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Abstract 

We consider a boundary value problem for the generalized two-dimensional flow equation Acp = 

Vcp . h' for h' a C" vector field, where the speed is prescribed on a part of the boundary. By using 
Bers theory combined with elliptic operator theory in nonsmooth domains, we show existence and 
uniqueness of a C2," solution with nonvanishing gradient, and we find positive lower and upper bounds 
for lVpl along with C2*n estimates of cp, in terms of the Cu and Lm norms of h'. 0 1995 John Wiley & 
Sons, Inc. 

1. Introduction 

When studying compressible potential flow, the following equation arises nat- 

Given a strictly positive C'," density p in a flow region 0, find the flow potential 
urally: 

function p with nonvanishing gradient that satisfies the equation 

div(pVp) = 0 

with boundary conditions given by V p  . n = 0, n the outer unit normal to the 
boundary, along the lateral walls, p constant at the inflow boundary, and the speed 
I Vp I prescribed on the remaining boundary section. 

We are able to solve uniquely this problem in two dimensions by using the 
Bers theory for the flow equation. 

In fact, for our application in compressible hydrodynamics (see [6]),  we need 
to consider a general C", 0 < (Y < 1, vector field i, instead of Vtnp, and we 
must obtain existence of a unique C2*" solution cp with positive lower bound for 
the speed lVpl, along with a C2," estimate for p that has linear growth in the C" 
norm of h. 

Let R be a domain in two dimensions with a C2va boundary except for four 
points called wi, i = 1,. . . ,4. 

Let diR be the C2*" component of dR and let R satisfy the condition that diR n 
di+lR meet at points wi forming a 7r/2 angle. Thus R is a "smooth rectangular" 
domain. See Figure 1. 
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a, I? 

Figure 1. Domain b t  and boundary conditions on 'p. 

We consider the following elliptic problem: given h' = (hl , hz) a Ca(S?) function, 
O < a < l ,  

f Ap = V p - i  in R 

Here n denotes the exterior normal to d n  and g(x) is a C1."(&R) strictly positive 
function. 

We show the following theorem. 

THEOREM 1. There exists a unique solution p E C2,u(fi) of the boundary value 
problem (1.1) with nonvanishing gradient. In addition, the solution p satisfies 

where K depends on C? and on the Cl@-norm of g; and the following estimates 
hold, 

where k and K depend on R and g(x), H depends on the upper bound for I h'l . K 
depends on the diameter of R and on the upper bound for I Vp I. 

- - 
0 < ke-KH 5 IVpl 5 KeKH, and - K S 'p 5 K on S? , 
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Moreovel; d l R  is an injow boundary since 

We show in the Appendix that fi can be uniquely conformally transformed 
into a fixed rectangle R such that the four boundary sections d;R, i = 1,4 are 
transformed into the sides of R, in the same order. 

Thus, we prove Theorem 1 using the two-dimensional complex representation 
of solutions of the equation Acp = Vcp . h (Bers-Nirenberg representation), and the 
following key lemma in the transformed domain R: 

4 

LEMMA 1.2. There exists a unique weak solution b in CIqa(R) for the probtem 

div (Vb - f (x, b)) = 0 in R 

b, = f (x, b) . n in rl 
(1.3) { b = O  i n r  . 

where n denotes the outer normal to dR, and, the function f (x, b)  = (f 1, f 2)(x, b) 
is bounded, Ca(R) in x and Lipschitz as function of b. 

The domain R is a rectangle where dR = r U rl with I ' l  one side of R and 
f (x, 0). n = 0 in d2R U d4R, where d2R and d4R are the sides of R adjacent to rl 
(compatibility condition for regularity up to the boundary). See Figure 2. 

~- 

Note: b is a C1ga(R) weak solution if 

(1.4) J V p ( V b  - f (x, b)) = o for all cp E H ; ( R ~  \ r) , 
R 

where H;(R2 \r) is the closure of C;(R2 \r). That means the boundary condition 
on is a natural boundary condition for weak solutions in the sense (1.4). 

In addition, ifwe denote ) I f  JJc-,x,~ the Ca(R)-norm o f f  with respect to thejrst 
variable and 1 )  f IILip,b denotes the Lipschitz norm off with respect to the second 
variable, the following estimates hold: 

(1.5) 

and 

where C depends on R. 
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Figure 2. Domain F and boundary conditions on h. 

