The following questions are to serve as a review. The material on the exam will extend beyond the scope of this review.

1. (8 points) Find the limit of the sequence \(a_n = \sqrt{16n^2 + 3n + 5} - 4n \).

 (A) 0 (B) \(\frac{3}{8} \) (C) \(\frac{1}{4} \) (D) \(\frac{2}{7} \) (E) \(\frac{2}{5} \) (F) \(\frac{1}{3} \)

2. (8 points) Find \(\sum_{n=2}^{\infty} \frac{1 + 3^n}{4^n} \).

 (A) 0 (B) \(\frac{10}{3} \) (C) \(\frac{7}{3} \) (D) \(\frac{9}{4} \) (E) 3 (F) 4 (G) None of these
3. (8 points) The graph of the function \(y = \frac{2 \tan^{-1}(x)}{2x + 1} \) is shown below.

Which of the following applies to the series \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2 \tan^{-1}(n)}{2n + 1} \)?

(A) Absolutely Conv. (B) Conditional Conv. (C) Divergent (D) None of the above

4. (8 points) Consider the following series: \(\sum_{n=3}^{\infty} \frac{\sqrt{n^8 + n^5 + n}}{n^4 + 5n + 1} \). Which is true?

(A) The series is convergent (B) The series is divergent (C) Cannot be determined

5. (8 points) Consider the three series:

A) \(\sum_{n=3}^{\infty} \frac{5}{n \ln n} \)

B) \(\sum_{n=3}^{\infty} \frac{5}{n \ln^2 n} \)

C) \(\sum_{n=3}^{\infty} \frac{n}{\ln^3 (n)} \)

Which series converges?

(A) None (B) A only (C) B only (D) C only (E) A and B (F) A and C (G) B and C A, B, and C
6. (8 point) Use the degree 2 Taylor Polynomial of \(f(x) = x^{4/3} \) centered at \(x = 1 \) to approximate the value of \(2^{4/3} \).

(A) \(\frac{19}{10} \) (B) \(\frac{25}{9} \) (C) \(\frac{8}{3} \) (D) \(\frac{23}{9} \) (E) \(\frac{22}{9} \) (F) \(\frac{17}{10} \) (G) None of These

7. Consider the series \(\sum_{n=0}^{\infty} \frac{(n+1)!}{(n^2)!}. \)

(A) The series converges (B) The series diverges

8. Find the interval of convergence of \(\sum_{n=1}^{\infty} \frac{n}{2n(n^2 + 1)} x^n. \)

(A) \([-2, 2]\) (B) \((-2, 2]\) (C) \([-2, 2)\) (D) \((-2, 2)\)

(E) \([-1/2, 1/2]\) (F) \((-1/2, 1/2]\) (G) \([-1/2, 1/2)\) (H) \((-1/2, 1/2)\)
9. (8 points) Find a power series representation of $f(x) = \frac{1}{(2 - x)^2}$

\[
\begin{align*}
(A) & \sum_{n=1}^{\infty} \frac{n}{2^{n+1}} x^{n-1} \\
(B) & \sum_{n=1}^{\infty} \frac{1}{2^{2n+1}} x^{2n-2} \\
(C) & \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n+1}} x^{2n-2} \\
(D) & \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n+1}} x^{2n+2} \\
(E) & \sum_{n=1}^{\infty} \frac{(-1)^n n + 1}{2^{n+2}} x^n \\
(F) & \left(\sum_{n=1}^{\infty} \frac{1}{2^{n+1}} x^n \right)^2 \\
(G) & \left(\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{n+1}} x^n \right)^2 \\
(H) & \sum_{n=1}^{\infty} \frac{n + 1}{2^{n+2}} x^n
\end{align*}
\]

10. (8 points) Consider the three statements:

A) The series $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges by the n^{th} term test.

B) The series $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges by the Limit Comparison Test and geometric series test, where $b_n = \frac{1}{2^{n-1}}$.

C) The series $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges by the Basic Comparison Test and geometric series test, where $b_n = \frac{1}{2^{n-1}}$.

Which statement(s) is(are) true?

(A) None (B) A only (C) B only (D) C only (E) A and B
(F) A and C (G) B and C (H) A, B, and C
11. (6 points) Find the radius of convergence of \(\sum_{n=0}^{\infty} \frac{3^n}{5^{2n}} x^n \).

12. (6 points) Find the coefficient of \(x^8 \) in the Taylor Series expansion of \(\cos(x^2) \).

13. (6 points) The first degree Taylor polynomial of \(f(x) = \sqrt{x} \) centered at \(x = 4 \) is \(T_1(x) = 2 + \frac{1}{4}(x-4) \). What estimate does Taylor’s Inequality give for \(|R_2(x)| = |T_2(x) - f(x)| \) for \(3 \leq x \leq 5 \)?

14. (6 points) Consider the sequence \(a_n = \frac{(-1)^n + 7n}{3n + 2} \). We can show it converges to \(\frac{7}{3} \) by finding sequence \(b_n \) and \(c_n \) such that \(b_n \leq a_n \leq c_n \) and using the squeeze theorems. Find \(b_n \) and \(c_n \).
Multiple Choice Answer Page.

1) __________

2) __________

3) __________

4) __________

5) __________

6) __________

7) __________

8) __________

9) __________

10) __________

Short Answers:

11) ____________________

12) ____________________

13) ____________________

14) $b_n =$ __________ $c_n =$ __________