## FOURIER TRANSFORMS

## Change of Basis

Let's start with 'why'. The cheap answer is 'to get a different perspective; to see things that couldn't be seen otherwise'.

Or, we could just do an example. Eigenvalues and eigenvectors were made for this. Let's look at the matrix $T=\left(\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right)$. Since we'll be changing bases, we ought to specify that the matrix is taken with respect to the standard basis of $\mathbf{R}^{2}, \mathbf{s}_{\mathbf{1}}=\binom{1}{0} ; \mathbf{s}_{\mathbf{2}}=\binom{0}{1}$.Then, as always, the first column of $T$ is $T \mathbf{s}_{\mathbf{1}}$, and the second is $T \mathbf{s}_{\mathbf{2}}$.

Problem Show that $T$ has eigenvalues $\lambda_{1}=6 ; \lambda_{2}=4$, and that the corresponding eigenvectors may be taken to be

$$
\mathbf{b}_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} ; \mathbf{b}_{2}=\frac{1}{\sqrt{2}}\binom{-1}{1}
$$

Note that the two are orthonormal. Of course the change-of-basis map from the $\mathbf{s}$ to the $\mathbf{b}$ basis is

$$
C_{\mathbf{s b}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Prove that the inverse of $C_{\mathbf{s b}}$, that is, $C_{\mathbf{b s}}$, is given by

$$
C_{\mathrm{bs}}=C_{\mathrm{sb}}^{-1}=C_{\mathbf{s b}}^{*}
$$

where we use the ${ }^{*}$ to denote complex-conjugate and transpose. Now, show that the matrix $T$, in the $\mathbf{b}$ basis, is $C_{\mathbf{b s}} T C_{\mathbf{s b}}=\left(\begin{array}{cc}6 & 0 \\ 0 & 4\end{array}\right)$, which is what we'd expect.

In this 'perspective', the matrix $T$ just stretches the basis differently in the two orthogonal directions. Compare the picture below, showing the action of $T$ on the standard basis.


Homework Problem As we'll be changing bases rather a lot in this course, let's prove some basic results. Let $V$ be a finite-dimensional inner product space. Given any pair of orthonormal bases $\mathbf{b}$, $\mathbf{s}$ for $V$, show that $C_{\mathbf{b s}}=C_{\mathbf{s b}}^{-1}=C_{\mathbf{s b}}^{*}$. Moreover, show that the change of bases maps are unitary, that is, that for any pair of vectors $x y \in V$,

$$
\left(C_{\mathbf{b s}} x, C_{\mathbf{b s}} y\right)=(x, y)
$$

That is, unitary transformations preserve inner products. As angles and lengths are defined in terms of inner products . . .

If $V=\mathbf{R}^{n}$ with the usual inner product, show that if $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in the $\mathbf{s}$ basis, but $x=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in the $\mathbf{b}$ basis, then

$$
\sum\left|x_{j}\right|^{2}=\sum\left|w_{j}\right|^{2}
$$

