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Department of Mathematics and Informatics
Faculty of Sciences, University of Novi Sad
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Abstract. We solve the Cauchy problem for the full non-linear homogeneous
Boltzmann system of equations describing multi-component monatomic gas
mixtures for binary interactions in three dimensions. More precisely, we show
existence and uniqueness of the vector value solution by means of an existence
theorem for ODE systems in Banach spaces under the transition probability
rates assumption corresponding to hard potentials rates in the interval (0, 1],
with an angular section modeled by an integrable function of the angular tran-
sition rates modeling binary scattering effects. The initial data for the vector
valued solutions needs to be a vector of non-negative measures with finite total
number density, momentum and strictly positive energy, as well as to have a fi-
nite L1

k∗

(R3)-integrability property corresponding to a sum across each species

of k∗-polynomial weighted norms depending on the corresponding mass frac-
tion parameter for each species as much as on the intermolecular potential
rates, referred as to the scalar polynomial moment of order k∗. The existence
and uniqueness rigorous results rely on a new angular averaging lemma ad-
justed to vector values solution that yield a Povzner estimate with constants
that decay with the order of the corresponding dimensionless scalar polynomial
moment. In addition, such initial data yields global generation of such scalar
polynomial moments at any order as well as their summability of moments
to obtain estimates for corresponding scalar exponentially decaying high en-
ergy tails, referred as to scalar exponential moments associated to the system
solution. Such scalar polynomial and exponential moments propagate as well.
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1. Introduction

We consider a mixture of I monatomic gases, labeled with A1, . . . ,AI . In the
kinetic theory framework, each species of the mixture Ai is statistically described
with its own distribution function fi := fi(t, x, v), that in general depends on time
t ≥ 0, space position x ∈ R3 and velocity of molecules v ∈ R3 (in this manuscript we
restrict ourselves to the spatially homogeneous case, that is, we drop dependence on
space position x). The distribution function fi changes due to binary interactions
(or collisions) with other particles. In the mixture setting, these particles can belong
to other species Aj , j 6= i. Therefore, the evolution of each fi involves not only the
particle-particle interaction of specie Ai, but also interactions between Ai and Aj ,
j 6= i.

In the mixture framework, the evolution of each distribution function fi de-
scribing the mixture component Ai, is governed by the Boltzmann-like equation,
that traditionally introduces collision operator as a measure of its change. Now,
one has multi-species collision operators and their transition probabilities, or cross
sections, between the different distribution functions describing each component
of the mixture [21]. Since all species are considered simultaneously in a system
of species with binary interactions, one is led to introduce a vector valued set of
distribution functions F = [fi]1≤i≤I , whose evolution is governed by a vector of col-

lision operators, whose i−th component (that describes precisely evolution of fi) is

[Q(F)]i =
∑I

j=1Qij(fi, fj). In this formula, operator Qij(fi, fj) describes influence
of species Aj for the distribution function fj on species Ai with the distribution
function fi. Note that summation over all j = 1, . . . , I is in the spirit of taking into
account influence of all species Aj , j = 1, . . . , I, on the considered species Ai.

From a mathematical viewpoint, the challenging situation occurs when masses
of species molecules are not equal (i.e. mi 6= mj). In such a situation, underly-
ing binary collisions between molecules lose some symmetry properties which can
dramatically change mathematical treatment, for instance in order to study diffu-
sion asymptotics when one needs to show the compactness of a part of linearized
Boltzmann operator [9]. In the mixture framework, a linear system of linearized
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Boltzmann equations has been recently studied in [11], corresponding to the pertur-
bative setting of our model when the non-linear system is linearized near Maxwellian
states corresponding to each species. In this case authors showed existence, unique-
ness, positivity and exponential trend to equilibrium.

In this work, we give the first existence and uniqueness result for the non-linear
system of spatially homogeneous Boltzmann equations for multi-species mixtures
with binary interactions in a suitable Banach space. We also emphasize that our
approach for solving the Cauchy problem for the Boltzmann equation with variable
hard potentials relies on some specific conditions on the initial moments, without
requesting entropy boundedness. The hard potentials assumption correspond to
collision cross sections related to the species Ai and Aj proportional to the local
relative speed with a power exponent γij ∈ (0, 1], and L1−integrable angular part
bij , as function of the scattering direction.

In addition, the existence and uniqueness of a vector value solution F(t, v) need
to assume that initially its scalar zero and second moment (i.e. the scalar number
density and energy of the mixture) are strictly positive and finite, and additionally
that this function has at least an upper bounded k∗-polynomial moments, where
k∗ := max{k, 2 + 2¯̄γ}, for k = max1≤i,j≤I{kij∗ } and ¯̄γ = max1≤i,j≤I γij , is suf-
ficiently large to ensure the prevail of the polynomial moments of loss term with
respect to those same moments of the gain term. Each kij∗ depends on the angular
transition rate bij as well as on the two-body mass fraction rij := mi/(mi +mj)
associated to each component on the vector solution. All these parameters are de-
fined in the next Section 2 dedicated to notation, preliminaries and main results.

The result is obtained following general ODE theory that studies differential
equations in suitable Banach spaces [17]. In the context of (single) Boltzmann
equation, this theory was proposed as a main tool in [10] for solving the Cauchy
problem with hard spheres in three dimensions and constant angular transition
probability kernel. However, the notes [10] do not completely verify all conditions
of general ODE theory for the Boltzmann equation. This was motivation for [3]
to revise the application of ODE theory from [17] in the case of Boltzmann equa-
tion with more general hard potentials and integrable angular cross section, and in
particular, to provide a complete proof of sub-tangent condition.

One very interesting new aspect from this approach is that the ODE flow in a
suitable Banach space without imposing initial bounded entropy condition yields
an alternative approach that allows for a rather general theory for gathering esti-
mates where one can apply a rather general result in order to find solutions to the
Cauchy problem for Boltzmann type flows where there is no classical entropy that
is dissipated, or even some conservation laws may not be satisfied. Such problems
have already been solved in for polymers kinetic problems [1], quantum Boltzmann
equation for bosons in very low temperature [5] and more recently to study the
weak wave turbulence models for stratified flows [15].

After proving the existence and uniqueness of the vector value solution F to the
Boltzmann system, we turn to the study of generation and propagation of scalar
polynomial and exponential moments of its solution F.