Section 3 deals with the proof of Lemma 1.2. 

Remark 1. The nature of estimate (1.2) is due to the boundary conditions from 
(1.1) and (1.3). Otherwise, the right-hand side of (1.2) might not have linear growth 
in Ilhllc~cs2,. 

Remark 2. In case speed is prescribed all over the boundary for the boundary 
value problem (1. l), even for h = 0, uniqueness is lost for some special geometries 
as shown by G. E. Backus in [2]. 

- 

2. Proof of Theorem 1 

The proof of this theorem makes use of three lemmas. The first one (see 
Appendix) is a simple proof, included for completeness of our arguments, of the 
existence of a unique conformal transformation of the domain 0 under considera- 
tion into a rectangle R with one fixed given side. This transformation is as regular 
as the given regularity for each portion &R of the boundary dR. 

Next, after showing that the equation (1.1) conserves the same form in the new 
variables, Lemma 2.1 will show how to solve the new equation in a rectangular 
domain with prescribed data as in (1.1). There, we shall see that the solution has 
a representation (Bers-Nirenberg representation), whose two components solve 
a linear homogeneous elliptic problem and a nonlinear elliptic boundary value 
problem, (1.4), respectively, (Lemma 1.2). 

Thus, we reconstruct the solution 9 by taking the inverse conformal trans- 
formation of the solution given by the Bers-Nirenberg representation (see [4]), 
which is constructed uniquely by solving the equations for their components in 
the rectangle with the corresponding boundary data. 

From now on we use the complex representation of the flow equation. Fol- 
lowing Bers (see [3]), we set 

(2.1) w = 29, = cpx - icp, , 
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and obtain the “complex flow equation” 

with 

Thus, Lemma 3 of [3] states that if w is a solution of (2.2142.3) in a simply 
connected domain, then we have a solution ’p of (1.1) with the form 

(2.4) 

We first show that equation (2.2) preserves its form under any conformal trans- 
formation. Indeed, let z’ = F(z)  be a conformal transformation from R into R’, 
where w = ‘px - icp, is the complex velocity in R(z). In R’(z’) let 

(2.5) 
dz dZ dz u = ‘Pz’ = cp - + ‘p-- = ‘p - 
dz’ dz’ ‘dz’ ’ 

A short computation yields from (2.2) 

d.7 dz 
dZ’ dz‘ 

u., - (pw + p #)-- = 

= p,u + p-u 

z -  

d.7 - d z  - 
dZ dz‘ 

or 

defined in 0’. with 

In particular, if F is the conformal transformation (see Appendix) that takes R 
into 52’ = R, the corresponding rectangle, we solve equations (2.6), (2.7) in R so 
that, using (2.5), the function w = u z  = uF, solves (2.1) and the solution ’p is 
then given by (2.4). The boundary data from (1.1) is equivalent to 3u = 0 on 
d l R  U &R U d4R and IuI = Iw( 1 -$I = g(x)lFzI = g(0,y) > 0 in d3R. 
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_ _ -  
In addition, the condition V y .  nl;j,ft < 0 yields that -~ w > 0 on BIG! n 820. 

Since F, I m n m  > 0 (see Appendix), then u > 0 on d l R  fl d2R. This condition 
will be sufficient to see that dlG! is an inflow boundary. 

Therefore, we want to prove the following lemma. 

LEMMA 2.1. Let p‘ be a Ca(R) function. The boundary value problem 

(2.8) uy = P’U + pi4 
on a rectangle R = [Cl,C2] X [0,1] with boundary data 

has a unique nonvanishing solution that takes the form 

where 32s(z) and 34.4 are C1,a(R)functions and f ( z )  is analytic in R, nonvanishing 
in R and satisJies the same boundary data as u. 

In addition, the following estimates hold: 

where K depends on R, and, 11 f IlclqR) and inf If I depend on C1,a-norm and the 
lower bound for g respectively. 

Proof: We first reduce the problem for u to a problem for a = 32s and b = 3s. 
The solution u of equation (2.8) admits a representation; see Bers and Nirenberg 
representation in [41, Chapter 11, Section 6. 

(2.1 1) ufz) = f(z)es(z) . 

