
Lecture 3

Introduction to Applications

The CWT is an excellet tool, giving time-frequency information on all scales. It gives a lot of information; for 
example,  let's load the eeg file and do a CWT: 

>> load eeg
>> y2=eeg(2,:);
>> ecwt=cwt(y2, [1:1:512], ‘gaus1’);
imagesc([1:1024],[1:512],abs(ecwt)), colormap(jet)

Notice the high-power surge between levels 60-120, at time 400-500. If that surge is all we care about, we’ve 
too much information. This allows us to focus:
> plot(ecwt(100, :))

The CWT over-computes in situations like these, where all we want, say, is to detect power at one scale.

Similarly, with the CWT we have immense freedom of choice. A Gaussian can detect function size, the first 
derivative can detect slope; the second can detect discontinuities in slope, etc. Again, very powerful. But if we 
have only one well-defined problem to solve, that’s more than we need. 



Here’s the kind of thing we have in mind. The Armed Forces would like to monitor the health of their troops 
on the ground, in real-time. Part of the reason is the “golden hour” effect, a short period of time during which 
treated injuries can save a life. We’d like to know as soon as a soldier (military terminology is “warfighter”) is 
injured. 

To accomplish this, the military envisages an iPod-like device worn by the warfighter, which monitors health 
information and sends that information to central command. Because the heart participates in so many bodily 
activities, it makes sense to monitor the heart rate. 

The technical problem is that detecting a heartbeat under combat conditions is difficult. The heart pumps blood 
when the muscles in it contract. Much like a car with timing issues, if the muscles do not contract in the correct 
sequence, the system will not work. For hearts, this is called fibrillation;  it can lead to death in minutes.

Unfortunately for us, the heart evolved rather than being designed, which means it regulates muscular firing by 
the spread of one electrical signal throughout the muscle. A blockage in parts of the muscle can affect the spread 
of the firing signal, causing irregularities. 

The picture on the next page shows a schematized heart, and the electrical peaks caused by signals as they pass 
through the various regions of the heart. The larger muscles cause larger peaks. As the main pumping is accom-
plished by the contraction of the ventricles, these contribute the greatest peak. 

The entire complex of peaks, corresponding to one beat, is called the PQRST wave. However, if you are mea-
suring heart electrical activity on the surface of the body (the electrocardiogram, EKG), the easiest signal to 
detect is the R peak, when the ventricles contract. This is the fiducal point for most measurement of heartbeat, 
though the real beat is the entire PQRST complex. The time between R waves is called the RR interval, and 
1/RR is a measure of the number of beats/min of the heart, called the heart rate. Immediately below, a typical 
EKG taken from a person lying down, resting, in a hospital. This is the optimal kind of EKG recording, and the 
R-waves are clearly defined, as indeed are the P and T waves. 
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Below, in contrast, are the EKG’s of subject who are not resting; both of them are undergoing some kind of ex-
ercise. The exercise requires muscular contractions, which again leads to electrical signals on the surface of the 
body, which again shows up as peaks in the EKG. 

Hospital Quality ECG

“Real” EKG
Subject KK0320 doing abs exercises

  

Healthy subject doing taebo: raw EKG

Above, 40hz lowpass filter

Top, wavelet-filtered S4D3

s4d3 meets Taebo

Abscercize

Taebo

These are the kind of real heart signals that our warPod would have to scan for beats. How can it possibly pick 
out the EKG beat from the muscle noise? Or even, for that matter, the P-wave from the R-wave? 

The short answer is, wavelets. Here’s the original consultant’s work for the warPod group. We’ll give a quick 
summary.  The critical property of wavelets is that they can resolve signals in time and frequency, simultane-
ously. So, the first question is, what frequencies do the P, Q, R, S and T waves contain? 

A clean QRS wave
sampled at 20,000 hz

Very nice QRST wave, sampled at 20,000Hz for high resolution

http://www.ma.utexas.edu/users/davis/reu/ch3/wavelets/analysis.pdf


 To compute frequencies, start with the QRS-complex. Pre-
tend it’s a sine wave. It lasts 1400 points; at 20,000 points 
per second that’s .07 seconds for a full cycle, or 14.3 cycles 
per second. So, the QRS complex contributes a frequency of 
about 14Hz. 

Here’s the T-wave. Obviously there’s a good deal of energy 
there. It takes 2877 points for a half-cycle, giving a 3.47 Hz 
contribution.

And here’s the official Matlab spectrum. There are two main peaks -- at 4.84hz and 14.67 hz. Not bad. 



What we need, then, is a wavelet that can separate out a 4Hz from a 14Hz signal, as well as from myographic 
(muscular)  noise. Unfortunately, the muscle noise can be of pretty much any frequency; filtering by frequency 
alone won’t help. Fortunately, the firing of a single muscle, or even a complex of muscles, is nothing like as 
complicated as the firing of the PQRST complex: 

That’s where the time part of time-frequency resolution comes in. We take a wavelet that looks more like a QRS 
wave than like a muscle contraction. Then filtering the EKG with the wavelet computes how similar the EKG 
is to the QRS complex. In parts generated by muscle or noise, the lack of similarity will make the filtered signal 
small. So, here it is: the Daubechies s4d3 wavelet: 

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
s4d2

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
s4d4

0 5 10 15 20 25
-0.5

0

0.5

1
s4d3

Looks a bit like a QRS complex; how’s the frequency response? 

Figure Nine: Pass and stop bands of S4L2 and P, QRS, T waves.Ah, excellent! It surpresses the P and T waves, while emphasizing the QRS complex. Just what we need for 
filtering out noise and picking out the R-wave. 
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Above signal, wavelet-filtered with s4d3. 
Thick bars indicate automatic detection of 

R-wave. 