The techniques we use in this manuscript are adaptations or extensions of results
that have been developed for scalar Boltzmann type equations models.



4 IRENE M. GAMBA AND MILANA PAVIĆ-ČOLIĆ

In the case of the classical Boltzmann equation for the single elastic monatomic
gas model, polynomial moments have been exclusively considered, for instance, in
[12] and [23] for hard potentials where propagation and generation of such moments
was proved. About the same time, Bobylev introduced in [6] the concept of expo-
nential moment as a measure of the distribution solution tail, referred as to tail
temperature, by showing that solutions to the Boltzmann equation for monatomic
gases, modeled by elastic hard spheres (i.e. power exponent γ = 1) in three dimen-
sions with a constant angular dependent cross-section as a function of the scattering
direction, have inverse Maxwellian weighted moments, globally in time, whose tail
decay rate depend on moments of the initial data. His proof consists in showing
that infinite sums of renormalized polynomial moments are summable whose limit
is proportional to a L1- Gaussian weighted norm for the unique probability density
function solving the initial value problem associated to the Boltzmann equation,
whose rate depends on the initial data that must also be integrable with a Gaussian
weight. These techniques of understanding moments summability in order to obtain
high energy tail behavior for the solution of the Boltzmann equation was extended
to inelastic interactions with stochastic heating sources, shear flows or self-similarity
scalings to obtain non-equilibrium statistical stationary (NESS) states [8] where the
exponential rates did not necessarily correspond to Gaussian weighted moments.

This concept in the elastic case was further extended by [14] to collision kernels
for hard potentials (i.e. γ ∈ (0, 1]) for any angular section with L1+-integrability.
Further, generation of exponential moments of order γ/2 with bounded angular
section were shown in [18].

By then it became clear that the study of general forms of exponential moments
resulted as a by-product of the analysis of polynomial moments (or tails), and so a
spur of work arose for the improvement of conditions and results that will allow to
estimate, globally in time. These results were extended to collision kernels for hard
potentials with γ ∈ (0, 2] for any angular section with just L1-integrability by a new
approach using partial sums summability techniques, rather than using summability
studies by power series associated to renormalized moments as proposed in [6, 8, 14,
18]. The generation results were improved to obtain exponential moments of order
γ, while Gaussian moments were propagated for any initial data that would have
that property, independent of γ. All these results were extended to the angular non-
cutoff regime (lack of angular integrability) in [22, 16] still for hard potentials with
γ ∈ (0, 2], and in [7, 19] for pseudo-Maxwellian and Maxwellian case (γ = 0). In the
later referenced work, these non-Gaussian tailed moments are called Mittag-Leffler
moments as in fact the summability of partial sums is shown to converge to an L1-
Mittag-Leffler function weighted norm for the unique probability density function
solving the initial value problem associated to the Boltzmann equation, whose order
and rate depend on the initial data as much as on the order of singularity in the
angular section.

A very important tool for the success of summability properties for polynomial
moments relies on the fact that such moments are both created and propagated
depending on how moments of the collision operator can be estimated: the positive
part of the (gain) collision operator must have a decay rate with respect to the
moment order while the negative part of such moments prevails in the dynamics,
when sufficiently many moments are taken into account.
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This is indeed a key step, arising as a consequence of an angular averaged Povzner
lemma. In the case of single gas components, these estimates are based on integra-
tion of the collision operator against polynomial test functions on the pre-collisional
velocities in the sphere. While these objects were originally introduced by Povzner
[20] in 1960s, a sharper form that uses the conservation of energy and angular aver-
aging was introduced in [6] for the case of hard spheres in three dimensions with a
constant angular cross section, where the polynomial test functions are proportional
to even powers of the velocity magnitude. Later this technique was extended in [8]
for the inelastic collision with heating sources, in [14] to the elastic case with hard
potentials with L1+ integrable angular cross section, as well as in [2] for the case
with just L1 integrable angular cross section. Further, the approach was enlarged
to hard spheres with non-integrable angular cross section in [16] and [22] for hard
potentials. All of these estimates were developed for the mono-component model.

Hence, the angular averaged Povzner lemma is our starting point in the case
of mixtures as well. However, it requires a subtle modification of the polynomial
weight that define the scalar moment for the mixture, to be defined in (2.1) next
section, that renormalizes the polynomial test function from just even powers of the
magnitude of the velocity vector to a dimensionless bracket form independent of
mass density units, as the mono-component treatment to obtain moment estimates
from [6] for the elastic case, or from [14] for inelastic hard sphere interactions, can
not be directly extended to the mixture case, when masses are possibly different.

This facts enticed us to introduce a new approach that relies on the way to rewrite
collisional rules and scalar polynomial moments in such dimensionless, independent
of mass density units form that is very convenient to obtain a convex combination
form between the conserved local quantities for a binary interaction, namely, local
center of mass and energy. As a consequence, we conclude that averaging over the
S2-sphere yield decay properties as a function of the moment order for as long as
angular kernel is L1−integrable on S2. In particular, these decay properties will
be significantly influenced by the fact how much species masses are disparate. It
will be shown that as much as renormalized species masses deviates one from each
other, the decay rate will be more slowly.

The paper is organized as follows. In Section 2 we introduce notation and prelim-
inaries, and state the main results, namely the Existence and Uniqueness Theorem
for the vector value solution of the homogeneous Boltzmann system, and then gen-
eration and propagation of both scalar polynomial and exponential moments. Then
in Section 3 we describe in details kinetic model that we use. Section 4 contains
two preliminary Lemmas that we need for further work, including Povzner lemma.
Sections 5, 6 and 7 are devoted to proofs of our main results. A final Appendix
contains some auxiliary calculations relevant to our estimates.

