system* of first-order equations. For example, consider functions \(x(t) \) and \(y(t) \) of the variable \(t \), which are desired to satisfy the two first-order equations

\[
\begin{align*}
\frac{dx}{dt} &= f(t, x, y) \\
\frac{dy}{dt} &= g(t, x, y).
\end{align*}
\]

We can change notation by letting \(x_1 = x \), \(x_2 = y \), \(f_1 = f \) and \(f_2 = g \):

\[
\begin{align*}
\frac{dx_1}{dt} &= f_1(t, x_1, x_2) \\
\frac{dx_2}{dt} &= f_2(t, x_1, x_2).
\end{align*}
\]

The equation (2) may also be written in vector notation as

\[
\frac{d\vec{x}}{dt} = \vec{f}(t, \vec{x})
\]

where

\[
\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad \text{and} \quad \vec{f} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}.
\]

In the formulation (3), it is clear that we could just as easily consider any number \(m \) of equations in the same number of variables: use \(\vec{x} = (x_1, \ldots, x_m) \) and \(\vec{f} = (f_1, \ldots, f_m) \); but for the purposes of this lab we shall always take \(m = 2 \), and generally prefer (1) over (2) or (3) to avoid using subscripts which may be confused with the iteration steps. Of course, we generally want to solve a first-order system given an initial condition at \(t = 0 \): \(\vec{x}(0) = \vec{x}_0 \) for (3), or \(x(0) = x_0 \) and \(y(0) = y_0 \) for (1).

As we did for first-order equations, we shall call a system *autonomous* when the independent variable \(t \) does not occur explicitly. Thus (3) is autonomous when it is of the form \(d\vec{x}/dt = \vec{f}(\vec{x}) \); moreover, a *critical point* \(\vec{x}_0 \) which satisfies \(\vec{f}(\vec{x}_0) = 0 \) yields an *equilibrium solution* of the form \(\vec{x}(t) \equiv \vec{x}_0 \). Similarly, (1) is autonomous when it is of the form

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\frac{dy}{dt} &= g(x, y),
\end{align*}
\]

and an equilibrium solution is of the form \((x(t), y(t)) \equiv (x_0, y_0) \) where \((x_0, y_0) \) is a critical point: \(f(x_0, y_0) = 0 \) and \(g(x_0, y_0) = 0 \). Autonomous systems occur frequently in
applications, and equilibrium solutions generally play a significant role in the application, especially when they are *stable* (recall this means that solutions that begin near the equilibrium remain near it as $t \to \infty$).

Now suppose we want to find $x(t)$ and $y(t)$ satisfying (1) and the initial conditions $x(0) = x_0$ and $y(0) = y_0$. Given a step size h, the iteration scheme will show how to use x_0 and y_0 to obtain x_1 and y_1 which should be approximations for the exact values $x(h)$ and $y(h)$. Then x_1 and y_1 can be used to find x_2 and y_2 as approximations for $x(2h)$ and $y(2h)$, etc.

I. EULER’S METHOD. For a step size h, Euler’s method for (3) may be expressed by

\[\vec{x}_{n+1} = \vec{x}_n + h\vec{f}(t, \vec{x}). \]

For (1) we obtain:

\begin{align*}
 x_{n+1} &= x_n + hf(t_n, x_n, y_n) \\
 y_{n+1} &= y_n + hg(t_n, y_n).
\end{align*}

Example 1. Let us consider

\begin{align*}
 \frac{dx}{dt} &= x - 3y \quad x(0) = 2 \\
 \frac{dy}{dt} &= 2x - 4y \quad y(0) = 1.
\end{align*}

Let us apply Euler’s method with step size $h = .1$ to approximate the solution at $t = 1$.

On a spreadsheet (e.g. EXCEL), let

\begin{align*}
 x_1 &= x_0 + .1(x_0 - 3y_0) \\
 y_1 &= y_0 + .1(2x_0 - 4y_0),
\end{align*}

and then iterate to obtain x_2, \ldots, x_{10} and y_2, \ldots, y_{10}. At this point your spreadsheet should look like the following:

<table>
<thead>
<tr>
<th>n</th>
<th>t_n</th>
<th>x_n</th>
<th>y_n</th>
<th>$f(x_n, y_n)$</th>
<th>$g(x_n, y_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.9</td>
<td>1</td>
<td>-1.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.79</td>
<td>0.98</td>
<td>-1.15</td>
<td>-0.34</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.675</td>
<td>0.946</td>
<td>-1.163</td>
<td>-0.434</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.5587</td>
<td>0.9026</td>
<td>-1.1491</td>
<td>-0.493</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.44379</td>
<td>0.8533</td>
<td>-1.11611</td>
<td>-0.52562</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.332179</td>
<td>0.800738</td>
<td>-1.070035</td>
<td>-0.538594</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1.2251755</td>
<td>0.7468786</td>
<td>-1.0154603</td>
<td>-0.5371634</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>1.12362947</td>
<td>0.69316226</td>
<td>-0.95585731</td>
<td>-0.5253901</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>1.0208043739</td>
<td>0.64062325</td>
<td>-0.893826011</td>
<td>-0.506405522</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.938661138</td>
<td>0.589982698</td>
<td>-0.831286956</td>
<td>-0.482608515</td>
</tr>
</tbody>
</table>
If we want to check the accuracy of our approximations, we need to be able to find the exact solution of (6). We shall use the method of elimination to reduce a linear 2×2 first-order system to a single linear second-order equation: the idea is to eliminate one of the dependent variables x or y. To eliminate y, rewrite the first equation in (6) as $y = \frac{1}{3}(x - x')$ and differentiate to get $y' = \frac{1}{3}(x' - x'')$. Using the second equation, we get $y' = 2x - 4y = \frac{4}{3}(x' - x'')$, and then use $y = \frac{1}{3}(x - x')$ again to eliminate y:

