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104 Simulation of semiconductor device

1. INTRODUCTION

A model [1,5.6,7,10] for the transient behavior of a semiconductor device
occupying a region o= R" consists of three quasilinear partial differential
equations, one formally of elliptic type for the electric potential and two
formally of parabolic type arising from the conservation of electron and hole
concentrations, along with relevant initial and boundary data. The equation for
the potential ¢y is the Maxwell equation,

Veq = -V+(&VW) = o , (1.a)
relating the total space charge o to the divergence of the electric field

a = -EV0 . (1.b)

The function p is given by

o = Q(e-p-c) , ()

where Q is the electric charge, to be assumed constant in this paper, e and p
are, respectively, the electron and hole concentrations or densities, and ¢ I
the total electric active net impurity concentration (i.e. the doping).

The electric field q and the carrier densities are related through the

current densities Je and Jp, which are given by
. q 3.3
Jo = Qu,eq + QD Ve (3.a)
- Qu.pd - QDU (3.b)
Jp Quppq Q pVP

where u, and Up are the electron and hole mobilities and D  and Dpcorresponding
diffusion coefficients. Conservation of electrons and holes then gives the

equations
de/at - v-J, = Re,p) . (4.a)
ap/ot + V+J_ = R(e,p) (4.b)

P

where R(e,p) is the recombination rate.

Frrimpri-yoi— p g a nlplyarwrars, ey LA = k-
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In this paper we shall consider €, g, Hp, De, and Dp to be  constants.
We shall also assume that the diffusion coefficients are related to the
mobilities through the Einstein relations

D¢ = UT”S , S=eorp , ~ (5)

where UT is the thermal voltage.

It is helpful to normalize the equations (1) and (4) into dimensionless
form. Let [6,7,10]

The characteristic length L = diam(Q) is about 5x 107" cm, the intrinsic density
n; is about 10¥ cem™, and 7 is about 107° sec. If the equations are first

written in terms of the barred quantities and then the bar dropped, the

equations take the form

Veq = ~AY = z{e-p-c) |, | (6.a3)
se/at - D q-ve - D se - zDee(e-p-c) = R{e,p) , (6.b)
op/ot + D E'Vp - Dp&p + szp(e—p-c) = R(e,p) , | (6.c)

P
where z is a constant.

Note that (6.b) and (6.c) depend explicitly on the field g, but not on
the potential Y. This suggests the selection of a numerical method for (6.a)
that gives a direct approximation of q, such as a mixed finite element method.
The equations for e and p, while formally parabolic, are in fact dominated by
the convection terms, and it is well known that standard finite difference or
Galerkin methods are not effective choices for such equations. Systems having
quite analogous properties occur in the simulation of miscible displacement
techniques in petroleum reservoirs, and our choice of a numerical method for

(6) will be based on research by Douglas, Ewing, Russell, and Wheeler on that
problem.

A mixed finite element method will be employed to approximate q and v,
while a Galerkin form of a modified method of characteristics will be used to
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approximate e and p. See Douglas and Russell [3] for a discussion of the
modified method of characteristics procedure and Douglas (2], Ewing, Russell,
and Wheeler {41, and Russell [8] for treatments of the miscible displacement

problem by the combination of these techniques.

In this paper we shall confine ourselves to the single space variable
probiem and to Dirichlet boundary conditions. Let § =-[0,1], and let

Wl0,t) = re(t), v(1,t) = ry(t) , (7.2)

e(0,t) = F,(t), e(1,t) = f (), (7.b)

p(0,t) = g (t), p(1,t) =g (), (7.c)
and

e(x,0) = e'(t), plx,0) = p"(t) (7.d)

In Sectijon 2 we define a modified method of characteristics procedure for
e and p. In Section 3 a mixed finite element method is introduced for a and
¥, and certain estimates relating the errors in q and ¥ to those in e and P
will be derived. In Section 4 L* estimates will be carried out for the errors
in the electron and hole densities, along with the completion of the analysis

of the approximation of the field.

Singularities in the solution of the differential equations that arise in

two or three space variables as a result of the shape of the domalin or the
changing of form of the boundary conditions from Dirichlet to Neumann are
avoided in the single space variable case. Clearly, this reduction in

dimension leads to a limitation to the generality of the practicality of the
analysis of the numerical method, but the primary purpose of the paper 1s to
introduce the method in a relatively simple situation and to justify 1t there.
Higher dimensional work will be reported elsewhere.