2. Notation, Preliminaries and Main Results

2.1. Notation and Preliminaries. In this paper, we consider mixture of I gases,
and we label its components with A1, . . . , AI . Each component of the mixture
Ai, i = 1, . . . , I, is described with its own distribution function, denoted with
fi := fi(t, v) ≥ 0, that, in this manuscript, depends on time t > 0 and velocity
v ∈ R3. Fixing some i ∈ {1, . . . , I}, distribution function fi satisfy Boltzmann like
equation, which now, in the mixture context, has to take into account influence of
all other components of the mixture on species Ai. In the kinetic theory style, this



6 IRENE M. GAMBA AND MILANA PAVIĆ-ČOLIĆ

is achieved by defining collision operator Qij for each j = 1, . . . , I that measures
interaction between species Ai that we fixed and all the others Aj , j = 1, . . . , I,
including itself Ai. If the species Aj are described with distribution functions fj ,
then the evolution of fi is described via

∂tfi(t, v) =

I
∑

j=1

Qij(fi, fj)(t, v), i = 1, . . . , I. (2.1)

The form of Qij , for distribution functions f and g and any i, j = 1, . . . I, is given
by the non-local bilinear form

Qij(g, h)(v) =

∫

R3

∫

S2

(

1

J g(v′ij)h(v
′
∗ij)− g(v)h(v∗)

)

Bij(v, v∗, σ) dσ dv∗, (2.2)

where pre-collisional quantities v′ij and v′∗ij depend on post-collisional ones v, v∗
and parameter σ, as much as on the masses mi and mj mass of colliding particles
of species Ai and Aj respectively, in the following manner

v′ij =
miv +mjv∗
mi +mj

+
mj

mi +mj
|v − v∗|σ, v′∗ij =

miv +mjv∗
mi +mj

− mi

mi +mj
|v − v∗|σ.

(2.3)
The collisional rules (2.3) can be written in scattering direction coordinates (or in
a center of mass reference framework) by introducing the velocity of center of mass
Vij and relative velocity u of the two colliding particles,

Vij :=
miv +mjv∗
mi +mj

, u := v − v∗, (2.4)

as follows

v′ij = Vij +
mj

mi +mj
|u|σ, v′∗ij = Vij −

mi

mi +mj
|u|σ, (2.5)

or equivalently, introducing the two-body mass fraction parameter rij = mi

mi+mj
∈

(0, 1), associated to one of the particles, say mi without loss of generality,

v′ij = Vij + (1 − rij) |u|σ, v′∗ij = Vij − rij |u|σ. (2.6)

Remark 1. For simplicity of notation, from now on, we will eliminate subindices
i, j from v′ij , v

′
∗ij , Vij and rij .

The transition probability rates or collision cross section terms Bij are positive
functions supposed to satisfy the following micro-reversibility assumptions

Bij(v, v∗, σ) = Bij(v
′, v′∗, σ

′) = Bji(v∗, v,−σ), (2.7)

where σ = u′/ |u′| and u′ = v′ − v′∗ (note that then σ′ = u/ |u|).
The factor in the positive non-local binary term J =

∣

∣detJ(v′,v′

∗
,σ′)/(v,v∗,σ)

∣

∣ is the
absolute value of determinant of the Jacobian associated to the exchange of veloc-
ity variables transformation (2.3) from pre to post for the given binary interaction.
The Jacobian of this transformation can be easily computed by passing to the scat-
tering direction coordinates i.e by considering the following mappings (v′, v′∗, σ

′) 7→
(u′, V ′, σ′) 7→ (|u′| , u′

|u′| , V
′, σ′) 7→ (|u| , u

|u| , V, σ) 7→ (u, V, σ) 7→ (v, v∗, σ), with the

notation (2.4) and using Remark 1. The first mapping is of unit Jacobian from
definition of u and V , the second one is passage from Cartesian to spherical coor-
dinates for u′. Since from the collisional rules (2.3) it follows |u′| = |u| and V ′ = V
the passage from primes to non-primes described in the third mapping is of unit
Jacobian. Then we pass from spherical to Cartesian coordinates for u and finally
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go back to the original variables (v, v∗, σ). Thus, the Jacobian is computed as the
decomposition of the mentioned mappings,

J = 1 · 1

|u′|2
· 1 · |u|2 · 1 = 1,

since |u′| = |u|. Therefore, each Qij from (2.2) simple becomes,

Qij(g, h)(v) =

∫

R3

∫

S2

(g(v′)h(v′∗)− g(v)h(v∗))Bij(v, v∗, σ) dσ dv∗. (2.8)

Since we consider a mixture as a whole, it will be convenient to introduce the
following vector notation. We put all distribution functions fi, i = 1, . . . , I into
vector of distribution functions

F = [fi]1≤i≤I . (2.9)

Moreover, a vector value collision operator is defined

Q(F) =





I
∑

j=1

Qij(fi, fj)





1≤i≤I

. (2.10)

Then the system of Boltzmann equations (2.1) can be written in a vector form

∂tF(t, v) = Q(F)(t, v). (2.11)

Definition 2.1 (Bracket forms for the mixture’s dimensionless polynomial moments
independent of mass density units). Let F = [fi]1≤i≤I be a suitable vector value
distribution function. Let mixture’s bracket forms be denoted by

〈v〉i :=
√

1 +
mi

∑I
j=1mj

|v|2, v ∈ R3. (2.12)

Scalar polynomial moments independent of mass density units of order q ≥ 0 for
F is defined with

mq[F](t) =

I
∑

i=1

∫

R3

fi(t, v) 〈v〉qi dv. (2.13)

In particular, we define scalar polynomial moment of zero order for each species Ai

m0,i[F](t) =

∫

R3

fi(t, v) dv, i = 1, . . . , I,

having in mind that
∑I

i=1 m0,i[F] = m0[F].
Scalar exponential moment, or exponential weighted L1−forms, for F of a rate

α := (α1, . . . , αI), αi > 0, and an order s := (s1, . . . , sI) > 0, 0 < si ≤ 2, is defined
by

Es[F](α, t) =
I
∑

i=1

∫

R3

fi(t, v)e
αi〈v〉

si
i dv. (2.14)

The case si = 2, ∀i, is referred to as inverse Maxwellian (or Gaussian) moment,
otherwise they are super exponential moments (some authors referred as stretched
exponentials though this concept usually refers to exponential times).
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Remark 2. It can be noticed that such both dimensionless polynomial and ex-
ponential moments for the mixture are defined as a sum of the resulting moments
corresponding to each species independent of mass density units. In particular,
when F solves the Boltzmann system of equations (2.11), then m0,i[F] is interpreted
as number density of the species Ai, for any i = 1, . . . , I, while the zeroth scalar
moment m0[F] is the total number density of the mixture. Moreover, the second
scalar moment m2[F] represents total energy of the mixture.