$$2x - \frac{4}{3}(x - x') = \frac{1}{3}(x' - x'')$$

which can be rewritten as

$$x'' + 3x' + 2x = 0.$$

Using the methods of Section 3.3 in the text, we find (7) has the general solution

$$x(t) = c_1 e^{-t} + c_2 e^{-2t}.$$

To find c_1 and c_2, we must find initial conditions for $x(t)$. One of these is clear from the initial conditions on x and y: $x(0) = c_1 + c_2 = 2$. To find the initial condition for $x'(0)$, we use (7) to find $x'(0) = -c_1 - 2c_2$, and then use the equation $x' = x - 3y$ to compute $x'(0) = x(0) - 3y(0) = 2 - 3 \cdot 1 = -1$. Thus we get the system

$$c_1 + c_2 = 2$$

$$-c_1 - 2c_2 = -1$$

which may be solved to find $c_1 = 3$ and $c_2 = -1$. Thus the solution is $x = 3e^{-t} - e^{-2t}$, and we can then find $y = \frac{1}{3}(x - x') = 2e^{-t} - e^{-2t}$. Thus the solution of (6) is given by

$$x(t) = 3e^{-t} - e^{-2t} \quad \text{and} \quad y(t) = 2e^{-t} - e^{-2t}.$$

Let us add the exact values of $x(t_1), \ldots, x(t_{10})$ and y_1, \ldots, y_{10} to our spreadsheet:

<table>
<thead>
<tr>
<th>n</th>
<th>t_n</th>
<th>x_n</th>
<th>y_n</th>
<th>$f(x_n, y_n)$</th>
<th>$g(x_n, y_n)$</th>
<th>$x(t_n)$</th>
<th>$y(t_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.9</td>
<td>1</td>
<td>-1.1</td>
<td>-0.2</td>
<td>1.8957815</td>
<td>0.99094408</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.79</td>
<td>0.98</td>
<td>-1.15</td>
<td>-0.34</td>
<td>1.7858721</td>
<td>0.96714146</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.675</td>
<td>0.946</td>
<td>-1.163</td>
<td>-0.434</td>
<td>1.6736430</td>
<td>0.93282481</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.5587</td>
<td>0.9026</td>
<td>-1.1491</td>
<td>-0.493</td>
<td>1.56163117</td>
<td>0.89131113</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.44379</td>
<td>0.8533</td>
<td>-1.11611</td>
<td>-0.52562</td>
<td>1.45171254</td>
<td>0.84518188</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.332179</td>
<td>0.800738</td>
<td>-1.070035</td>
<td>-0.538594</td>
<td>1.3452407</td>
<td>0.79642906</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1.2251755</td>
<td>0.7468786</td>
<td>-1.0154603</td>
<td>-0.5371634</td>
<td>1.24315895</td>
<td>0.74657364</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>1.12362947</td>
<td>0.6931623</td>
<td>-0.9588573</td>
<td>-0.5253901</td>
<td>1.14609037</td>
<td>0.69676141</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>1.02080437</td>
<td>0.6406233</td>
<td>-0.893826</td>
<td>-0.5064055</td>
<td>1.0541009</td>
<td>0.64784043</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.93866114</td>
<td>0.5899827</td>
<td>-0.831287</td>
<td>-0.4826085</td>
<td>0.96830304</td>
<td>0.6004236</td>
</tr>
</tbody>
</table>

We see that x_n and y_n are reasonably accurate approximations for the true values $x(t_n)$ and $y(t_n)$. If we wanted more accurate numerical approximations, we could use the improved Euler method or Runge-Kutta method, both of which generalize to systems with no
additional effort. However, the spreadsheet becomes more complicated, so we shall confine our study of numerical methods for systems to Euler’s method.