Once the EKG is filtered, we apply standard  R-wave peak detectors to it. In the case of the abs exercises, the 
detection without wavelet filtering had a 75% error rate. With wavelet filtering, the error rate was zero. To com-
pute error rates over a collection of exercises, one typically measures false positives, FP, and False Negatives, 
FN. The accuracy of the detection method is measured by two ratios: 

Fig 9.   Sensitivity and predictability results for the s4d3 filter applied to six exercise files. 

s4D3 TP # FP # FN SE SP

abdadd 791.00 0.00 1.00 99.87 100.00

abs 993.00 6.00 4.00 99.60 99.40

ellip 2342.00 4.00 1.00 99.96 99.83

gauntlet 778.00 0.00 1.00 99.87 100.00

stair 3402.00 0.00 1.00 99.97 100.00

taebo 7146.00 44.00 32.00 99.55 99.39

IV  R-Wave Detection

     The software we employ for R-wave detection is a modifica-
tion of the technique developed by Pan and Tompkins [15], and 
involves a three-stage process. The EKG signal is initially filtered 
with a Daubechies s4d3 filter, which supresses the P and T-waves 
and reduces electromyographic noise. The filtered signal is 
then passed though a sharpening proceedure, which emphazises 
peaks; finally, an adaptive peak detector is used. The Pan-Tomp-
kins peak detector requires initialization of basic parameters for 
each file; here the intended application requires a self-starting 
and restarting proceedure, which we implement using an adaptive 
autocorrelation technique. 
     The performance of R-wave detection techniques is evaluated 
not through percentage of peaks detected, but rather by two indi-
ces: sensitivity and predictability. These indices take into account 
not only the number of true peaks (TP) correctly identified, but 
also the number of spurious peaks produced (false positives: FP) 
as well as the number of peaks which were missed (false nega-
tives, FN). These are computed as proportions: 

     The results are shown in Figure 9; we applied the s4d3 detec-
tion scheme outlined above to six exercise files, ranging from 
upper body to abdominal exercises, to lower body, and to mixed 
exercise files. It is not surprising that the best results are for lower 
body exercises; muscle noise in this case was well away from the 
EKG leads. It is also not surprising that the worst performance 
was on taebo exercises. .....
     What is surprising is that the sensitivity and specificity in all 
cases exceeded 99%. This is comparable to or better than best 
performance of other techniques on clinical databases, where 
typically much less noise is present. 
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I Introduction

     In recent years, medical, industrial and military institutions have 
shown interest in developing small, lightweight, reliable devices to 
continuously monitor Heart Rate Variability (HRV) of individuals 
during sleep,  work, exercise, or under stress. Such devices, which 
ideally would be no larger than a modern digital music player, 
would provide life-saving information to hospital staff, to military 
commanders in the field, or to individuals at risk for heart or …

Such a device would require the accurate identification of some 
fiducal point in the EKG; for the purpose of this paper that point is 
the R-wave peak, representing a ventricular beat. The EKG’s to be 
analyzed would be corrupted by motion artifacts, emf interference, 
and, typically, a strong electromyographic signal. The identification 
would have to be carried out in real time, using modern low-power 
microprocessors. To meet these requirements, we have developed 
R-wave detection software based on a novel application of wavelets. 

     There is an extensive literature on the use of wavelets for R-
wave identification; as noted in [1], many of the techniques are 
able to attain over 99% accuracy on standard databases.  Figure 
1, reproduced from [2], illustrates a portion of the EKG from 
AHA Tape 1209. The authors in [2] report an accuracy of 88.4% 
in recognizing R-peaks from this recording. However, many 
of these methods have been developed for analyzing clinical 
recordings, often made from resting subjects. The EKG signals 
we consider are taken from healthy young male and female 
volunteers, undergoing standard suites of exercises: abdominals, 
elliptical trainers, gauntlet, spin, stair, and taebo. Figure 2 shows 
a portion of the EKG of a healthy young female, Holter recorded 
at 180hz, while the subject undertook strenuous abdominal 
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Fig 1.   A segment of AHA Tape 1209. Dotted lines: cardiologist markings of R-
onset; asterisk, identification of R-peak. After Kadamebe et. al., [2].

exercises. The R-peaks are contaminated with noise of amplitude 
comparable to the strength of the R-wave itself and the methods 
presented in this paper achieve an accuracy of 99.6% on this 
record (this being the  worst performance in the suite of exercises 
tested). We  believe this represents a significant improvement 
in the accuracy of peak identification for records of this type.

II Review of Wavelets

     Wavelets are often used to provide a “multi-resolution 
analysis’, that is, to decompose a signal into “averages”, that 
is, low frequency components, and “details”, higher frequency 
components. This is an iterative process, which can be computed 
as efficiently as an FFT.  Our approach does not require this 
formalism; we only need to resolve a signal until its QRS-wave 
is identified. We employ wavelets as simple linear filters, which 
can then be understood in the traditional language of digital filter 
design: convolution,  FIR filters, phase and frequency response. 
Their application requires no sophisticated algorithms beyond 
convolution, and, in contrast to the multi-resolution approach, we 
do not decimate after applying the filter. This approach follows 
the ‘maximal overlap discrete wavelet transform’ discussed in [3]. 

    The wavelets considered here were constructed by Daubechies 
[4]. They are non-symmetric real FIR filters, with specified 
bandpass properties, optimized for phase response closest to linear, 
typically referred to as the “least asymmetric” compactly supported 
wavelets. They are indexed by two integers, L and j, where L is the 
length of the basic level filter, and j indexes successive levels of 
detail; that is, the bandpass frequency octave of the filter. L must 
be at least 4, and j at least one. The filter s(L)d(j) has length:
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Fig 2.   A segment of EKG from a  healthy young female undertaking strenuous 
abdominal exercises. 