Here, f is an analytic function satisfying 

f r  = 0 in R , along with 

f > O  on d l R n & R ,  and 
3 f  = 0  on aR\dsR, 

(2.12) - -  

If I = g(x)  on B3R . 
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so that 

(2.13) 
L 

with the boundary conditions 

(2.14) 3s = O  on dR\d3R and Rs = O  on d 3 R .  

We shall show that the boundary value problem (2.12) has a unique nonvan- 
ishing solution. Moreover, the boundary value problem (2.13H2.14) has a unique 
solution as well. 

In order to show uniqueness of a nonvanishing u solution of the boundary value 
problem (2.8)-(2.9), let ii be another nonvanishing solution of the same problem 
and set J = en($) ,  with f the unique nonvanishing solution of problem (2.12). 

Since u and ii have the same data on dR, then it is easy to see that 3 S  = 0 on 
dR \ d3R and RZ = 0 on d3R. Differentiating S with respect to Z it is easy to see 
that S solves equation (2.13) since f i  = 0. Indeed, 

Therefore, by the uniqueness of problem (2.13H2.14), S = s. Then, by the 
representation (2.1 l), ii(z) = f ( z )  es(z) = u(z) on R. Thus, the uniqueness of non- 
vanishing solutions follows. 

We first solve problem (2.12). We set en f ( z )  = en 1 f (z)l + i arg f (z). Thus, if 

Thus, we set h = en f(z) and solve 
l f ( z ) l  # 0, then f,- = 0 if and only if (en f ) ?  = 0. 

h Z = O ,  3 h = O  on aR\dsR, 
Rh = trig' on d 3 R .  (2.15) 

Problem (2.15) is solved using standard methods. Indeed, take the Cauchy- 
Riemann equations and solve the corresponding harmonic equation for Rh, with 

= 0 on dR\d3R, and find 3h as the conjugate harmonic function. In particular, 
A3h = 0, 3h = 0 on dR\d3R and (gh),, = -% on d3R, where is C"(d3R) and 

Is'l S C, C depending on the lower and upper bounds of g'(0, y )  and g''(0, y). 8 
Both, Rh and 3 h  are C"(R) functions. 
We use reflection techniques in order to obtain the C'." regularity up to the 

boundary of R. 
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Reflect the obtained harmonic function 3ih (which satisfies = 0 on dlR U 
&R U d4R and 33h = en g on d3R) evenly across dR2 and dqR to a larger reflected 
rectangular domain R whose sides >> d;R for i = 1,3. Let & be the 
reflected function of 33h. Also, let G be the even reflection of trig across the 
endpoints of &R defined on &R. 

Then 3ih is a harmonic function in R that satisfies 3 = 0 on &R U 1 3 2 R  U &R 
and % = G on &R. 

In addition, %z is Cm((8) U C'.@(R U T )  where T is any regular portion of the 
boundary of R. Then 3ih = %l,q is in C"(R) U C1.a(R).  

Therefore, since the harmonic conjugate of 33h inherits its regularity, 3 h  is 
C"(R) U C1qa(R) and the following estimates hold 

N 

( ( s h  + 3hlIclq~) 5 Cllgllcl~y~) , 

where C depends on R. 
Moreover, by the Hopf maximum principle, 

suplng L sup33h L sup3ih 2 inf 33h h inf 'Xh I inf l n g  
i13R i)R R R i lR il3R 

Thus h is analytic in R with its real part bounded by a constant that depends 
only on the bounds for trig on d3R. 

In particular, we obtain f (z) = exp(h(z)) has its absolute value bounded below 
away from zero by a positive constant that depends on the lower bound of g ( y )  in 
d3R. In addition, the solution of (2.12) satisfies 

where C depends on R, k = inf g and K = supg, respectively. 

the corresponding equations and boundary conditions. 
Next, we solve (2.13H2.14). For this problem we set s = u + ib, and we write 

We recall 

I  I  (2.17) sz = z(s, + isv) = T{(ux - by) + i(b, + uy)}  . 
Hence, equations (2.17) and (2.13) yield the following equations 

(2.18) 

On the other hand, the right-hand side of equation (2.13) can be written as 

f ---(p'f + p',e-2'h) = If I - 2 ( f R  - i f , ) ( ( A  + iB) + (A - iB)(cos2b - is in2b) ,  
I f ?  
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where A + iB = p'f, and f = f ,  + i f R ,  then the terms PI and p2 from (2.18) can 
be written as 

pl(x,b) = 2 / f  1-2[fRA(1 + C O S ~ ~ )  