Notice that $x(t_n), y(t_n), x_n$, and y_n all are decreasing in t_n. What happens as $t \to \infty$? Let us expand our spreadsheet (simply by filling down):

<table>
<thead>
<tr>
<th>n</th>
<th>t_n</th>
<th>x_n</th>
<th>y_n</th>
<th>$f(x_n, y_n)$</th>
<th>$g(x_n, y_n)$</th>
<th>$x(t_n)$</th>
<th>$y(t_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.9</td>
<td>1</td>
<td>-1.1</td>
<td>-0.2</td>
<td>1.8957815</td>
<td>0.99094408</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>1.79</td>
<td>0.98</td>
<td>-1.15</td>
<td>-0.34</td>
<td>1.7587221</td>
<td>0.96714146</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>1.675</td>
<td>0.946</td>
<td>-1.163</td>
<td>-0.434</td>
<td>1.67364303</td>
<td>0.93282481</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>1.5587</td>
<td>0.9026</td>
<td>-1.1491</td>
<td>-0.493</td>
<td>1.56163117</td>
<td>0.89131113</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.44379</td>
<td>0.8533</td>
<td>-1.11611</td>
<td>-0.52562</td>
<td>1.45171254</td>
<td>0.84518188</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>1.32179</td>
<td>0.800738</td>
<td>-1.070035</td>
<td>-0.538594</td>
<td>1.3452407</td>
<td>0.79642906</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1.2251755</td>
<td>0.7468786</td>
<td>-1.0154603</td>
<td>-0.5371634</td>
<td>1.24315895</td>
<td>0.74657364</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>1.12362947</td>
<td>0.6931623</td>
<td>-0.9558573</td>
<td>-0.5253901</td>
<td>1.14609037</td>
<td>0.69676141</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>1.020804374</td>
<td>0.6406233</td>
<td>-0.893826</td>
<td>-0.5064055</td>
<td>1.05441009</td>
<td>0.64784043</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.93866114</td>
<td>0.5898827</td>
<td>-0.831287</td>
<td>-0.4826085</td>
<td>0.96830304</td>
<td>0.6004236</td>
</tr>
<tr>
<td>11</td>
<td>1.1</td>
<td>0.85553244</td>
<td>0.5417218</td>
<td>-0.7696331</td>
<td>-0.4558225</td>
<td>0.88718009</td>
<td>0.55493901</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>0.77856913</td>
<td>0.4961396</td>
<td>-0.7098497</td>
<td>-0.4274201</td>
<td>0.81286468</td>
<td>0.51167047</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>0.70758417</td>
<td>0.4533976</td>
<td>-0.6526086</td>
<td>-0.398422</td>
<td>0.7433218</td>
<td>0.47079001</td>
</tr>
<tr>
<td>14</td>
<td>1.4</td>
<td>0.64232331</td>
<td>0.4135554</td>
<td>-0.5983428</td>
<td>-0.3695749</td>
<td>0.67898083</td>
<td>0.43238387</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>0.58248902</td>
<td>0.3765979</td>
<td>-0.5473047</td>
<td>-0.3414135</td>
<td>0.61960341</td>
<td>0.39647325</td>
</tr>
<tr>
<td>16</td>
<td>1.6</td>
<td>0.52775856</td>
<td>0.3424565</td>
<td>-0.4996111</td>
<td>-0.314309</td>
<td>0.56492735</td>
<td>0.36303083</td>
</tr>
<tr>
<td>17</td>
<td>1.7</td>
<td>0.47779745</td>
<td>0.3110256</td>
<td>-0.4552795</td>
<td>-0.2885076</td>
<td>0.5146773</td>
<td>0.33199378</td>
</tr>
<tr>
<td>18</td>
<td>1.8</td>
<td>0.43226951</td>
<td>0.2821749</td>
<td>-0.4142551</td>
<td>-0.2641605</td>
<td>0.46857294</td>
<td>0.30327405</td>
</tr>
<tr>
<td>19</td>
<td>1.9</td>
<td>0.390844</td>
<td>0.2557588</td>
<td>-0.3764325</td>
<td>-0.2413473</td>
<td>0.42633509</td>
<td>0.27676647</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.35320075</td>
<td>0.2316241</td>
<td>-0.341615</td>
<td>-0.2200949</td>
<td>0.38769021</td>
<td>0.25235493</td>
</tr>
</tbody>
</table>

It looks like x and y are tending to zero as $t \to \infty$. This seems particularly likely if we notice that $(0, 0)$ is an equilibrium solution for the system. In fact, solving $f(x, y) = x - 3y = 0$ and $g(x, y) = 2x - 4y = 0$ shows that $x = 0 = y$ is the only equilibrium solution. Is the equilibrium asymptotically stable, i.e. does every solution which begins near $(0, 0)$ tend to $(0, 0)$ as $t \to \infty$? We cannot answer this question by looking at our spreadsheet, nor even by changing the initial conditions $x(0) = 2$ and $y(0) = 1$ to other values and creating many such spreadsheets. The only way to tell that all solutions tend to $(0, 0)$ is to look at the general solution $x(t) = c_1 e^{-t} + c_2 e^{-2t}$ and $y(t) = \frac{1}{2} (x(t) - x'(t)) = \frac{1}{2} c_1 e^{-t} + c_2 e^{-2t}$: for all values of the constants c_1 and c_2, we have $x(t), y(t) \to 0$ as $t \to \infty$, so the equilibrium is stable.