Throughout this paper the solution of (8)-(7) will be assumed smooth, so
that optimal order accuracy is possible. The precise regularity needed will

be clear from the convergence arguments,
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2. AMODIFIED METHOD OF CHARACTERISTICS
APPROXIMATION FOR THE ELECTRON AND HOLE DENSITIES

The modified method of characteristics procedure [3,8] has as its basic
idea the interpretation of the first order parts of 6.b) and (6.c)as directional

derivatives. Various spatial and time discretizations can be applied to the

resulting equations; we shall discretize in space by a Galerkin method and in
time by backward differencing.

Let T = T(x,t) be the unit vector in the direction (-Dgq,1) and 1, the
unit vector in the direction (qu,1). Set ¢ = [1+Da3q2]1/2 for a = e or p.
Then the characteristic derivatives in the T directions are given by

6ed/3T, = 8/t - D g 3/3x , (8.a)

¢DB/BTD

3/9t + qu 3/ 3% (8.b)

so that (6) can be written in the form

3q/9X = =-3°yY/ax* = z{e-p-c) , (9.a)
bode/31, - Deaze/ax2 - zDee(enp-c) = R{e,p) , (9.b)
¢pap/arp Dpa n/ox? + szp(e p-¢) = R(e,p) , (8.c)

for x e 2 = [0,1] and t € J = {0,T]. The weak forms of {9.b) and (9.c) that
we employ 1n our Galerkin scheme are given by testing the equations against
Hﬁl(ﬂ). Thus, we begin from

(¢o08/87,,5) + (D 3e/3x,8z/0x) - (2D e(e-p-c),z) = (R,z) , (10.a)

(¢pap/an,c) + (Dpap/ax,ac/ax) + (szp(e-p-CJ,c) = ERVEF (10.b)

for ¢ ¢ Hgl(ﬂ).

Partition J into subintervals [tm"1,tm],tm== mat, At=T/N. Partition @
into subintervals [x4_1,X3], O=Xg<xy <. <xp = 1, with max(x;=xj_1) = h g
Let Pj(E) indicate the class of restrictions of polynomials of degree not
greater tham j to the set E. Then, let
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Z, = {z e Co{q): ¢

6 P.([x. ,,%x.1)} . 11
[X;_qsX;] s E R (1)

We shall seek approximations ehm and phm in Zh
p", m=0,...,N. We shall denote the approximations to qP and ™ by qhrn and

whm; they will Tie in different spaces, to be discussed in the next section.

Consider the approximation of ¢eae/are, which we make by backward
differencing along the tangent to the Te=Characteristic at (x,tM). Follow this
tangent back in time until it intersects (ax{t™1}) U (aax[t™!.tM]) at a point
(Eem(X),tm-Etem(x)), so that

Smo S My .
Xo = X, (x) = x+-Deq(x,t )&tem(x) . (12.a)

#l-

-x/Deq(x,tm), if x4-Deq(x,tm)&t<:O "

at M- Ete‘“(x) =¢(1-x)/D,q(x,t™), if x+ D q(x,t™at>1 (12.b)

At , otherwise .
Then,
(¢g38/57,) (x,t") (12.c)

* pe (6t ) [elx,t") - elx," 5t - at ) I/L(x - x M) + (Eﬁcem)zjly2

- e

m m . m m L. M
[e{x,t )--e(xe JE "&te )]/zite

il

Note that, if Etem < At, then (;em,tm-ﬁtem) lies on 30 and e(iem,tm-&tem)
is evaluated using the boundary value specification.

Similarly, let

-m o myv, M
xp = X qu(x,t )&tp , (13.a)

to e = e(~,tm) and
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x/qu(x,_tm), if X - DDq(x,tm)&.t<U ,

at.™ =¢{x-1)/D.q(x,t™), if x-D_q(x,tMat>1 , (13.b)
p T p D
| At , Otherwise
(¢ 3p/37. ) (x,t™) = [p(x,t™) - p(x ™, t"~ at_")3/at " . (13.¢)
P P P p p
Since the function q(x,tm) will have to be approximated, we cannot
evaluate iem and Epm. So, let iem, Ztem, ipm, and Etpm be defined by the

corresponding relations when q(x,t™) is replaced by qhm“i(x); note that the
time Tevel has been moved back to a level at which qp, will already have been

computed.