+ f / B (  1 - cos 2b) - ( f RB + f /A) sin 2b] 

+ f RB( 1 - cos 2b) - (f RA + f I B )  sin 261 . 
(2.19) 

p*(x,b) = 21fl-2[-f/A(1 + c o s ~ ~ )  

Clearly, 

3 

(2.20) pi(x, b) = C Aik (dt i ,  (b) > i = 192 
k = l  

where Ai, (x) are real C" functions in R and t i k  (b) bounded and Lipschitz. 

for b(x) alone, namely 
Since pi does not depend on a = %s(z), system (2.19) yields an elliptic equation 

(2.21) Ab=P2x-Ply .  

The boundary conditions for b are obtained from (2.14) and the relationship 

Since 3 s  = u = 0 on d3R, then uy = 0 on d3R, and by (2.19), b, = p2(x,b) on 

Also, 3s = b = 0 on dR \ d3R. In particular, since f is real at d3R U dqR and 

(2.19). 

d3R. 

at d3R U d;?R, we have the compatibility condition 

(2.22) p2(x,0)=o if x ~ d 3 R n a , R  or X E & R U & X .  

Therefore, we must show that there exists a unique solution of (2.21), along with 
the data 

(2.23) { i,==0p2((C2,y),b) on d3R 

In the next section, we prove Lemma 1.2 which ensures the existence of a 
unique weak solution b(x) in the class C'%?) of the nonlinear boundary value 
problem (2.21H2.23) that satisfies the estimates 

~~ 

- _ _  

on dR\d3R 

and 

where C depends on R. 
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Once we have the unique function b(x) = 3s(z), then using equation (2.20) we 
find a unique a(x) = %s(z) by integrating the field 

(2.26) VUW = (by + PI(X, b), -6, + P~(x ,  6)) 

where a(x) = 0 on 83R. In particular, Au = div p(x ,  b) with a,, = 0 on &R U &R. 
a, = p(x ,O)  .n on &R, and a = 0 on &R. 

Therefore, a similar result to lemma 3.1 yields that a(x) is a C'vU(R) function, 
and by (2.24) and (2.25), satisfies the estimates 

and 

(2.28) l b I l P ( R )  5 CllPll0c.R 9 

where C depends on R. 
We may now finish the proof of Lemma 2.1, 

End of Proof of Lemma (2.1): Let the complex function s(z) = a + ib be 
given, with a and b real C'sQ(R) functions which are the unique solutions of the 
boundary value problem (2.191, (2.21 ), and (2.23). 

Then s(z) solves the boundary value problem (2.13H2.14) uniquely. Therefore, 
by (2.1 I), (2.17). and (2.13), u = f(z)e"+"' solves the boundary value problem (2.81, 
(2.9) in the rectangle R uniquely. 

Moreover, using estimates (2.24), (2.2% (2.271, and (2.28), along with the form 
of p given by (2.20), yields the estimates 

where C depends only on R. Hence, (2.10) holds. 
Thus, the proof of Lemma 2.1 is now completed. 

Proof of Theorem 1: Let F be the conformal transformation and R the re- 
sulting rectangle given in the Appendix; then F:R - R is the unique conformal 
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transformation of the domain 52 onto R = [Cl, C2]X[O, 11. Recalling w the complex 
velocity representation in 52, we have by (2.1), (2.2), and (2.3) that 

(2.30) 

Now, by (2.3, (2.6), and (2.71, 

wz = P(z)w + g(z)* , w = cpx - icp, and 
P(z) = (hl + ih2)k) . 

(2.3 1) 
d F  
d z  

w = U -  = uF, 

where u is the unique solution of the flow equation in the rectangle F(52) = R of 
the boundary value problem given by Lemma 3.1, where 

Hence, by Lemma 2.1, 

w = f(z)es(,) . F ,  , I f(z)l + o . 
Since F is an analytic function in 0, which is C”(@ (due to the special ge- 

ometrical properties of 52) and F,  # 0 in 52 and IF,I is uniformly bounded away 
from zero. See lemma in the Appendix. 