Exercise 1. Consider the system

\[
\frac{dx}{dt} = x + 2y
\]
\[
\frac{dy}{dt} = 2x + y + 3
\]
with the initial conditions
\[x(0) = 1 \quad \text{and} \quad y(0) = 0. \]

(a) Use \(h = 0.01 \) to approximate the values of \(x(0.5) \) and \(y(0.5) \).
(b) Use Fill Down in your spreadsheet to find approximations for \(x(1.0) \) and \(y(1.0) \).
(c) Can you guess what happens to \(x(t) \) and \(y(t) \) as \(t \to \infty \)?
(d) Use the method of elimination to find the actual solution of this problem; you will need to use Section 3.5 in the text. What are the actual values \(x(0.5), y(0.5), x(1.0), \) and \(y(1.0) \)?
(e) Find the critical point of the system. Determine if the equilibrium solution is asymptotically stable or unstable.
(f) Can you find new initial conditions (other than the equilibrium) for the system for which the solution \((x(t), y(t)) \) approaches the critical point in the limit as \(t \to \infty \)?

Hand In: A printout of your spreadsheet from (b), your answer to (c), your hand-written solution and the requested values for (d), and your answers to (e) and (f).

II. APPLICATION TO A PREDATOR-PREY MODEL.

Systems of two first-order equations of the form
\[
\begin{align*}
\frac{dx}{dt} &= ax - bxy \\
\frac{dy}{dt} &= -cy + dxy,
\end{align*}
\]

where \(a, b, c, \) and \(d \) are all positive constants, arise in many physical sciences. One instance occurs in biology and sociology in which two populations of animals interact as predators and prey. An example might be foxes and rabbits.

To understand the model (9), suppose that the \(x \)-population (the “prey”) grows according to \(dx/dt = ax \) when no predators are present \((y = 0) \); rabbits, for example, are certainly known for their ability to reproduce! Suppose, also, that the \(y \)-population (the “predators”) will die out according to \(dy/dt = -cy \) when no prey exist \((x = 0) \); we must imagine that the foxes only feed on rabbits. However, when both predators and prey exist \((x, y \neq 0) \), then the number of encounters between the species is proportional to the product \(xy \), and these encounters inhibit the growth of \(x \) (whence the term \(-bxy\)), but enhance the growth of \(y \) (whence the term \(+dxy\)).

Now let us take some specific values for \(a, b, c, \) and \(d \). For example, when \(x \) and \(y \) are measured in “thousands” (i.e. \(x = 1 \) means “one thousand rabbits”), suppose \(a, b, c, \) and \(d \) all have the value 1. Then (9) becomes
\[
\begin{align*}
\frac{dx}{dt} &= x - xy \\
\frac{dy}{dt} &= -y + xy.
\end{align*}
\]

To find critical points, we set \(f(x, y) = x - xy = x(1 - y) = 0 \) to obtain \(x = 0 \) or \(y = 1 \); similarly, \(g(x, y) = -y + xy = y(-1 + x) = 0 \) requires \(y = 0 \) or \(x = 1 \). We have two
possibilities for critical points: \((x,y) = (0,0)\) or \((x,y) = (1,1)\). When \((x,y) = (0,0)\), both populations are zero, and of course remain zero. The value \((x,y) = (1,1)\) is more interesting, because it indicates that if initially there are exactly 1,000 rabbits and 1,000 foxes, then the populations remain constant. Is this a stable equilibrium solution? Let us find out.

Let us take initial conditions close to the critical point \((1,1)\), for example

\[
(11) \quad x(0) = 0.9 \quad y(0) = 1.1,
\]

and use Euler’s method to study the solution. Let us take step size \(h = 0.2\). The following is an abbreviated version of the results:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t_n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
<th>(f(x_n,y_n))</th>
<th>(g(x_n,y_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>1.1</td>
<td>-0.09</td>
<td>-0.11</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.882</td>
<td>1.078</td>
<td>-0.068796</td>
<td>-0.127204</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.8682408</td>
<td>1.0525592</td>
<td>-0.04563404</td>
<td>-0.13868436</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.85911399</td>
<td>1.02482233</td>
<td>-0.02132521</td>
<td>-0.14438313</td>
</tr>
<tr>
<td>9</td>
<td>1.8</td>
<td>0.90641996</td>
<td>0.86945483</td>
<td>0.11832874</td>
<td>-0.08136362</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>0.9300857</td>
<td>0.85318211</td>
<td>0.13655322</td>
<td>-0.05964963</td>
</tr>
<tr>
<td>14</td>
<td>2.8</td>
<td>1.05485282</td>
<td>0.83547109</td>
<td>0.17355379</td>
<td>0.04582795</td>
</tr>
<tr>
<td>15</td>
<td>3.0</td>
<td>1.08956358</td>
<td>0.84463668</td>
<td>0.16927822</td>
<td>0.07564869</td>
</tr>
<tr>
<td>19</td>
<td>3.8</td>
<td>1.20410601</td>
<td>0.94142407</td>
<td>0.07053164</td>
<td>0.19215031</td>
</tr>
<tr>
<td>20</td>
<td>4.0</td>
<td>1.21821234</td>
<td>0.97985413</td>
<td>0.02454195</td>
<td>0.21381626</td>
</tr>
</tbody>
</table>

Then let us use ChartWizard to graph the solutions through \(n = 40\) \((t = 8)\):
Now this is rather interesting. Notice that the populations both seem to oscillate about the equilibrium solution, with the predator population y lagging behind the prey population x: once the prey population starts to increase, it takes a while for the predator population to begin increasing; but then it catches up with the prey population, which has begun to decrease. All this is quite reasonable for the behavior of populations of species, and leads us to define the values $x = 1$ and $y = 1$ (from the equilibrium solution $(x, y) = (1, 1)$) as the average population values.