Let eh” and ph“ 1ie in Z, and approximate e(x,0) and p{(x,0), respectively.
Then, for m2z 1, let Ehm"1(x) = eh(iem(x),tm-ﬁtem) and Ehm'1(x) =
P (X M(x),t"- &t M), and Tet

(Te,™- & " '1/8t.",0) + (D oe,"/0x,35/5x) (14.a)

-(zf:l\‘:_tehm("e‘fhm"1 ™ oML = (™), ze Z, 3

m ~m=15,2,. m m
([P - Py 3/8t7,2) + (D3, /6%, 88/3x) (14.b)

+(2Dpphm(ghm-1 - Ehm-1 - Cm):C) = (ﬁm“1ag): C € Zh 3

where ﬁm'1 = R(Ehm"1,5hm”1). The boundary values (7) must be imposed on e
and P, On of2; this affects both the values of ehm and phm on 3Q and those of

Ehm-1 and Ehm"1 at the points for which x ™ or X ™ 1ies on 3Q.

e p
For later conveniencé, let
m P i1 m-1,._m
¢e,h o8 /BTe’h = 3e /at-Deqh g /38X
m m m=1.._m
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3. A MIXED METHOD APPROXIMATION OF THE POTENTIAL

Mixed finite element methods are known to be very effective techniques for

approximating the vector fields associated with the scalar solutions

of

elliptic problems. We shall use a rather simple technique here to approximate

q and ¢ simultaneously. Write (9.a) in the form

Then, (14) can be used to advance e and Ph to time level tm+1.

q+y =0 |, X6, ted, (15.a)
q' = z(e-p-c) , X680 ,ted, (15.b)
W=r , X € 30, ted . (15.¢)

Then, if (15.c) is tested against a function in H(Q) and (15.b) against one in
L“{q), we find the mixed weak form

(q,v) - (v',yp) = -rvlz , v & Hi{q) , (16.a)

(g',w) = (z(e-p-c),w) , w e L2(0) . (16.b)

Let @ be partitioned into subintervals [y1*1,yi], D::yﬂ<:y1<:...<:yL = Ly
with max(yi-yi_1)==hq. Let

Vo= v 8 C°(R):v] 6 PL(Ly;_ 15y 101 (17.a)

(Y 4sY.] i ‘
1-1°71
= {w:wl[ ] 6 Po(Ly;_1sy:0)7 . (17.b)
{974
Then for m=0,...,N, find {qh,wh} 6 Vo X Wy such that
m o.My om m
(q V) = (v ") = rm v(0)-r T v(1), vy, (18.a)
! M M My .°

((g,")" ;W) = (z (e, -p, -C )W), wel . (18.b)

Let us note that our computational algorithm is now complete. First, ehﬂ
and phG can be taken either as e° and p? or as their piecewise - 1inear
interpolant. Then, given {ehm,phm}, (18) can be used to evaluate {qhm,whm} :
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The error in the approximation of g and ¢ can be considered to come  from
two sources. Let {th,whm} e V, x W satisfy

Q") - (v ™ = r" v(0) - v(1), eV (19.a)

((Ghm)‘,w) = (2o "o ™M Lw), We W, (19.b)

i.e., {th,whm} is the mixed method approximation for the exact right hand side.
Then,

m My | _ m Wy m_m
((g, - Q) 'sw) = (zl{ey"-e") - (p,"-p )1.wW), welM . (20)
Three estimates are useful. First, 1f w = (qhm-th)‘, then we see that

{ (qhm_th).” s z[] em_ehm“D + | Dm-thHDJ : (21)

0

Next, let max {(qhm-th)‘} = t(qhm-th)'([yi_1,y1]). Then, choose
w::sgn(qhm-{%jﬂ‘ on [yi_1,yi] and equal to zero elsewhere. Then, 1t follows
easily that

T ™M1 (22)

provided that the partition {yi} is quasi-regular:
m1n(y1-yi_1) > const. hq . (23)

Finally, if (18.a) and (19.a) are differenced and the test function v is taken
to be identically one, it follows that the mean value of qhm-th is zero, SO
that (21) implies that

o -0, szrli e -l + 1" - p T (24)

> 0 )

Now, consider qm-th. Let T : Hi(Q) =+ v, denote piecewise-Tinear

interpolation; i.e., (qn-th) (yi) =0, i=0,...,L. Note that

((g-mq)',w) =0, wel (25)
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and recall that If we'combine (24) and (32) and then (22) and (33), we find that

