A) (60 points) Let \(f(x) = \frac{x^2}{(x+1)^2} \).

1) Find the intercepts.
2) Find all horizontal and vertical asymptotes.
3) Differentiate and simplify.
4) Find all points \(c \) where \(f'(c) = 0 \) or \(f'(c) \) does not exist; plot.
5) Find the second derivative of \(f \), and simplify.
6) Find all points \(c \) where \(f''(c) = 0 \) or \(f''(c) \) does not exist; plot.
7) Use the second derivative to find where \(f \) is concave up and convex down.
8) Graph \(f \).

Let \(f(x) = \frac{(x-1)}{x^2} \).

1) (10 points) Find all intercepts
2) (10 points) Find all vertical and horizontal asymptotes
3) (15 points) Differentiate and simplify
4) (10 points) Find all \(c \) where \(f'(c) = 0 \) or \(f'(c) \) does not exist
5) (10 points) Find where \(f \) is increasing, decreasing
6) (15 points) Find the second derivative and simplify
7) (5 points) Find all \(c \) where \(f''(c) = 0 \) or \(f''(c) \) does not exist
8) (10 points) Find where \(f \) is concave up, down
9) (10 points) Plot the points in 1), 4), 7)
10) (5 points) Graph the function