Exercise 2. Trying to control the rabbit population.
(a) What do you think the effect would be of introducing a large number of foxes to try to control the rabbit population? Introduce an additional 1,000 foxes at $t = 0$ by changing $y(0) = 1.1$ to $y(0) = 2.1$, and use EXCEL to numerically approximate the solution with $h = 0.2$. Use Chart Wizard to plot the result. Did the introduction of additional foxes keep down the rabbit population?
(b) What do you think the effect would be of a one-time killingspree to control the rabbit population? Reset $y(0) = 1.1$, but kill off half the rabbits at $t = 0$ by changing $x(0) = .9$ to $x = .45$, and use EXCEL to numerically approximate the solution with $h = 0.2$. Use Chart Wizard to plot the result. Did the one-time killingspree keep down the rabbit population? What effect did it have on the fox population?
(c) Have the strategies in (a) or (b) changed the average population values of rabbits and foxes?

Hand In: A printout of your spreadsheet and chart, along with your answer to the question in (a). Similarly, a printout of spreadsheet, chart, and answers to the two questions in (b). Finally, a short answer to the question in (c).

III. EFFECT OF TRAPPING. We conclude from Part II that changing the initial conditions by introducing more foxes or conducting a one-time killingspree is not an effective means of controlling the rabbit population: the average value of the rabbit population has not been changed. How about setting traps for the rabbits? Suppose we can find a bait for the trap which appeals to rabbits and not to foxes (carrots?). This may lead to the modification of (9) as follows:

\[
\begin{align*}
\frac{dx}{dt} &= ax - bxy - ex \\
\frac{dy}{dt} &= -cy + dxy.
\end{align*}
\]

Exercise 3. Still trying to control the rabbit population.
(a) Explain in words why the term $-ex$ in (12) might represent trapping better than a term like $-e$.
(b) Take $a = b = c = d = 1$ and $e = .5$ in (12), i.e. introduce trapping to the example (10), and use the initial values (11). Use EXCEL to numerically approximate the solution with $h = 0.2$, and Chart Wizard to plot the results.
(c) What effect has the setting of traps had on the average population values?

Hand In: Your answer to (a) in complete sentences. A printout of spreadsheet and chart in (b). Also, a short answer to the question in (c).
Lab 5: MATLAB and 2nd-order Differential Equations

We are now familiar with using a spreadsheet to set up numerical methods for approximating solutions of a single differential equation and systems of differential equations. However, there are several software packages which have these numerical algorithms already installed and ready to use. Such software packages are generally called “ODE Solvers”. One such program is DIFFS, which we used in Lab 1; it is very easy to use, but it does not solve systems of equations. More powerful solvers, which do handle systems, are incorporated in computational software such as MATLAB.

In this computer lab, we shall not only learn how to use an ODE solver in MATLAB, but we shall apply it to compute and study the solutions of 2nd-order equations $x'' = f(t, x)$ or $x'' = f(t, x, x')$.

I. APPLYING MATLAB TO 1st-ORDER EQUATIONS & SYSTEMS.

MATLAB has several numerical procedures for computing the solutions of first-order equations and systems of the form $y' = f(t, y)$; we shall concentrate on “ode45”, which is a suped-up Runge-Kutta method. The first step is to enter the equation or system by creating an “M-file” which contains the definition of your equation, and is given a name for reference, such as “diffeqn” (the suffix “.m” will be added to identify it as an M-file.). The second step is to apply ode45 by using the syntax:

\[
[t, y] = \text{ode45('diffeqn', [t_0, t_f], y_0)};
\]

where t_0 is the initial time, t_f is the final time, and y_0 is the initial condition, $y(t_0) = y_0$. The same syntax (1) works for equations and systems alike.

Example 1. $y' = y^2 - t, y(0) = 0$, for $0 \leq t \leq 4$.
1. Creating the M-file. Start up MATLAB; the Command Window appears with the prompt >> awaiting instructions. Choose New from the File menu, and select M-file. You are now in a text editor where you create MATLAB files. Enter the following text:

\[
\text{function ypr=example1(t,y)}
\text{ypr=y^2-t;}
\]

Name this M-file “example1.m” by selecting Save As from the File menu.
2. Running ode45. Return to the Command Window, and enter the following:

\[
>> [t, y] = \text{ode45('example1', [0, 4], 0)};
\]

MATLAB will do its computing, then give you another prompt.
3. Plotting the Solution. You can plot the solution $y(t)$ by typing

\[
>> \text{plot(t,y)}
\]
The solution to $y' = y^2 - t$ with $y(0) = 0$.

To give your plot the title and axes labels in the picture above, type

```matlab
>> title('The solution to $y'' = y^2 - t$ with $y(0) = 0.$')
>> xlabel('t')
>> ylabel('y')
```

and hit the enter key after each line. Notice that each title/label is identified by single quotation marks, e.g. 'The solution...'. **Note:** You might expect that the title line should read $y' = y^2 - t$ instead of $y'' = y^2 - t$, but the former would indicate to MATLAB that the title ends with y', so we must put in the extra single quote (i.e. two single quotes, not one double quote).