2
la-Tall | oosMlall, o h (26) | A T Y FA R I (34.a)
Since m 2
+M|| q “ 2300 hq ’
(M q,v) - (v',Py) = ---W]1 + (.g-g,v), veV (27.a)
n h h L ’ 5 | ; o

n h | [RCEETROT I e § LR S A (34.b)

((mq)’,w) = (z[e-p-cl,w) , We W (27.b)

m

h .
+MHq”2:m q

it follows that (with the time level t" understood)

An error estimate for ¢-wh can be derived in terms of e- e and P- P, in

tike manner; since it will not enter into the consideration of the errors in

Qp - Tasv) = (v', % - Py) = (g-Tha,v) , veV , (28.a)
| the electron and hole densities, we shall omit this estimate.
((Qh- HhQ)',W) =0 |, W 6 Hh : (28.b) The estimate {34.a) is a stronger form of an estimate of Ewing and Wheeler
that played a critical roie in their analysis of a Galerkin method for
An i1mmediate consequence of (28.b) is that approximating the solution of a model of miscible displacement; every

succeeding analysis of a numerical method for miscible displacement has used

o

some form of this result. In more than a single space variable the L bound

(Qh-th)‘ =0 or -Qh-nhq = &, a constant . (29)
is usually replaced by one in L2,
If we then select v

Q- Mg and w = ¥, - Py, we see that 4. ANALYSIS OF THE CONVERGENCE OF THE APPROXIMATION

OF THE DENSITIES
|0 - Thall, < Mla-mall < Mliall ne?, (30) - .
Introduce [9] the projection E x P : J ﬁ-Zh><Zh of the solution (e,p)
co that defined by
s = 1oy -hall |, = oy -mall, < Hial, ng3 (31) Fyfte-EUE o i B 58 5 s * (35-2)
h h 0 s h h 0 - 2 q ‘
g _
” q“'Qh“ . . “ q__th” ﬂ . ” th"qh“ (32) In ouT case of constant De and Dp, E an? P are the paec&w15e-11ne?r inter-
3 L 3 polations over {xi} of e and p, respectively. Standard results give us the
2 | bounds
EM “q“ 2 40 hq ¢ |
- K ook K 1ark K ook e
Also, from (29). | i n,/ot" | g hyll 3 n,/at | s S IENTRI A z,shd sted ,  (36)
; \ ‘ fora=eorp, k20, 1<s <, and
| Ga-oll s I Ga-ma) | s Mlall, _hg (33) |
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£ @

np=p-P, czp=ph-P

As a consequence of (36), it suffices to estimate O, and since the
-argument for handling Gp is quite the same as that for Ogs W shall concentrate
on the derivation of an evolution inegquality for O Combining (10.a),(14.a),
and (35.a) leads to the error equation

m ~m=-1y,2,. m m
((cre - 0, )/ﬂte L) + (Deacfe /ox,dz/dx ) (37)

H

(60" 57, - (e"-&™Ny/at Mp) « (R™T- AT, E)

B (CIE R VN IND

+ (zDe{ehm(Ehm'T-Ehm"i-*cm) - (e - - c™)3,z)

for ¢ € Zh. Set

Q" = {x e Q:AL" = AL}, R, = A"

Choose the test function ¢ = cém. Note that, since oem vanishes on 381 s
Sem'1 =0 on 9,7, ‘Hence,
m S m=-1y,%, m my m m- 1 m
((Ue - a, )/&te , O ) = ((Ge - 0, )/bt , O )931 (38)
m,~,. m m m- 1 m-1 m
+ (o, /88,50, ) o # ((ore -0, 1/At,0 ) o
Q2 | $i1
- m M- m-1 ~ m-1 om
2(20t) 7Ll Og ][D2 - | Og Hﬂ21]-+ ((Ge - Oq )/At,0, )le

In order to facilitate the treatment of the last term above and the
right hand side of (37), we impose an induction hypothesis. Assume that

(39)

LA
s
w

] qh” + | qh‘ |
L= (ox{t"}) L™ (x{t"})

this relation 1s valid asf1=(hd,hq) > 0 for t° for K larger than

| a®f]  +|| (@®M| ,  and, if e and p, converge sufficiently rapidiy, will
Qs y ©

follow from (34). In order to assure that g, ' remains bounded, we assume that

b S

T SR
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(5t + hg® + b E)Iminihy,h 1=t/ 2

d a*Nq +0 as h-+0 . (40}

The validity of (39) will be established as a part of the convergence proof.