Remark 3. If, for given exponential moments individually for each species Ai, we
seek for the maximum value of both their rate and order, i.e.

α̂ = max
1≤i≤I

αi, ŝ = max
1≤i≤I

si, (2.15)

then

Es[F](α, t) ≤
I
∑

i=1

∫

R3

fi(t, v) e
α̂〈v〉ŝi dv =: Eŝ[F](α̂, t)

Therefore, finiteness of the exponential moment Es[F](α, t) is a consequence of the
finiteness of Eŝ[F](α̂, t), with α̂ and ŝ as in (2.15), for any time t ≥ 0.

2.1.1. Functional space. We work in L1 space weighted polynomially in velocity v
and summed over all species, that is

L1
k =

{

F = [fi]1≤i≤I measurable :

I
∑

i=1

∫

R3

|fi(v)| 〈v〉ki dv <∞, k ≥ 0

}

(2.16)

where the polynomial weight was defined in (2.12) by 〈v〉i =
(

1 + mi∑
I
j=1

mj
|v|2
)1/2

.

Its associated norm is

‖F‖L1
k
=

I
∑

i=1

∫

R3

|fi(v)| 〈v〉ki dv. (2.17)

Note that if F ≥ 0, then its norm in L1
k is precisely its polynomial moment of order

k, i.e. ‖F‖L1
k
:= mk[F].

Sometimes we will consider species separately, i.e. fix some component of the
mixture Ai. We define a space together with its norm

L1
k,i =

{

g measurable :

∫

R3

|g(v)| 〈v〉ki dv <∞, k ≥ 0

}

, ‖g‖L1
k,i

=

∫

R3

|g(v)| 〈v〉ki dv.

Note that the norm of F in L1
k is related to the norm of its components fi in the

space L1
k,i via ‖F‖L1

k
=
∑I

i=1 ‖fi‖L1
k,i
.

Finally, since we use bracket forms 〈·〉 defined in (2.12), the monotonicity prop-
erty holds, i.e.

‖fi‖L1
k1,i

≤ ‖fi‖L1
k2,i

and ‖F‖L1
k1

≤ ‖F‖L1
k2

,whenever 0 ≤ k1 ≤ k2. (2.18)

2.2. Main Results. We study the Cauchy problem for system of spatially homo-
geneous Boltzmann equations for the mixture of gases A1, . . . , AI :

{

∂tF(t, v) = Q(F)(t, v), t > 0, v ∈ R3,

F(0, v) = F0(v),
(2.19)
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where F is a vector of distribution functions F = [fi]1≤i≤I , fi being distribution
function of the component Ai, i = 1, . . . , I, as defined in (2.9), and Q(F) =
[

∑I
j=1Qij(fi, fj)

]

1≤i≤I
is a collision operator introduced in (2.8, 2.10).

We consider the particular case when the transition probability terms Bij , i, j =
1, . . . , I are assumed to take the form

Bij(v, v∗, σ) = |u|γij bij(σ · û), γij ∈ (0, 1], and bij(σ · û) ∈ L1(S2; dσ), (2.20)

where u := v−v∗, û := u/ |u|. This form of cross section corresponds to variable hard
potentials with an integrable angular part. In the mixture setting, both potential
γij and angular kernel bij may depend on species Ai and Aj . In order to satisfy
micro-reversibility assumptions (2.7), it is supposed that

γij = γji, and bij(σ · û) = bji(σ · û),
for any choice i, j = 1, . . . , I. Moreover, let γ and ¯̄γ denote respectively the minimum
and the maximum value of potentials γij , i.e.

γ = min
1≤i,j≤I

γij , ¯̄γ = max
1≤i,j≤I

γij . (2.21)

2.2.1. Povzner lemma by angular averaging. The essential ingredient of this man-
uscript is the Povzner lemma obtained by averaging in the scattering angle rep-
resentation of the collision kernel, originally introduced in [6], [8], for the case of
elastic and inelastic collisions. It estimates the positive contribution of the collision
operator after integration against σ ∈ S2, that is crucial for all further proofs.

Lemma 2.2 (Povzner lemma by angular averaging for the mixing model). Let
the angular part bij(σ · û) of the cross-section be integrable in σ variable (that is
bij ∈ L1(S2; dσ)), û being the normalized relative velocity u = v− v∗. Let v′ and v′∗
be functions of v, v∗, σ as in (2.3), with mi,mj > 0. Then the following estimate
holds for any fixed i, j,

∫

S2

(

〈v′〉ki + 〈v′∗〉
k
j

)

bij(σ · û) dσ ≤ C
ij
k
2

(

〈v〉2i + 〈v∗〉2j
)

k
2

, (2.22)

where constant Cij
k
2

tends to zero as k grows and moreover

C
ij
k
2

− ‖bij‖L1(dσ) < 0, for any k ≥ kij∗ , 1 ≤ i, j ≤ I, (2.23)

where each kij∗ depends on bij and rij .

The proof of Lemma 2.2 genuinely reflects difference between single and multi-
component gas, with an accent on writing collisional rules in a convex combination
form for mixtures, in contrast to symmetric or “half-half” writing for the single
component gas. It turned out that single component case due to symmetry had a
lot of room for estimates and further simplification, presented in [8] for example.
For mixtures, this is not the case any longer, and writing should be exact as much
as possible: we use Taylor expansion of second order with a reminder in the integral
form, and estimates are done only in the reminder.

A very important consequence of the Povzner lemma is the ability to estimate
moments of the collision operator. In particular, averaging over the sphere yields
decay properties of the gain term polynomial moment with respect to its order.
This decay allows polynomial moments of loss term to prevail in dynamics, when
sufficiently many moments are taken into account. In a single component gas, it
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suffices to take 2+ order of polynomial moment, that is slightly more than energy,
to obtain this property [8]. Mixtures bring great novelty in this aspect, too: decay
properties of the constant issuing from the Povzner lemma strongly depend on the
two-body mass fraction parameter rij . We study this issue in detail in the case

bij ∈ L∞(S2; dσ) when it is possible to explicitly calculate the constant Cij
k/2 from

(2.23). It will be shown that when rij = 1/2 (which corresponds to mi = mj), we

recover the same decay properties of the constant Cij
k/2 as in the case of single gas

component. However, when mixtures are considered, we observe that as much as
rij deviates from 1/2, the larger kij∗ that ensures (2.23) is, or larger and larger order
of moment that guarantees prevail of loss term moment is.

