Let \(f(x) = \sin^2 x - \cos x \) on \([0, 2\pi]\)

a) Differentiate \(f \).

b) Simplify \(f' \).

c) Find all \(x \) with \(f'(x) = 0 \).

\[a) \quad y' = 2(\sin x)^{2-1} \cdot (\sin x)' - (\cos x)' \]
\[= 2\sin x \cos x - \sin x \]

b) \[y' = \sin x (2\cos x + 1) \]

c) \(y' = 0 \) when \(\sin x = 0 \) at \(0, \pi, 2\pi \)

When \(2\cos x + 1 = 0 \) or \(\cos x = -\frac{1}{2} \)

90°-30°

Right)

\[\frac{\pi}{2} - \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \]

\[\frac{3\pi}{2} - \frac{\pi}{6} = \frac{3\pi}{6} = \frac{4\pi}{3} \]

\[y' = 0 \] when \(x = 0, \pi, 2\pi, \frac{2\pi}{3}, \frac{4\pi}{3} \)
Let \(f(x) = \cos^2 x - \sin x \) on \([0, 2\pi]\)

a) Differentiate \(f \).

b) Simplify \(f'' \).

c) Find all \(x \) with \(f'(x) = 0 \).

\[y' = 2(\cos x)^{\frac{1}{2}}(\cos x)' - (\sin x)' \]

\[= 2 \cos x (-\sin x) - \cos x \]

\[= -\cos x \left[2 \sin x + 1 \right] \]

\[y' = 0 \text{ when } \cos x = 0 \]

\[x = \frac{\pi}{2}, \frac{3\pi}{2} \]

\[y' = 0 \text{ when } 2 \sin x + 1 = 0 \]

\[\sin x = -\frac{1}{2} \]

Vertical \(x \)-axis \(-\frac{\pi}{6}, \frac{5\pi}{6} \)

\[\frac{\pi + \frac{\pi}{6}}{6} = \frac{7\pi}{6} \]

\[2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \]

\[y' = 0 \text{ when } x = \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \]