Lecture 3
Introduction to Applications

The CWT is an excellet tool, giving time-frequency information on all scales. It gives a lot of information; for
example, let's load the eeg file and do a CWT:

>> |oad eeg

>> y2=eeqg(2,:);

>> ecwt=cwt(y2, [1:1:512], ‘gaus?’);
imagesc([1:1024],[1:512],abs(ecwt)), colormap(jet)
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Notice the high-power surge between levels 60-120, at time 400-500. If that surge is all we care about, we’ve
too much information. This allows us to focus:
> plot(ecwt(100, :))
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The CWT over-computes in situations like these, where all we want, say, is to detect power at one scale.

Similarly, with the CWT we have immense freedom of choice. A Gaussian can detect function size, the first
derivative can detect slope; the second can detect discontinuities in slope, etc. Again, very powerful. But if we
have only one well-defined problem to solve, that’s more than we need.



Here’s the kind of thing we have in mind. The Armed Forces would like to monitor the health of their troops
on the ground, in real-time. Part of the reason is the “golden hour” effect, a short period of time during which
treated injuries can save a life. We’d like to know as soon as a soldier (military terminology is “warfighter”) is
injured.

To accomplish this, the military envisages an iPod-like device worn by the warfighter, which monitors health
information and sends that information to central command. Because the heart participates in so many bodily
activities, it makes sense to monitor the heart rate.

The technical problem is that detecting a heartbeat under combat conditions is difficult. The heart pumps blood
when the muscles in it contract. Much like a car with timing issues, if the muscles do not contract in the correct
sequence, the system will not work. For hearts, this is called fibrillation; it can lead to death in minutes.

Unfortunately for us, the heart evolved rather than being designed, which means it regulates muscular firing by
the spread of one electrical signal throughout the muscle. A blockage in parts of the muscle can affect the spread
of the firing signal, causing irregularities.

The picture on the next page shows a schematized heart, and the electrical peaks caused by signals as they pass
through the various regions of the heart. The larger muscles cause larger peaks. As the main pumping is accom-
plished by the contraction of the ventricles, these contribute the greatest peak.

The entire complex of peaks, corresponding to one beat, is called the PQRST wave. However, if you are mea-
suring heart electrical activity on the surface of the body (the electrocardiogram, EKG), the easiest signal to
detect is the R peak, when the ventricles contract. This is the fiducal point for most measurement of heartbeat,
though the real beat is the entire PQRST complex. The time between R waves is called the RR interval, and
1/RR is a measure of the number of beats/min of the heart, called the heart rate. Immediately below, a typical
EKG taken from a person lying down, resting, in a hospital. This is the optimal kind of EKG recording, and the
R-waves are clearly defined, as indeed are the P and T waves.
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Below, in contrast, are the EKG’s of subject who are not resting; both of them are undergoing some kind of ex-
ercise. The exercise requires muscular contractions, which again leads to electrical signals on the surface of the
body, which again shows up as peaks in the EKG.

Abscercize

Taebo

These are the kind of real heart signals that our warPod would have to scan for beats. How can it possibly pick
out the EKG beat from the muscle noise? Or even, for that matter, the P-wave from the R-wave?

The short answer is, wavelets. the original consultant’s work for the warPod group. We’ll give a quick
summary. The critical property of wavelets is that they can resolve signals in time and frequency, simultane-
ously. So, the first question is, what frequencies do the P, Q, R, S and T waves contain?
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Very nice QRST wave, sampled at 20,000Hz for high resolution


http://www.ma.utexas.edu/users/davis/reu/ch3/wavelets/analysis.pdf

il

I\
— To compute frequencies, start with the QRS-complex. Pre-
/ \ tend it’s a sine wave. It lasts 1400 points; at 20,000 points
/ \ per second that’s .07 seconds for a full cycle, or 14.3 cycles
P per second. So, the QRS complex contributes a frequency of
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Here’s the T-wave. Obviously there’s a good deal of energy
there. It takes 2877 points for a half-cycle, giving a 3.47 Hz
contribution.
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And here’s the official Matlab spectrum. There are two main peaks -- at 4.84hz and 14.67 hz. Not bad.
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What we need, then, is a wavelet that can separate out a 4Hz from a 14Hz signal, as well as from myographic
(muscular) noise. Unfortunately, the muscle noise can be of pretty much any frequency; filtering by frequency
alone won’t help. Fortunately, the firing of a single muscle, or even a complex of muscles, is nothing like as
complicated as the firing of the PQRST complex:
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That’s where the time part of time-frequency resolution comes in. We take a wavelet that looks more like a QRS
wave than like a muscle contraction. Then filtering the EKG with the wavelet computes how similar the EKG

is to the QRS complex. In parts generated by muscle or noise, the lack of similarity will make the filtered signal
small. So, here it is: the Daubechies s4d3 wavelet:

s4d3
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Looks a bit like a QRS complex; how’s the frequency response?
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Ah, excellent! It surpresses the P and T waves, while emphasizing the QRS complex. Just what we need for
filtering out noise and picking out the R-wave.
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Healthy subject doing taebo: raw EKG
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Above signal, wavelet-filtered with s4d3

Healthy subject doing abs exercises: raw

Above signal, wavelet-filtered with s4d3.
Thick bars indicate automatic detection of
R-wave.



Once the EKG is filtered, we apply standard R-wave peak detectors to it. In the case of the abs exercises, the
detection without wavelet filtering had a 75% error rate. With wavelet filtering, the error rate was zero. To com-
pute error rates over a collection of exercises, one typically measures false positives, FP, and False Negatives,
FN. The accuracy of the detection method is measured by two ratios:

The performance of R-wave detection techniques is evaluated
not through percentage of peaks detected, but rather by two indi-
ces: sensitivity and predictability. These indices take into account
not only the number of true peaks (TP) correctly identified, but
also the number of spurious peaks produced (false positives: FP)
as well as the number of peaks which were missed (false nega-
tives, FN). These are computed as proportions:

g _ TP g TP
¢ TP+ FN’ P TP+ FP

The results are shown in Figure 9; we applied the s4d3 detec-
tion scheme outlined above to six exercise files, ranging from
upper body to abdominal exercises, to lower body, and to mixed
exercise files. It is not surprising that the best results are for lower
body exercises; muscle noise in this case was well away from the
EKG leads. It is also not surprising that the worst performance
was on taebo exercises. .....

What is surprising is that the sensitivity and specificity in all
cases exceeded 99%. This is comparable to or better than best
performance of other techniques on clinical databases, where
typically much less noise is present.

s4D3 TP # FP # FN SE SP
abdadd 791.00 0.00 1.00 99.87 100.00
abs 993.00 6.00 4.00 99.60 99.40
ellip 2342.00 4.00 1.00 99.96 99.83
gauntlet 778.00 0.00 1.00 99.87 100.00
stair 3402.00 0.00 1.00 99.97 100.00
taebo 7146.00 44.00 32.00 99.55 99.39
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