2.2.2. Existence and uniqueness theory. In this manuscript, we discuss existence
and uniqueness for the vector value solution F to the initial value problem (2.19) of
space homogeneous Boltzmann equations for monatomic gas mixtures, with tran-
sition probabilities (or collision kernels) associated to species Ai and Aj , i, j ∈
{1, . . . , I} having hard potential growth of order |u|γij for γij ∈ (0, 1] and an in-
tegrable angular part bij , with an initial total mixture number density and energy
bounded below (i.e. the initial data can not be singular measure), and have at least
a k∗ (scalar) polynomial moments,

k∗ ≥ max{k, 2 + 2¯̄γ} for k = max
1≤i,j≤I

{kij∗ }

and γ = min
1≤i,j≤I

γij , ¯̄γ = max
1≤i,j≤I

γij . (2.24)

chosen to ensure the inequality (2.23) holds for any i, j = 1, . . . , I.
Such a study fits into an abstract framework of ODE theory in Banach spaces,

which can be found in [17]. For the Boltzmann equation, the application of this
theory was clarified in [3], after being recognized in [10]. The formulation of theo-
rem that we apply in this manuscript is given in Appendix A. As for the choice of
Banach space, it is known that natural Banach space to solve the Boltzmann equa-
tion is L1 polynomially weighted, or in mixture setting space L1

k defined in (2.16).
More precisely, here we take k = 2, because the norm in that space is related to
energy whose conservation is exploited.

In order to apply Theorem A.1, we need to find an invariant region Ω ⊂ L1
2 in

which collision operator Q : Ω → L1
2 will satisfy (i) Hölder continuity, (ii) Sub-

tangent and (iii) one-sided Lipschitz conditions.
To that end, we first study the map Lγ,k∗

: [0,∞) → R, defined with

Lγ,k∗
(x) = −Ax1+ γ

k∗ +Bx,

where A and B are positive constants, γ ∈ (0, 1] and k∗ defined in (2.24). This
map has only one root, denoted with x∗γ,k∗

, at which Lγ,k∗
changes from positive

to negative. Thus, for any x ≥ 0, we may write

Lγ,k∗
(x) ≤ max

0≤x≤x∗

γ,k∗

Lγ,k∗
(x) =: L∗

γ,k∗
.

Define

Ck∗
:= x∗γ,k∗

+ L∗
γ,k∗

. (2.25)
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Now, we are in position to define the bounded, convex and closed subset Ω ⊂ L1
2,

Ω =
{

F(t, ·) ∈ L1
2 : F ≥ 0 in v,

I
∑

i=1

∫

R3

miv fi(t, v)dv = 0,

∃ c0, C0, c2, , C2, C2+ε > 0, and C0 < c2, such that ∀t ≥ 0,

c0 ≤ m0[F](t) ≤ C0, c2 ≤ m2[F](t) ≤ C2,

m2+ε[F](t) ≤ C2+ε, for ε > 0,

mk∗
[F](t) ≤ Ck∗

, with Ck∗
from (2.25)

}

,

where

m2+ε[F](t) = ‖F‖L1
2+ε

=

I
∑

i=1

∫

R3

|fi(t, v)| 〈v〉2+ǫ
i dv,

for any ǫ > 0, which can be arbitrary small.
Then, existence and uniqueness theory of a vector value F solution to the Cauchy

problem (2.19) fits into the study of ODE in a Banach space (L1
2, ‖·‖L1

2
) and its

bounded, convex and closed subset Ω. The collision operator Q is viewed as a
map Q : Ω → L1

2. We will show that it satisfies Hölder continuity, sub-tangent and
one-sided Lipschitz conditions, which will enable us to prove the following Theorem.

Theorem 2.3 (Existence and Uniqueness). Assume that F(0, v) = F0(v) ∈ Ω.
Then the Boltzmann system (2.19) for the cross section (2.20) has the unique solu-
tion in C ([0,∞) ,Ω) ∩ C1

(

(0,∞) , L1
2

)

.

Remark 4. Let us point out that for the existence and uniqueness result no condi-
tions on initial entropy are necessary. However, if the initial data has finite entropy,
then the entropy inequality implies that it will remain bounded for all times. Let
us give a sketch of the proof. Definition of the entropy and entropy inequality is
taken from [13], Proposition 1.

Definition 2.4 (Mixture entropy and entropy production). Let F be a vector value
distribution function as in (2.9). The (mixture) entropy is defined as

η(t) =

I
∑

i=1

∫

R3

fi log fidv, (2.26)

while the (mixture) entropy production is given with

D(F) =
I
∑

i=1

∫

R3

[Q(F)]i log fidv. (2.27)

Then the following Proposition holds.

Proposition 1 (Entropy inequality or the first part of the H-theorem, [13]). Let us
assume that the cross section terms Bij, 1 ≤ i, j ≤ I, are positive almost everywhere
and that F ≥ 0 is such that both collision operator Q(F) and entropy production are
well defined. Then the entropy production is non-positive, i.e. D(F) ≤ 0.

As an immediate consequence, we get from the Boltzmann equation that ∂tη ≤ 0,
or in other words, η(t) ≤ η(0), for any t ≥ 0. Therefore, we conclude that the
entropy inequality implies that mixture entropy remains bounded at any time if
initially so.
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2.2.3. Generation and propagation of polynomial moments. The second part of the
manuscript is devoted to the study of generation and propagation of scalar poly-
nomial moments associated to the solution of the Boltzmann system (2.19) for the
cross section (2.20), that initially belongs to Ω.

First, in the following Lemma, we derive from the Boltzmann system (2.19) an
ordinary differential inequality for polynomial moment of order k, mk[F](t), for large
enough k, that relies on the Povzner estimate from Lemma 2.2, uniformly in each
pair i, j.

Lemma 2.5 (Ordinary differential inequality for polynomial moments). Let F =
[fi]i=1,...,I be a solution of the Boltzmann system (2.19) with the cross section (2.20)-

(2.21). Then the polynomial moment (2.13) satisfies the following Ordinary Differ-
ential Inequality

d

dt
mk[F](t) =

I
∑

i=1

[Q(F)]i 〈v〉
k
i dv ≤ −Ak mk[F](t)

1+ γ
k +Bk mk[F](t), (2.28)

for large enough k to ensure (2.24), and some positive constants Ak and Bk.