Then %w and 3w are C1va(fi) and by (2.10) the following estimates hold, 

Ilwllcu(s2) WIf Ilc-(n)(inf If1)-2ecllB’fllm.n ( 1  + IIP’Ilco,nllfllco,n), and 

(2.32) Ilwllci.a(n) 5 Cllfllciq=t) (inf I f l ) -  2 ,cllP’fll,.n 

. ( 1+ (IIP’Ilc~(n,IIP’II”.h + IlS’llL,n) llfIlL,n) ( 1  + IIP’IIM,s2llfllM,n) 9 

and the estimate for the absolute value of w 

(2.33) 

The constant C and IF, I depend only on 52, the inf I f I is positive and depends 
on g(x) on &R, and sup and inf of %dz) = a(x) are bounded and, by (2.261, are 
bounded from above and below by the upper and lower bounds of I f (z)l from 
(2.16), from IF;’I, and from h’ = (hl ,hz)  the given coefficients of equation (1.1). 
Estimate (2.33) thus ensures that Vcp is positive throughout fi. 

Furthermore, by estimate (2.161, the right-hand sides of (2.32) can be estimated 

O<Cinf{I f l  IFzleinf’RS‘E)} 5 IwI SCsup{ l f l  ~F,~eSUPRS(Z)}. 

by 

(2.34) ~ll f l l~i . .(n) (inf ecllB’Ilm.fi 

Cll f Ilcy(fi) (inf If I)-* ecllb’Ilmf~ (1  + CllP’Ilmjj) , and 

. (1  + cllP’Ilc~(n)IIP’IIm,n + CllP’IlL,JJ ( 1  + CllP’IlM,Si) I 
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where C depends on ~ ~ g ~ ~ c ~ . ~ r ( i j 3 ~ ~ ~  and on l F z J ~ x r  i.e., C depends on the data g(x) 
and on the domain R. 

Finally, by (2.4), we take 

(2.35) 

then cp is a real function that solves the boundary value problem ( 1 . 1 )  and, since 
w has real and imaginary parts in the class of C'va(fi) functions, then 'p E C2@(n) 
and by estimates (2.32) and (2.34) 

where C depends on the C'."-norm of g(x) and on the domain R, so that estimates 
in (1.2) hoid. 

In addition, by (2.33) 

(2.37) 0 < kepC,"pHC,,+ < IVcpl < KeC'"pHCSup 

where H is the upper bound of I h 1, C\up and Clnf bounds depending on g(x) and 
R, and k, K depends only on R. We stress once more that Clnf > 0, because of 
the assumption inf g(x) > 0 on 830; see estimate 2.16. 

Furthermore, since the given data 'p = 0 on d lR then V'p . T = 0 along 
810. Since IVpl never vanishes in fi then Vcp cannot change sign in 810. Thus, 
Vcp . n I ~ , d w ~ )  < 0, implies V'p . n < 0 on 810. Therefore 'p increases along 
the paths orthogonal to the level surfaces that start at the boundary 810, and, in 
particular, 

- 
(2.38) 0 5 cp 5 K near d lR 

In general, 
- I 

(2.39) - K S ' p S K  in n, 
where K ,  both in (2.38) and (2.39), depends on the diameter of R and on the upper 
bound of lVpl. 

Now the proof of Theorem 1 is complete. 

In the last section, we prove our "key lemma" (1.2) to solve the boundary value 
problem (2.21), (2.23). 
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3. Proof of Lemma 1.2 

Without loss of generality, we assume that rl is contained in the axis x = 0 
and that its lower end is the origin. 

(a) Existence 

We first show the existence of a weak solution to the boundary value problem 
( I  .3) by constructing a precompact continuous map T from an appropriate Banach 
space 28 into itself. Then we use the Leray-Shauder fixed-point theorem (see 
Gilbarg-Trudinger, [7], Chapter 1 l), where 28 is C"(R). 

Thus, we let v E C"(R) such that v = 0 on r. 
We define the map T by letting b = T v  be the unique weak solution in C'*"(R) 

of the linear boundary value problem 

By weak solution we mean that 

(3.l.w) J vcp. Vb = J v'p . f ( x ,  v )  for all 'p E H A ( I W ~  \ r) . 
R R 

Remark. Note that 

LEMMA 3.1. The problem (3.1) has a unique weak solution b in C'@(R) in the 
sense of (1.4) or (3.1 .w) satisfying the following estimates: 

where C depends only on R. 