You can also have MATLAB tabulate the t-values it has selected and the y-values it has computed by entering

```matlab
>> [t, y]
```

in the Command Window. This should produce a vertical column of numbers, the last of which is $t = 4.0000$ and $y = -1.9311$, i.e. $y(4) = -1.9311$ as appears in the plot.

Exercise 1. Consider the initial value problem $y' = t^2 + \cos y$, $y(0) = 0$ which was encountered in Exercise 4 of Lab 3. Use MATLAB to plot the solution for $0 \leq t \leq 1$, and find the approximate value of $y(1)$.

Hand In: A printout of your plot and the value of $y(1)$.
Example 2. Recall the predator-prey example from Lab 4:

\[
\begin{align*}
\text{(2a)} \\
\begin{cases}
y_1' = y_1 - y_1 y_2 \\
y_2' = -y_2 + y_1 y_2,
\end{cases}
\end{align*}
\]

where we have now used \(y_1 \) to denote the prey (rabbits, formerly \(x \)) and \(y_2 \) to denote the predators (foxes, formerly \(y \)). As before, we shall take the initial conditions

\[
\text{(2b)} \\
y_1(0) = 0.9 \quad y_2(0) = 1.1.
\]

1. Creating the M-file. MATLAB uses parentheses to denote the components of a vector, so \(y_1 \) is denoted \(y(1) \), and \(y_1' \) is denoted \(ypr(1) \). Create an M-file called “example2.m” which contains the following text:

```matlab
function ypr=example2(t,y)
    ypr(1)=y(1)-y(1)*y(2);
    ypr(2)=-y(2)+y(1)*y(2);
    ypr=ypr';
```

the last command converts the row vector \((y_1, y_2)\) to the column vector \(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \) required by ode45.

2. Running ode45. Return to the Command Window, and enter the following to compute the solution for \(0 \leq t \leq 8 \):

\[
\begin{align*}
\text{>> } [t,y] &= \text{ode45('example2', [0, 8], [0.9, 1.1])};
\end{align*}
\]

Notice that the initial conditions now appear as a vector: \([y_1(0), y_2(0)] = [0.9, 1.1] \). As before, we can display the values of \(t, y_1, \) and \(y_2 \) by entering

\[
\begin{align*}
\text{>> } [t,y]
\end{align*}
\]

3. Plotting the Solution. We can plot both functions \(y_1(t) \) and \(y_2(t) \) by entering

\[
\begin{align*}
\text{>>plot(t,y)} \\
\text{>>title('Predator – Prey system with y(1)(0) = 0.9 and y(2)(0) = 1.1')} \\
\text{>>xlabel('t')} \\
\text{>>ylabel('y(1), y(2)')} \\
\end{align*}
\]
We find $y_1(8) = 0.9122$ and $y_2(8) = 0.8948$; moreover the plot looks like the following:

Notice that the oscillations look much more symmetric than the Figure in Lab 4; this is, of course, because the Runge-Kutta method being used here is much more accurate than the Euler method used in Lab 4.

We can also use MATLAB to plot the solution as a *trajectory* in the (y_1, y_2)-plane. Let us enter the commands

```matlab
gt; plot(y(:,1), y(:,2))
gt; title('Predator – Prey system with $y_1(0) = 0.9$ and $y_2(0) = 1.1$')
gt; xlabel('y_1 = prey')
gt; ylabel('y_2 = predator')
```

where the colon “:” in the first command tells MATLAB not to plot the missing variable, i.e. t. The plot appears on the next page. Notice that the trajectory *seems* to form a *closed orbit* around the equilibrium solution; i.e., the values $y_1(t)$ and $y_2(t)$ are periodic and will start repeating themselves after a certain time. This suggests that the equilibrium solution is *stable*, but *not* asymptotically stable. But are we certain of this? If, after one circuit of the loop, the trajectory happens to just miss its starting point by a little bit, the trajectory could actually be spiralling outward or spiralling inward, i.e. the equilibrium could actually be unstable or asymptotically stable; a numerical approximation is not designed to tell the difference. This means that the computer is *not a good tool for determining if a trajectory forms a closed orbit.* In the next section we shall investigate how to use the concept of
“energy” to show that certain systems have closed orbits. Unfortunately, the predator-prey system is not of this type; but one may still prove mathematically that orbits are closed by analyzing the equation for dy/dx (see Section 6.3 of the Edwards and Penney textbook).

Exercise 2. A fur company moves into town, and begins trapping both rabbits and foxes for making fur coats. The following system of equations is proposed as a model:

\[
\begin{aligned}
 y_1' &= y_1 - y_1 y_2 - 0.5y_1 \\
 y_2' &= -y_2 + y_1 y_2 - 0.5y_2,
\end{aligned}
\]

where the terms $-0.5y_1$ and $-0.5y_2$ are intended to account for the equal trapping of both species.