The proof of this Lemma follows from comparison principles for ODE’s, which
yields the generation and propagation estimates stated in the following Theorem
that is proved in Section 6.

Theorem 2.6 (Generation and propagation of polynomial moments). Let F be a
solution of the Boltzmann system (2.19) with a cross section (2.20)-(2.21) and an
initial data F(0, v) = F0(v) ∈ Ω.

1. (Generation) There is a constant Cm such that for any k > k∗ defined in
(2.24) ,

mk[F](t) ≤ C
m

(

1− e−
γBkt

k

)− k
γ

, ∀t > 0, (2.29)

where constants C
m depend on Ak, Bk from (2.28) and γ.

2. (Propagation) Moreover, if mk[F](0) <∞, then

mk[F](t) ≤ max{Cm,mk[F](0)}, (2.30)

for all t ≥ 0.

Finally, we show that, under the assumed conditions on collision kernel form
(2.20), the renormalized series of moments is summable depending on the moments
of the initial data yielding the following result on generation and propagation of
exponential, or Mittag-Leffler moments.

2.2.4. Generation and propagation of exponential moments. With bounds on poly-
nomial moment at hand, one can deal with exponential moments. We prove the
following Theorem.

Theorem 2.7 (Generation and propagation of exponential moments). Let F be a
solution of the Boltzmann system (2.19) with a cross section (2.20)-(2.21) where
γ = ¯̄γ = γij for all i, j ∈ {1, . . . , I}, and an initial data F(0, v) = F0(v) ∈ Ω.
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(a) (Generation) There exist constants α > 0 and B
E > 0 such that

Eγ [F](αmin {t, 1} , t) ≤ B
E , ∀t ≥ 0.

(b) (Propagation) Let 0 < s ≤ 2. Suppose that there exists a constant α0 > 0,
such that

Es[F](α0, 0) ≤M0 <∞. (2.31)

Then there exist constants 0 < α ≤ α0 and C
E > 0 such that

Es[F](α, t) ≤ C
E , ∀t ≥ 0. (2.32)

3. Kinetic Model

3.1. Study of collision process. In our setting molecules are assumed to interact
via elastic collisions. Let us fix two colliding molecules; one of the species Ai having
mass mi and pre-collisional velocity v′ and the another one belonging to the species
Aj with mass mj and pre-collisional velocity v′∗ (note that we here immediately
adopted the simplicity of notation pointed out in Remark 1). If the post-collisional
velocities are denoted with v and v∗, respectively, than the momentum and kinetic
energy during the collision are conserved

miv
′ +mjv

′
∗ = miv +mjv∗,

mi |v′|2 +mj |v′∗|
2
= mi |v|2 +mj |v∗|2 . (3.1)

As usual, we parametrize these equations with a parameter σ ∈ S2, in order to
express pre-collisional velocities in terms of post-collisional ones,

v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj
|v − v∗|σ, v′∗ =

miv +mjv∗
mi +mj

− mi

mi +mj
|v − v∗|σ.

(3.2)
Note that if mi = mj , then the collisional rules simplify and take the usual single
component gas form

v′ =
v + v∗

2
+

1

2
|v − v∗|σ, v′∗ =

v + v∗
2

− 1

2
|v − v∗|σ. (3.3)

Figure 1 illustrates the collision transformation (3.2) and aims at explaining its
difference with respect to the collision transformation (3.3) when masses are equal.

Namely, for given v, v∗, σ and mi, mj , we calculate center of mass V =
miv+mjv∗
mi+mj

,

and velocities v′ and v′∗ according to (3.2). One can notice that the magnitude of
the relative velocity does not change during the collision, i.e. |v − v∗| = |v′ − v′∗|, as
it is when masses are the same. Difference comes with the vector of center of mass:
the vector of center of mass for equal masses v+v∗

2 displaces by adding a quantity
that is proportional to the difference of masses mi −mj and thus is peculiar to the
mixture case. More precisely,

V =
v + v∗

2
+

mi −mj

2(mi +mj)
u,

with u := v − v∗.
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|u|σ

v

u

v+v∗
2

u′

v+v∗
2 + 1

2 |u|σ

v+v∗
2 − 1

2 |u|σ

mi−mj

2(mi+mj)
u

Vij

v′∗

v′

σ

v∗

Figure 1. Illustration of the collision transformation, with nota-
tion Vij :=

miv+mjv∗
mi+mj

, u := v− v∗, u
′ := v′ − v′∗. The displacement

of the center of mass with respect to a single component elastic
binary interaction is given by (rij − 1

2 )u =
mi−mj

2(mi+mj)
u, if mi > mj .

Solid lines denote vectors after collision, or given data. Dash-dotted
vectors represent primed (pre-collisional) quantities that can be cal-
culated from the given data, and compared to the case mi = mj ,
represented by dotted vectors. Dashed vector direction is the dis-
placement along the direction of the relative velocity u proportional
to the half difference of relative masses, (which clearly vanishes for
mi = mj , reducing the model to a classical collision). Note that
the scattering direction σ is preserved as the pre-collisional relative
velocity u′ keeps the same magnitude as the post-collisional u, u′

is parallel the reference elastic pre-collisional relative velocity |u|σ.

3.2. Collision operators. Collision operators Qij , as defined in (2.8), describe
binary interactions between molecules of species Ai and Aj , i, j = 1, . . . , I. Fix the
species Ai for any i = 1, . . . , I, and let its distribution function be g. On the other
hand, let distribution function h describe species Aj .
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Note that each Qij for a fix (i, j)-pair has its corresponding counterpart, Qji,
that describes interaction of molecules of species Aj with molecules of species Ai

Qji(h, g)(v) =

∫

R3

∫

S2

(h(w′)g(w′
∗)− h(v)g(v∗))Bji(v, v∗, σ) dσ dv∗, (3.4)

where pre-collisional velocities w′ and w′
∗ now differ from the previous ones given

in (3.2) by an exchange of mass mi ↔ mj , i.e.

w′ =
mjv +miv∗
mi +mj

+
mi

mi +mj
|v − v∗|σ, w′

∗ =
mjv +miv∗
mi +mj

− mj

mi +mj
|v − v∗|σ.