Proof The proof of this lemma is an application of existence and regularity 
theorems for elliptic equations in general smooth domain. Although our domain is 
a rectangle, the nature of the boundary data permits reflecting the boundary appro- 
priately such that we deal with a Dirichlet boundary value transmission problem, 
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and so keeps the interior regularity up to the boundary. Methods discussed by 
Grisvard in [8] would also be adequate to obtained the same regularity. 

Let R be the rectangle given by the union of R, its reflection with respect to 
rl, and rl; and define 0 on R as the even reflection of v with respect to rl. 

We consider the following boundary value problem 

(3.4.1) 
A6 = div f(x, 0(x)) in R 

6 = 0  on 8R.  

where f(x, 8(x)) is the extension of f (x, v(x)) to R given by 

where x *  E R is the reflection of x E R \ R with respect to rl, that is, f I is 
reflected oddly and f 2  is reflected evenly with respect to l-1, respectively. 

Now, since v E C"(R) and i j  is the even reflection of v with respect to rl, then 
3 E Ca(R), so that f is Lipchitz in 8. However, since f l  does not vanish on - rl, 
then f is discontinuous across TI but f remains bounded and measurable in k.  

The existence of an HA solution of problem (3.4) follows from standard results. 
In fact, a weak solution of problem (3.4.1) must satisfy 

Since f E L"(I?), then 

e(9)  = 

R 

I is a continuous linear form in Ho satisfying I le( 'p)l lH;,(R) ~5 Cll'pllH;, ~ ~ f ~ ~ m , ~  where 
C depends on the domain. 

By the Riesz representation theorem, there exists a unique solution 6 in HA of 
problem (3.4.1) that satisfies 

Next, the solution 6 can be reflected oddly across all boundary sections aRi, 
and it defines a b that solves a similar problem for the enlarged domain 9 in the 
space H,!,(g) with a right-hand side f .  Now this right-hand side f is measurable 
and bounded in 9 and C" on each side of 9 up to, but not across, TI and 8lR, 
the extension to 9 of rl and d l R ,  respectively. See Figure 3. 
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Recalling Agmon-Douglis-Nirenberg (see [l]) interior regularity results for el- 
liptic problems, it follows that the solution b of problem (3.4.1) in the domain W 
for the subdomain R CC B satisfies the following estimate 

(3.6) IlblI,I.P(~) 5 CllfllLP(@) 5 CllfllLxcR) 1 

where C depends only on R, since the definition of f only involves even or odd 
reflections of the components o f f .  

Since 6 = blR, the Embedding Theorem yields 6 E Ca($ along with the 
estimate 

(3.7) 

where C depends only on R. 
Next, we show first that 6 is an even function in R and later that any even, 

and hence any solution of the problem (3.4.1H3.4.2) yields a weak solution b of 
problem (3.1) in the sense (3.1.~).  

Due to the uniqueness of the boundary value problem (3.4.1)-(3.4.2), it is 
enough to show that 6(x*), where x* is the reflection of x with respect to rl, is 
also a solution. Consequently, 6(x*) = &XI, i.e., 6 is an even function. 

Note that if rl C {x = 01, then x* = (x,y)* = (-x,y). Thus A, = A,. and 
V,. . = -8, + 8, as differential operators, hence 

A&(X * ) = A,* 6(x * ) 

and, by definition o f f ,  

v, . f(x, ij(x)) = v, * f(x, ij(x*)) = v,* * f (x*,  ij(X*)) * 

Therefore if 6 is the solution of (3.4.1H3.4.2) then 

A , * ~ ( x * )  = V,* - f ( ~ * , c ( ~ * ) ) ,  
so that 

A,~(x*(x))  = V, .f(x, O(X)) . 
In particular, since &x*) = 0 on 8R, then 6(x*) = &x), so that 6 is an even 
function in R. 

Now, let 'p be a test function in H,!,(R2 \ r). Let 9 be the even reflection of cp 
to R, then $ E Hh(R), and, for the solution 6 of problem (3.4) 

O =  V @ ( V ? , - f ) d x  J 17 
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since &, b,, and 

the boundary value problem (3.1). In addition, by definition of J', 

are odd functions and &, by, and J'2 are even ones. 
Hence (3.l.w) holds for b = b l ~ ,  making this b the unique weak solution of 

llJ'll,,j = Il f l lm,R * 

Then by estimate (3.7) 

where C depends only on R, so that estimate (3.2) holds. 
In order to obtain the C'." regularity and estimate (3.3), note that J'1,q E C"(R) 

and J' I B\R E Ca(R \ R) ($ is not C" across rl) and, by the boundary conditions 
given on problem (3.11, f l  = 0 on &R U &k. 