It should be noted that in practice hq would probably be chosen to be 0(At),

so that no serious constraint is imposed by (40).

™

Consider first the last term in (38). Now, for x ¢ le, &te(x)==&t and
since
X
m- A M m~ 1
Oa (x) = T (x) = J aae /3x dy (41)
m- 1
x+Deqh At
a calculation shows that
| o™ 5™ mo<pkat] o™ (42)
e =2 Q,Ql - e 1
Hence,
m-1 » m= m m=- 1 m
|((Ge - Ue )/&tige )Q m |§£M” Ue HI.H Ue HD (43)
34

m m AM=T1, ,2,. M
b0 /STe - {e" - e )/gte

H

[¢Eaem/are-¢e!haem/are,h] + [¢e’haem/aTe h"'(e - £ )}/ At

[(qm__qm“i) i (qm*1*_qhm"1)]aem/ax

~ 2 i
+ g b pdte/aty p20x-XM + (BeM21Y2

where BZE/BTe hz 1s evaluated at some point on the segment between (x,tm) and
(iem,t-ﬂtem). Thus,

| (9g9¢"/31,- (" - 8" 1)/t "0 ™| (44)

=

<w g™ g™ atr e

0

where M = M(K,|| el F

2:msﬂxd
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Note that n vanishes on 3. Hence,

m)l

(0" -7 m"1)fﬁtem,ﬁ

e e -

< (- m"1)f&t,aem) m| + !(nem/ﬂtem,aem)

e €
Qy Q,

m l '

‘The argument leading to (43) could be applied to the first term; however, the
introduction of the H*(Q)-norm of nem would lead to a Toss in predicted
accuracy. The estimate below modifies an argument of Douglas  and Russel]
[3,8]. Let

y = F(Xx) = x + Deqhm"1&t, X € le ‘

By the induction hypothesis (39}, F is invertible for small At and
| dy/dx - 1| < M;At as At =+ O

Set ¢,* = F(Q,M), and note that

(\2,™) U (9\2,*) = [0,M,4t] U [1-M,at,1]
Then,

The first term can be bounded in the following form:

- N

m ~m-1 _m
!(ﬂe & ’GE )

y 1/2
o | < (at)™ 7| on,/ot]] et gmg el

Write the second term in the following form (dropping momentarily the indices
m-1, m, and e):

[ nLoly) - olF (y))1dy (45)

, Q,*n0,

é [n(x)-n(x+Deqhﬂt)]U(x)dx

- [ nly)e(FT(y))(dx/dy - 1)dy + [ nodx
PR 1192 QNG *

- [ nly)o(F H{y))(dx/dy)dy

Dougias, Martinez-Gamba & Squeff

Now, apply the argument leading to (43) to the first right hand side term
see that

( nly)Loly) -o(F" (y)Idy] < m In ]l ol st
Q. *N0, . ;

NextT,

| nly)a(F™ (y)Xdx/dy - 1)dy| < M|{n]| [lo]l at
QI*an 0 3]

Then, Tet Qs = {QNQ1*I)N[0,M,At] and recall that o(0) = 0. Thus,

[ ndx| < | falx) (Gosax)dy dx| < Inll S x]lo || dx
) 0. >

0 oo
3 0 Qa

[ Es%

e, ol -
Similarly, if @, = (@ \@;*)n [1-M,At, 1], then

| [ nodx| < M(at)? ||n |

RL;. ﬂ:mHG “1 >

so that the last two terms in (45) are bounded by the last quantity. If
rollect these results, we see that

[((n "= 2," ")/t 0 ™)

N |
g g ﬁlm

<M Clng™ 0+ W™, 0000 o "

alf2 i
T ol ane/atl et

Next, if Qs = 0, N [0,M,At],

| (178t 0 Ing (x)ag" (x)ax|
X
- lélﬂem(x)(1/§tem(x))J;(agem/ax}dy dx|
< gl S /B0 || oM | dx

{09 oo
s

i17

WE
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<k at I o o)
Consequently,
m ~m=1y,7, M _Mm
|((ne = T, )/&te T )| (46)
< m-1 m m-1 m
sMLng , + Uimg b+ ling I, )t [l o]l
¢ ()7 oMl I amgat]

In order to estimate the term involving

m(“ m-1 ma1__cm)__em(em__pm__cm)