(3.5)
When mi = mj , although primed velocities are the same, Qij and Qji still defer,
because of the cross section.

3.3. Weak form of collision operator. Testing the collision operator against
some suitable test functions ψ(v) and φ(v) yields

∫

R3

Qij(g, h)(v)ψ(v)dv

=

∫∫∫

R3×R3×S2

g(v)h(v∗) (ψ(v
′)− ψ(v))Bij(v, v∗, σ)dσdv∗dv,

and

∫

R3

Qji(h, g)(v)φ(v)dv

=

∫∫∫

R3×R3×S2

h(v∗)g(v) (φ(v
′
∗)− φ(v∗))Bij(v, v∗, σ)dσdv∗dv,

where now v′ and v′∗ are denoting the post-collisional velocities as defined by (3.2).
Therefore, looking at these two integrals pairwise, meaning that each time when
Qij is considered we add his pair Qji, we have

∫

R3

(Qij(g, h)(v)ψ(v) +Qji(h, g)(v)φ(v)) dv

=

∫∫∫

R3×R3×S2

g(v)h(v∗) (ψ(v
′) + φ(v′∗)− ψ(v)− φ(v∗))Bij(v, v∗, σ)dσdv∗dv,

(3.6)

with v′ and v′∗ are now given by the post-collisional velocities as defined by (3.2).

Some choice of test function leads to annihilation of the weak form. Namely,
from the conservation laws during collision process, we see

∫

R3

Qij(g, h)(v)dv = 0, (3.7)

as well as
∫

R3

(

Qij(g, h)(v)

(

miv

mi |v|2
)

+Qji(h, g)(v)

(

mjv

mj |v|2
))

dv = 0. (3.8)
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Therefore, if we consider distribution function F = [fi]1≤i≤I , then the weak form

(3.6) yields

2

I
∑

i=1

I
∑

j=1

∫

R3

Qij(fi, fj)(v)ψi(v)dv =

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

fi(v)fj(v∗)

× (ψi(v
′) + ψj(v

′
∗)− ψi(v)− ψj(v∗))Bij(v, v∗, σ)dσdv∗dv. (3.9)

3.4. Conservation laws. Weak forms of collision operator imply some its conser-
vative properties. More precisely, for any suitable F, (3.7) implies

∫

R3

[Q(F)]i dv = 0, for any i = 1, . . . , I, (3.10)

and moreover, from (3.9) choosing ψℓ(x) = mℓ |x|2, and ψℓ(x) = mℓx, x ∈ R3, one
has

I
∑

i=1

[Q(F)]imi |v|2 dv = 0, (3.11)

and
I
∑

i=1

[Q(F)]imiv dv = 0,

for any time t ≥ 0.
If F is a solution to the Boltzmann system (2.19), then these properties imply

conservation laws for number density of each species Ai, i = 1, . . . , I, and total
energy of the mixture. Indeed,

∂tm0,i[F](t) = 0, ∀i = 1, . . . , I, ∂tm2[F](t) = 0. (3.12)

4. Proof of Povzner lemma 2.2

The proof of Povzner lemma 2.2 by angular averaging for the mixing model

entices to obtain estimates for the quantity 〈v′〉ki + 〈v′∗〉kj integrated over sphere

S2, that represents the gain part of (3.9) for ψi(x) = 〈x〉ki . The usual techniques
used in [2] for example, can not be directly adapted when mi 6= mj . This becomes
clear when one writes local kinetic energies of each colliding molecule pair. When
mi 6= mj , these energies can be written as a certain convex combination, while
single component case (or in the same fashion when mi = mj) correspond to the
“middle” of this convex combination, or to the “halfs” (see Remark 5 below). Single
component situation (or when mi = mj) is therefore “symmetric”, in a sense, and
the techniques for proof of a sharper Povzner lemma by angular averaging, as done
by [6] or [14], can not be extended to the mixture case in a straight forward form.

Indeed, in the mixture setting whenmi 6= mj , the proof of the Povzner lemma 2.2
in the cases of non-linear gas mixture system uses a non-trivial modification of a
powerful energy identity in scattering angle coordinates. This identity is needed in
order to compute moment estimates that clearly show positive moments from the
gain collision operator part are dominated by the moments of the corresponding
loss part, which yields a very sharp estimate sufficient to obtain not only moments
propagation and generation, but also their scaled summability that prove propaga-
tion and generation of exponential moment estimates as well. An energy identity in
scattering angle coordinates was first developed in [6, 8] for the elastic and inelastic
case for scalar Boltzmann binary models. While such identity is rather easy in the
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elastic single species setting, where local energies are just the sum of the collision
invariant |v|2 and just its interacting counterpart |v∗|2, in the mixing case under
consideration the problem becomes highly non-trivial and the local energies to be

estimated now depend on binary sums of 〈v〉2i and 〈v∗〉2j and their corresponding

post collisional sum of 〈v′〉2i and 〈v′∗〉2j .

Lemma 4.1 (Energy identity in scattering direction coordinates for the (i, j)−pair
of colliding particles). Consider any (i, j)−pair of interacting velocities v and v∗
corresponding to particles masses mi and mj, respectively, with i, j fixed. Let their

local micro energy be Eij = 〈v〉2i + 〈v∗〉2j , with 〈v〉2i and 〈v∗〉2j defined according to

(2.12), and recall the two-body mass fraction parameter rij = mi

mi+mj
introduced in

(2.5).
Then, there exists a couple of functions pij = pij(v, v∗,mi,mj) and qij = qij(v, v∗,mi,mj)

such that, pij + qij = Eij and the following representation holds

〈v′ij〉2i = pij + λij σ · V̂ij , 〈v′∗ij〉2j = qij − λij σ · V̂ij . (4.1)

where λij := 2
√

rij(1− rij)(sEij − 1)((1− sij)Eij − 1) with sij = sij(v, v∗,mi,mj) ∈
[0, 1]. In particular, this representation preserves the local energy identity

〈v′ij〉2i + 〈v′∗ij〉2j = pij + qij = Eij = 〈v〉2i + 〈v∗〉2j . (4.2)

Moreover, the following inequalities hold

pij + λij ≤ Eij , qij + λij ≤ Eij , (4.3)

for any velocities v, v∗ ∈ R3 and any masses mi,mj > 0.