The C1*" estimate for b in R is obtained first for b by differentiating C2," 
solutions of elliptic diffraction problems defined in 92 where TI is the diffrac- 
tion boundary and the given right-hand sides are C" on each side of TI;  see 
Ladyienskaja and Ural'ceva, [9]. 

In fact, if B = ( B I , B ~ )  solves uniquely AS; = fi(x) in 9, Bi = 0 on XZ, with 
fi E C a ( B I )  n Cn(9&), and TI  = 

By [l], each B; E W2,P(9?'l) for 1 < p < 00, and, in particular, in C1,"(9') for 
0 < a < 1, for any regular subdomain 9 of 92. 

Hence, [Bi] = 0 = [(Bi),] on TI .  This implies that B; is the unique solution of 
the elliptic diffraction problem defined above. By 191, each Bi is C2.n(A,), k = 1,2, 
where Ak = (9' n L B ~ )  u s for s any part of TI satisfying rl cc s cc TI. 

Moreover, the following estimate holds 

~ 

n .!3& for i = 1,2. 

where C depends only on R. 

i', 

Figure 3. The reflected domain 9. 



AN EXISTENCE AND UNIQUENESS RESULT 685 

Therefore, since h = div Bi - b solves Ah = 0 in 9' with h = div Bi on ZB', 
then h is harmonic in 9'. Hence, h is C" in the interior of 9, so that b is as 
good as div Bi, and estimating b in R C 9' 

Therefore. 

where 

where C depends on R. Therefore (3.2) holds. The proof of Lemma (3.1) is now 
complete. 

In order to complete the proof of the existence part of Lemma 1.2, we make 
use of the Leray-Schauder fixed-point theorem; see [7], Chapter 11 .  

Let the map T(v) = b be given by the solution of problem (3.1) which can be 
estimated by (3.2) and (3.3). 

Indeed, estimate (3.3) provides the needed a priori estimate to show the operator 
T from the Banah space B = Ca(R) into itself is bounded. Moreover, T(C"(R)) C 
C'."(R) is compactly embbeded in Ca(R), then T is a compact operator, and, for 
any b in LB = C'@(R) such that b = oTb, for some 0 < u < 1, from (3.3) we 
obtain the a priori estimate 

(3.1 1) I I ~ I I ~ ~ , ~ ( R )  5 0~ { I I ~ I I ~ ~ , ~ , R I I ~ I I ~ , R  + IIfIILip.bIIfIIm,R} 5 M 

where C is independent of b and 0, and so M is independent of c7 and b. 
Finally, since f is bounded and Lipschitz in v, then the map T is Lipschitz 

continuous. Indeed, T(vl) - T(v2) = bl - b2 satisfies the equation A(bl - b2) = 
div (A(x)(vl - v2)), with A(x) = g ( x ,  (hvl + (1 - X)V~)(X)).  Since A(x) E C"(R) 
using estimates (3.9) and (3.10) for this equation the following estimates hold: 

llbi - b2IIcl,=(~) S C [IIAIIcwIIvI - Y I I ~ , R  + IIAIIm,RIIvl - V ~ I I C Y R ) ]  
S CIIAllc~~R~llv~ - v z l l c ~  . 

Thus, T is a continuous map. 
Therefore T has a fixed point b which is the solution of the boundary value 

problem (1.3), and, by the estimate (3.11), (1.5) holds. Similarly from (3.2), (1.6) 
holds. 
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(b) Uniqueness of the Solution of Problem (1.3) 

THEOREM 3.2. Let bl and b2 be two solutions in Wl-p(R),  p > 2, of the bound- 
ary value problem (1.3), then bl = b2 on R. 

Proof 

Let w = bl - b2 on R. Then w satisfies 

We prove uniqueness in the reflected domain for the corresponding 
Dirichlet boundary value problem in a similar way as we worked out Lemma 3.1. 

Aw = div (f(x, bl )  - f(x, b2)) = div (A(x)w) 

where 

(3.12) fb(X,tbi + (1 - t ) b 2 ) d t .  
0 

Since f is Lipschitz in b and C" in x in R, then A(x) is Lm(R). 

