Well be looking at indeterminate forms, which are kinds of limits, and before we do that I thought we should talk about what determinate forms are, or, for that matter, what forms are.

The limits well be looking at are mostly like

$$\lim_{x \to 0} \frac{1}{x^2} = \infty \quad \text{or} \quad \lim_{x \to \infty} e^x = \infty$$

The intuition for these is easy; \(\lim_{x \to c} f(x) = \infty \) is supposed to mean that as \(x \) and \(c \) agree to more and more decimal places, \(f(x) \) gets larger and larger.

‘when \(x \) gets close to \(c \), \(f(x) \) gets larger and larger.’ What does that actually mean? Two issues:

i) ‘\(x \) gets close to \(c \)’ refers to all \(x \) close to \(c \); you can’t take one \(x \) where \(f(x) \) is large, and then for the next one, \(f(x) \) is suddenly smaller. \(f \) needs to get large, and stay large.

ii) ‘\(f(x) \) gets larger and larger’ – when we say this, we don’t mean something like \(f \) taking on values like 1, 1, 1, 1.12, 1.123, 1.1234, We want \(f \) to be getting infinitely large! One way to measure this is with number of decimal places: we could say, ‘as \(x \) gets close to \(c \), \(f(x) \) has more and more places to the right of the decimal point. As example would be 1.1, 11.12, 111.123, 1111.1234 Tens, hundreds, thousands – \(f \) is forced to get large.

The same intuition works for \(\lim_{x \to \infty} f(x) = \infty \): as \(x \) gets large, \(f(x) \) gets large. So we get very unsurprising results like

$$\lim_{x \to \infty} x = \infty$$

What determinate forms do is try and build up from the simple limit \(\lim_{x \to \infty} x = \infty \) to more complicated limits, like \(\lim_{x \to \infty} x^3 - x^2 + 1 \), and build up here means that I want to do these more complex limits using algebra. One of the very basic limits is this:

If \(\lim_{x \to c} f(x) = \infty \) and \(\lim_{x \to c} g(x) = \infty \)

Then \(\lim_{x \to c} (f(x) + g(x)) = \infty \)

This not only makes sense – if both \(f \) and \(g \) get large, then \(f + g \) has to be even larger – but it wouldn’t be hard to prove using the ideas above.

There’s even more here, though: this is not one limit, like, say, \(\lim_{x \to \infty} x^2 = \infty \), it’s a whole collection of limits, one limit for each function \(f \) and \(g \). This is what the phrase ‘determinate form’ means, and we’re going to write it in a very algebra-looking way,

$$\infty + \infty = \infty$$

but we have to know, in the back of our minds, that this isn’t algebra in the same way \(x + y = y + x \) is algebra; instead, \(\infty + \infty = \infty \) means

If \(\lim_{x \to c} f(x) = \infty \) and \(\lim_{x \to c} g(x) = \infty \)

Then \(\lim_{x \to c} (f(x) + g(x)) = \infty \)

With that in the background, let’s list the determinate forms; in the list, \(\alpha \) means a finite constant like 2, -5, 3.145.
\[\infty + \alpha = \infty \]
\[\alpha \cdot \infty = \]
\[= \infty \text{ if } \alpha > 0 \]
\[= -\infty \text{ if } \alpha < 0 \]
\[\infty \cdot \infty = \infty \]
\[-\infty \cdot \infty = -\infty \]
\[\frac{1}{\pm \infty} = 0 \]
\[\infty^\alpha = \]
\[= \infty \text{ if } \alpha > 0 \]
\[= 0 \text{ if } \alpha < 0 \]
\[\frac{1}{0^+} = \infty \]
\[\frac{1}{0^-} = -\infty \]
\[e^\infty = \infty \]
\[e^{-\infty} = 0 \]
\[\ln(0^+) = -\infty \]
\[\ln(\infty) = \infty \]
One remark: before we actually start using these, there are the only allowed determinate forms in the class; you can’t make up extra forms by yourself. Lots of people want to; they want to write $2^\infty = \infty$ and especially $0^\infty = \infty$. These aren’t allowed; any other determinate form you want to use, you have to get from the list. Here’s how.

Let’s take, say, $e^{-\infty} = 0$, which we already know. But,

$$e^{-\infty} = \frac{1}{e^\infty} = \frac{1}{\infty} = 0$$

This is how we can use one determinate form to get another. You can also use the forms to do limit computations. Here’s a really basic example:

$$\lim_{x \to \infty} (x^2 + 3x + 2) = \infty^2 + 3 \cdot \infty + 2 = \infty + \infty + 2 = \infty + 2 = \infty$$

This is a little more complicated;

$$\lim_{x \to \infty} (x^2 - 3x + 2) = \infty^2 - 3 \cdot \infty + 2 = \infty - \infty + 2 = \infty - \infty$$

except that $\infty - \infty$ isn’t one of our determinate forms, so I have to be smarter:

$$\lim_{x \to \infty} (x^2 - 3x + 2) = \lim_{x \to \infty} x(x - 3) + 2 = \infty \cdot (\infty - 3) + 2 = \infty \cdot \infty + 2 = \infty + 2 = \infty$$

This next is a typical example:

$$\lim_{x \to \infty} \frac{x^2 - 3x + 2}{x^2 + 3x + 2} = \frac{\infty}{\infty}$$

and again, this isn’t a determinate form, so, again, we use algebra to re-write this into determinate forms. In the case of a quotient of polynomials, you can divide numerator and denominator by the highest power you find in the polynomial, in this example, x^2:

$$\lim_{x \to \infty} \frac{x^2 - 3x + 2}{x^2 + 3x + 2} = \lim_{x \to \infty} x^2 - 3x + 2 \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \left(\frac{1 - \frac{3}{x} + \frac{2}{x^2}}{1 + \frac{3}{x} + \frac{2}{x^2}} \right) = \frac{1 - \frac{3}{\infty} + \frac{2}{\infty^2}}{1 + \frac{3}{\infty} + \frac{2}{\infty^2}}$$

$$= \frac{1 - 3 \cdot 0 + 2 \cdot 0}{1 - 3 \cdot 0 + 2 \cdot 0} = \frac{1}{1} = 1$$

Finally, something a little different; I like to give this on exams because it surprises people.

$$\lim_{x \to 0^+} \frac{\ln(x)}{x} = \frac{-\infty}{0^+}$$

Well, that’s not one of my determinate forms, but a tiny bit of algebra can rewrite it:

$$\lim_{x \to 0^+} \frac{\ln(x)}{x} = \lim_{x \to 0^+} (\ln(x)) \left(\frac{1}{x} \right) = (-\infty) \left(\frac{1}{0^+} \right) = (-\infty)(\infty) = -\infty$$