(a) With the same initial conditions as before, i.e. (2b), use MATLAB to approximate the values $y_1(8)$ and $y_2(8)$, and to plot the solutions for $0 \leq t \leq 8$, both as functions of t, and in the phase plane.

(b) What effect has the fur trapping had on the average value of each population?

Hand In: The values $y_1(8)$ and $y_2(8)$ and printouts of your plots in (a), as well as your answer to the question in (b).
II. 2nd-ORDER EQUATIONS AND MECHANICAL VIBRATIONS.

A second-order differential equation of the form

\[x'' = f(t, x, x') \]

can be reduced to a system of first-order equations by the introduction of an additional dependent variable. Using our vector notation, let

\[y_1 = x \quad \text{and} \quad y_2 = y'_1 = x'. \]

We can then write

\[
\begin{cases}
 y'_1 = y_2 \\
 y'_2 = f(t, y_1, y_2),
\end{cases}
\]

where the first equation explains the relationship between \(y_1 \) and \(y_2 \), and the second equation is just (4). In this section we shall consider various special cases of (4) that correspond to forced linear vibrations, damped and undamped, as well as free vibrations that may be nonlinear.

Linear Vibrations

Linear vibrations may be represented by a spring-mass system

\[mx'' + cx' + kx = F(t), \]

where \(m \) is mass, \(c \) is the damping constant, \(k \) is the spring constant, and \(F(t) \) is the forcing term. The equation (7) may be solved analytically using undetermined coefficients as in Section 3.5 of the Edwards & Penney textbook, but we shall here use MATLAB to compute and plot the solutions.

Example 3. Consider a forced, undamped vibration of the form (7) with \(m = 1 \) slug, \(c = 0 \), \(k = 4 \) lbs./ft, and \(F(t) = \cos \omega t \), where we shall specify the frequency \(\omega \) below. We shall also take zero initial conditions: \(x(0) = 0 = x'(0) \).

We convert this to a first-order system by taking \(y_1 = x \) and \(y_2 = x' \):

\[
\begin{cases}
 y'_1 = y_2 \\
 y'_2 = \cos \omega t - 4y_1,
\end{cases}
\]

1. Creating the M-file. Create an M-file called “example3.m” containing the following text:

```matlab
function ypr=example3(t,y)
global w
ypr(1)=y(2);
ypr(2)=cos(w*t)-4*y(1);
ypr=ypr';
```

Lab 5: MATLAB and 2nd-order Differential Equations

The line “global w” means that we have defined \(\omega \) or “w” to be a variable which we will specify in the Command Window; this saves going back and changing the M-file everytime we want to change the value of \(\omega \).

2. Running \texttt{ode45}. Suppose we want to solve (8) with \(\omega = 1 \) on the interval \(0 \leq t \leq 20 \). Return to the Command Window, and enter the following:

\begin{verbatim}
>> global w
>> w = 1
>> [t,y] = ode45('example3',[0,20],[0,0]);
\end{verbatim}

Notice that the first command calls up the global variable, and the second command assigns its value; the third command, of course, runs \texttt{ode45}.

3. Plotting the Solution. If we enter the command \texttt{plot(t,y)}, we will see both \(y_1 \) and \(y_2 \) plotted as functions of \(t \). However, we are really only interested in \(x(t) \). For this reason, let us enter

\begin{verbatim}
>> x = y(:,1);
>> plot(t,x);
>> title('Forced, undamped vibration with w=1 on 0<t<20')
>> xlabel('t')
>> ylabel('x')
\end{verbatim}

The resulting plot appears below:

![Forced, undamped vibration with w=1 on 0<t<20](image-url)
Notice that resonance does not occur, nor do we see the “beats” that occur near resonance; this is because \(\omega = 1 \) is not even close to the resonance frequency.

Exercise 3. Resonance and Beats.

(a) Determine the value of \(\omega \) that will produce resonance in (8).

(b) With the resonance value of \(\omega \) determined in part (a), use MATLAB to plot the solution for \(0 \leq t \leq 20 \). Do you see resonance?

(c) Take \(\omega \) close to the resonance value, differing say by 0.1, and use MATLAB to plot the solution for \(0 \leq t \leq 20 \). Describe what you see. Try increasing the time interval to \(0 \leq t \leq 60 \) for both plots (i.e. the resonant and near-resonant values of \(\omega \)). Now describe what you see.

Hand In: The value of the resonance frequency in part (a), and printouts of your all plots from (b) and (c) with the answers to the questions asked.

Exercise 4. Damping & Practical Resonance. Consider a forced, damped vibration of the form (7), where \(0 < c^2 < 4mk \), so (7) is “underdamped”. The damping prevents pure resonance, but if \(c \) is very small, we might expect practical resonance, i.e. oscillations grow in amplitude larger than the driving force (but do not become infinitely large).

(a) Let \(m = 1 \), \(k = 4 \), \(\omega = 2 \), and \(c = .5 \). (Hint: Introduce a “global c” line in your M-file; this will make (b) easier.) Compute and plot the solution for \(0 \leq t \leq 30 \). After a time, all that remains should be a steady, periodic solution.

(b) Try changing \(c \) to the values \(.1 \) and \(.05 \). (You may also want to increase your time interval.) What do you observe about the amplitudes of the resulting steady, periodic solutions?