Lw = Aw - div(A(x)w) = 0 on R 
(3.13) { w = o  on r . 

W, = A ~ ( x ) w  on rl 
Now if R defined as above is the rectangle that contains R, its reflection with 

respect to rl and rl, then, taking 61 and 6 2  the even reflection of bl and b2 
respectively with respect to TI. Their difference 3 is an even function that solves 

Then, w is a C1*a(i?) solution of linear elliptic operator in divergence form 

(3.14) 
L 3  = A 3  - div (&)3) = 0 in R 

W = O  on aR 

where 
if ~ E R  

A(x) = { :-l(x*),A2(x*)) if x E R \ R  

and x* E R is the reflection of x E R \ R  with respect to rl. 
In particular, for any test function cp E H A ( @  

(3.15) / Vcp(VL3 - A(x)L3) = 0 . 
R 

We prove that the boundary value problem (3.14) has a unique solution 3 = 0. 

for any given bounded function in 
(3.8) 3 = 61 - 6 2  is Ca(& 

In fact, it is enough to see that the adjoint operator to L is solvable in HA(& 
as a right-hand side. Indeed, by estimate 
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We solve for J, in HA@) the adjoint problem 

L*J ,  = AJ, + &)VJ, = 3 in R 
C L = O  on dR'  

(3.16) 

Since J, E H: is an admissible test function, it satisfies (3.15). Then 

0 = VJ,(V3 - &)3) = - (A$ + A(x)VJ,)~ J J R 
(3.17) 

R 

so that 
o =  J 3 2 .  

R 

In particular, 3 = o in R. 
The existence and uniqueness of problem (3.16) in i? can be found in a recent 

paper by Berestycki, - Nirenberg, and Varadhan; see [5 ] .  They show that for given 
3 bounded in R, there exists a unique solution J, of the boundary value problem 
(3.16), where J, is W2,P near all smooth boundary points and continuous at comer 
points. Moreover, it is easy to see from their proof that Vll, E L2& In particular, 
J, E HA@) so that (3.17) holds, and consequently, 3 = 0. 

Appendix 

LEMMA (THE CONFORMAL, TRANSFORMATION). There exist two constants CI 
and C2, and a unique conformal transformation F(z): R - R, with R = [Cl, C2] x 
[0,1], such that F(d;R) = d;R with dR = U djK, each diK a side of K ;  where R 
is the domain characterized in the previous section. 

4 

i= I 

Proof: It is essential for the regularity of the conformal map that 

4 

i= I 
80 = u diR 

where each djR is a (piecewise) C2.0-curve that meets the preceding one at the 
point w; making a angle; that is, if yi- I and yi are the parametrizations of 8;- 1 R 
and d j Q  respectively, then ~ ; - I ~ ( w ; )  I Yjr(wi), where the subindex T denotes 
tangential derivative. 
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Under these conditions, the proof is given by the classical result of conformal 
mapping that corresponds to an incompressible transformation. Take t2(3 the 
real harmonic function that solves 

e 2  is a C2,a(b) harmonic function as the boundary condition is compatible on the 
points wi, i = 1,. . . ,4 because of the assumption of orthogonality on dR at wi. 

Moreover, by the Hopf maximum principle, 0 < t2 < 1 in R and '2, > 0 on 
0 4 0  u 820. 

Now, let be the conjugate harmonic function obtained by integrating the 
orthogonal field to the level curves of t 2 ,  that is, el 

where y ( t )  is a path joining ( x o , y ~ )  to ( x , y )  with (xg,yo) a fixed point in dR. 
Then CI E C2,a(b) satisfies % = 0 on d l R  U d3R, then e, = CI = tl(~o,yo) if 
(xo, yo) E dl R and t 2  = C2 where C2 is fixed by the path integral and by CI . 

= 0, tZqy > 0 on d4R U d2R and 
Vt?,, . n = 0 on d l R  U 830, then, by Hopf maximum principle, infrl .!zY 2 
inf,#tk'2, > 0. Thus, F ( z )  = ti + i t 2  is analytic and d F / d z  = tix + t 2 y  + 
i(el, - th) = 2(&, - it2,) has positive real part. Then F(z) is one to one. Hence, 
F(z )  is a conformal transformation that satisfies F ( b )  = [ C , ,  C2] X [0,1]. 

Moreover, the function t2,y satisfies 
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