YAPS: Yet Another Problem Set \(u \)-Substitution

The following are questions/issues to help you to organize your thoughts. The answers are to be found by looking at the work we did in class.

Section: \(u \)-Substitution

1) One chain rule is power-chain; an example would be \([(\sin x)^2]' = 2(\sin x)(\sin x)' \).
 a) Give examples of integrals that use a \(u \)-sub power-chain type of chain rule.
 b) What in these example tell you that a power-chain \(u \)-substitution is the right thing to do?
 c) How would you describe, in words, what \(u \) to choose?

2) The general chain rule shows how to differentiate any composition. An example would be \(\sin(x^2)' = \cos(x^2)(x^2)' \).
 a) Give examples of integrals that use the general \(u \)-sub type of chain rule.
 b) Repeat as in 1)

3) If you’re using a \(u \)-sub in a definite integral, you have to change the limits of integration.
 a) Give an example of doing this.
 b) In the integral \(\int_0^1 \frac{x}{\sqrt{1-x}} \, dx \), the \(u \)-sub changes the limits to \(\int_1^0 \). How do you change them back to the 'right' order (smaller number as the bottom limit of integration)?
 c) The problem in 3b above is an example of a 'left behind' integral. How do you treat these?

Section: Other Integration

1) We’ve lightly covered inverse trig integral.
 a) How would you treat an integral like \(\int \frac{1}{2+x^2} \, dx \)?
 b) If you got a definite integral, you might have to compute quantities like \(\tan^{-1}(1) \) or \(\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \). How would you go about doing those computations?

2) We discussed 'cancellation and re-inforcement'.
 a) How do you treat even and odd functions when you have a definite integral?
 b) Which of these are integrals where you could use even/odd ideas? \(\int_{-1}^{2} x^2 + x^3 \, dx \);
 \(\int_{-1}^{1} x\sqrt{1-x} \, dx \)?

3) What does it mean that "sums in numerators split"? Give an example.