(c) Now fix \(c \) at the value \(.05 \), and vary \(\omega \) through the values \(1.9 \), \(2.0 \), and \(2.1 \). What do you observe about the amplitudes of the resulting vibrations?

Hand In: Printouts of the plots for the various values of \(c \) and \(\omega \), and the answers to the questions asked.

Nonlinear Vibrations

MATLAB is particularly useful for solving (4) when \(F \) is nonlinear in \(x \) and/or \(x' \), since analytic methods may not be available. We shall concentrate on the relatively simple equations of the form

\[
x'' = f(x),
\]

which is free (no forcing term) and conservative (no damping). For such equations, the concept of energy is useful in showing that trajectories indeed form closed orbits. Suppose that \(F(x) \) is an antiderivative for \(f(x) \), i.e. \(F'(x) = f(x) \), and consider the expression

\[
E(t) = \frac{1}{2} x'(t)^2 - F(x(t)),
\]

for a given solution \(x(t) \) of (9). If we differentiate (10) with respect to \(t \), the chain rule gives us

\[
\frac{dE}{dt} = x' x'' - f(x)x' = x'(x'' - f(x)) = 0;
\]
in other words, the quantity E is constant. E is usually called the “energy” of the solution and so “conservation of energy” applies to (9). Of course, the value of E depends on the particular solution $x(t)$ (which depends upon the initial conditions): some solutions are more energetic than others, but each has constant energy. Moreover, if we plot the contour curves for the energy function, then we get a representation for the different solutions in the (x, x')-plane, which is called the phase plane.

Note: In Newtonian mechanics, we often encounter the equation $mx'' + f(x) = 0$ in the absence of external forces. In that case, the energy takes the form $E = \frac{1}{2}mx'(t)^2 + F(x)$, which is the sum of the “kinetic energy” and the “potential energy”.

Example 4. The Pendulum. The swinging of a pendulum is governed by the nonlinear equation

$$\theta'' + \frac{g}{L} \sin \theta = 0,$$

where θ measures the angle that pendulum arm (of length L) makes with the vertical (so $\theta = 0$ is hanging straight down) and g is the usual gravitational constant. For small angles θ, we know that $\sin \theta \approx \theta$, so (11) may be linearized to obtain $\theta'' + \frac{g}{L} \theta = 0$, which is easily solved. However, for large θ we must consider (11).

The energy for solutions of (11) is

$$E = \frac{1}{2} \theta'^2 + \frac{g}{L} (1 - \cos \theta).$$

(Notice that we use the term $\frac{g}{L} (1 - \cos \theta)$ instead of $-\frac{g}{L} \cos \theta$ because they differ by a constant, and the former actually represents the potential energy of the pendulum, which should be zero when $\theta = 0$.)

For plotting purposes, let us rewrite (12) as

$$E = \frac{1}{2} y^2 + \frac{g}{L} (1 - \cos x),$$

and use MATLAB to plot the energy curves in the (x, y)-plane. This is done by (i) specifying values for g and L, say $g = 9.8$ m/sec and $L = 4$ m, (ii) choosing data sets for x and y values, say increments of .1 between -4 and 4 for both, (iii) computing $z = \frac{1}{2} y^2 + \frac{g}{L} (1 - \cos x)$ for all these (x, y)-values, and (iv) plotting some number, say $N = 10$, of contour curves:

```matlab
>> g = 9.8; L = 4;
>> x = -4:0.1:4; y = x;
>> [X,Y] = meshgrid(x,y);
>> Z = Y.^2/2 + (g/L) * (1 - cos(X));
>> contour(X,Y,Z,10)
>> title('Energy curves for the nonlinear pendulum')
>> xlabel('x')
>> ylabel('y')
```
Energy curves for the nonlinear pendulum

Notice that the closed orbits around the origin correspond to low energy levels, i.e. normal period oscillations about \(\theta = 0 \), whereas the wavy lines above and below these correspond to high energy levels involving complete rotations of the pendulum.

Of course, to get numerical values for a solution with given initial conditions, we can run ode45 as before.

Exercise 5. Nonlinear Springs. The equation \(mx'' = -kx + \beta x^3 \), where \(k > 0 \), governs the motion of an undamped nonlinear spring: \(\beta = 0 \) is a linear spring, \(\beta < 0 \) is called a “hard spring”, and \(\beta > 0 \) is called a “soft spring”.

(a) Find an expression for the energy of a solution.
(b) For \(m = 1 = k \) and a hard spring with \(\beta = -1 \), use MATLAB to sketch the energy curves. What conclusions do you reach about the motions of the spring?
(c) For \(m = 1 = k \) and a soft spring with \(\beta = 1 \), use MATLAB to sketch the energy curves. What conclusions do you reach about the motions of the spring? How are the motions for a soft spring different from those for a hard spring?
(d) For \(m = 1 = k \) and both values \(\beta = \pm 1 \), choose some nontrivial initial conditions (values for \(x(0) \) and \(x'(0) \)), and use ode45 to compute the solution \((x(t), x'(t)) \). Plot each trajectory in the phase plane, and identify with energy curves in (b) and (c).