V7% % TPy
o myam-1 2wl m me.m m m
= 0, (eh -p, - C )-ne (e"=p ' ~cC )
r ™M (L P

it is convenient to introduce an additional induction hypothesis that

1PN

K, m 20 ; (47)

eIl L+ Iy

} s00 0 8GO

clearly, any reasonable assignment of eh° and ph“ will satisfy such a  bound.
It will be necessary to verify that (47) remains valid as h and At tend to
zero, assuming that K is fixed at a value exceeding the corresponding bound
for e and p. That E" is bounded in L® follows easily from its form as a

piecewise-linear interpolant of e. Note also that

em_ ghm-1 % ( M ﬁm-1) " ~me1 -~ m=1

s0 that

[ em- & st ell e mn™T L ™)

+¢J

1

using the assumed boundedness of qhm" . Thus,
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I(ZDEY,gém)ngM [” el * oo at + i pl e AT (48)
m m-1 m-
oM« o™+ ™

g™ ™+ ™ e

Finally a very similar calculation shows that

(@1 Ro M smrlel o+ el ) At (49)

1 3 L0 59}'{\.]

2§

o™ o™

P

o N T B

i 0

Let F indicate a generic constant that can depend on K and the W2>®(QxJ)
norms of g, e, and p:

RO KT PR Y (O ) [ (50

Collect the implications of (38),(43),(44),(46),(48) and (49) and = then
apply (34.a) and (36). Then, if D = min (DE,D I ;

P
2tV Tl ol 2 -l o™ 2 3+ 0 llo 2
<FUlog™ oM, + Cha™ -qy™ e ot) oM
E ™ U™ e M, ) st [ e M
-1/2 m il
(AT) on./3at
+ H ne ” Lz(tm-?,tm;Lz(Q))H Ge ||D
ot o+ o™+ o™+ o™+ el

B R T A IR A B

P
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s0 that

st o "l E - o™ 21+ 0 ol 2 -0z [ o) 2 (51)

1

" %Y

J
<F ; ]

og'll 2+ o 2+ o

m- 1 2 5
5 1 w p “G - (Eﬁt) +h

An estimate with the subscripts e and p interchanged can be derived in
Tike manner., Set

Lolly? = loglly + oyl » 520 or 1,

and add (51) and its analogue. Then,

/s ) M 2 - le™ T 23+ 0 ™) 2 - 0/2 o™ 2 (52)
m m-1
<F {|| o HGE + || o HD2 + (At)% + hy' + hq“} :
First, multiply by At and sumonm fromm=1 to m=n, and then apply the
Gronwall lemma:
m L m
max || ¢ HUE + ) o Hl‘? At (53)

1<mgn m=1

SF (o 2+ o)l 2 at+ (a0 4 hy + b}

provided that the two induction hypothesis (39) and {47) hold for QOsmsn- 1.

First, choose

0 _ 0 6 _po0 .

e " = EO Py =pP0 . (54 )

i.e., the piecewise-1linear interpolant of e(x,0) and p(x,0}, respectively.
0 _ 0 _
Then, O, = Gp = J, so that
m J m 1/2
max |lo7f o+ ( F Joo|| 2at)T T s F {at + hy® o+ '} s (55)
1<men ? m="1 :

if (39) and (47) hold for 1<mgn - 1.

We have seen that (39) and (47) hold for n=1; assume it valid for n.
Then, (55) and (34.a) imply that

- iy = e e e T by s e
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Iq"-a "l  sF (at+hy®+h

0 sco

¢o that

Lo, < llall +Flat+h

0soo

Moreover, by (55) and (34.b),

so that the restriction (40) forces the satisfaction of {39)

n is

F M s @)+ F (At + hy?

0 sco 0 sco

replaced by n+ 1.
Next, again by (40)

[el sl «F (at

0s

so that (47) also holds inductively.

Theorem.,

2) :

q

2 h 2
d ~ q )

q

T LN

q

T h z)h *1/2 T hdafz) ’

q g

We have proved the following theorem.

; (At + hd2 + h Z)h.'l/z +~ 0 as

Then,

g T

mﬁx {[|elr‘---ehn||£J + Dn-*PhnHﬂ

Let q, e, and p Tie in C2(OxJ). Let

hi+0, 1i=d or q .

+ H qﬂ_ qhﬂ“

Dy

}< F {At + h

d
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(56

for small h_. when

g

2 2
4 hq j
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