As we mentioned earlier in Remark 1, we eliminate subindex ij from Eij , pij ,
qij , λij , sij as we did in Remark 1 for v′ij , v

′
∗ij , Vij and rij .

Proof of Lemma 4.1. As anticipated, we represent the exchange of coordinates at
the interaction using the center of mass and relative velocity reference frame (2.3)
(with its symmetric form (3.5)) where the angular integration if performed in the

scattering direction corresponding to the post-collisional relative velocity σ = û′.
Thus, let’s denote with V the vector of center-of-mass and with u the relative
velocity as in (2.4),

V =
miv +mjv∗
mi +mj

, u = v − v∗.

Then, taking the squares of the magnitudes of the post-collisional velocities given
in (3.2), one obtains

|v′|2 = |V |2 +
m2

j

(mi +mj)2
|u|2 + 2mj

mi +mj
|u| |V |σ · V̂ ,

|v′∗|
2
= |V |2 + m2

i

(mi +mj)2
|u|2 − 2mi

mi +mj
|u| |V |σ · V̂ ,
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where V̂ denotes the unit vector of V . Passing to 〈·〉 bracket forms from (2.12),
implies

〈v′〉2i = 1 +
mi

∑I
ℓ=1mℓ

|V |2 +
mim

2
j

(mi +mj)2
∑I

ℓ=1mℓ

|u|2

+
2mimj

(mi +mj)
∑I

ℓ=1mℓ

|u| |V |σ · V̂ ,

〈v′∗〉
2
j = 1 +

mj
∑I

ℓ=1mℓ

|V |2 + mjm
2
i

(mi +mj)2
∑I

ℓ=1mℓ

|u|2

− 2mimj

(mi +mj)
∑I

ℓ=1mℓ

|u| |V |σ · V̂ .

(4.4)

Let us introduce the total energy E of two colliding particles in 〈·〉 bracket forms,
which is conserved during collision process by (3.1),

E := 〈v〉2i + 〈v∗〉2j = 〈v′〉2i + 〈v′∗〉
2
j .

Using the above equations (4.4), the energy E can be written in u−V notation, as
well,

E = 2+
mi +mj
∑I

ℓ=1mℓ

|V |2 + mimj

(mi +mj)
∑I

ℓ=1mℓ

|u|2 . (4.5)

The aim is to represent the squares of the post-collisional velocities 〈v′〉2i and

〈v′∗〉2j as a scalar convex combination of different “parts” of the energy E. This is
achieved by introducing two quantities,

i) the parameter r ∈ (0, 1), that distributes masses in the following convex
pair

r =
mi

mi +mj
and 1− r =

mj

mi +mj
, (4.6)

ii) the function s ∈ [0, 1] that convexly partitions the energy E into two com-

ponents, one related to |u|2 and another to |V |2, using the above identity
(4.5) as follows

sE = 1 +
mimj

(mi +mj)
∑I

ℓ=1mℓ

|u|2 and (1− s)E = 1 +
mi +mj
∑I

ℓ=1mℓ

|V |2 . (4.7)

Finally, each of the post-collisional quantities 〈v′〉2i and 〈v′∗〉2j as written the

representation as in (4.4), can be recast through the energy E and the dot product
between center of mass vector V and the scattering direction σ as follows

〈v′〉2i = r(1 − s)E + (1− r)sE + 2
√

r(1 − r)(sE − 1)((1− s)E − 1)σ · V̂ ,
〈v′∗〉

2
j = rsE + (1− r)(1 − s)E − 2

√

r(1 − r)(sE − 1)((1− s)E − 1)σ · V̂ ,
(4.8)

which yields the important relation that expresses the post - collisional local micro
energy E as a rotation of factors of E and V · σ, while preserving the local energy
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itself. Indeed, denoting

p = r(1 − s)E + (1− r)sE,

q = E − p = rsE + (1− r)(1 − s)E,

λ = 2
√

r(1 − r)(sE − 1)((1 − s)E − 1)

= 2
√

r(1 − r)

√
mimj

∑I
ℓ=1mℓ

|u| |V |,

clearly p + q = E and the representation (4.1) follows while preserving the binary
micro energy relation (4.2)

〈v′〉2i = p+ λσ · V̂ , 〈v′∗〉
2
j = q − λσ · V̂ ,

which completes the proof of the energy identities (4.1) and (4.2).
Moreover, it follows

1

E
(p+ λ) ≤

(

√

r(1 − s) +
√

(1 − r)s
)2

≤ 1,

since

max
0<r<1
0≤s≤1

(

√

r(1 − s) +
√

(1− r)s
)

= 1.

Similarly,
1

E
(q + λ) ≤

(√
rs+

√

(1− r)(1 − s)
)2

≤ 1,

uniformly in any (i, j)−pair, which concludes the proof of Lemma. �

Remark 5. Let us elaborate more on the difference between writing kinetic energies
(4.4) when mi 6= mj versus mi = mj . In order to be more precise, we will put a
bar on a quantity when assuming the same masses. For instance, total energy of
the two colliding particles of the same masses mi is

Ē = 〈v〉2i + 〈v∗〉2i = 2 +
2mi

∑I
j=1mj

|V |2 + mi

2
∑I

j=1mj

|u|2 .

Whenmi = mj then the parameter r = 1/2, and consequently for p̄ := p(v, v∗,mi,mi),
q̄ := q(v, v∗,mi,mi) and λ̄ we have

p̄ = q̄ =
1

2
Ē, λ̄ =

mi
∑I

j=1mj

|u| |V |,

which gives the squares of the magnitudes of the post-collisional velocities when
mi = mj ,

〈v′〉2i = Ē

(

1

2
+

mi
∑I

j=1mj

|u| |V |
Ē

σ · V̂
)

,

〈v′∗〉
2
i = Ē

(

1

2
− mi
∑I

j=1mj

|u| |V |
Ē

σ · V̂
)

.

(4.9)

Now, the difference between (4.8) as a convex combination writing in the mixture
setting and (4.9) as its special “middle point”, or “half”, case in single component
case (or mixture for mi = mj) is clear.
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Another important aspect to be pointed out is the comparison of inequalities
(4.3) in the case mi 6= mj versus mi = mj . When mi = mj, simply performing
Young’s inequality we get

λ̄

Ē
≤ 1

2
, (4.10)

which yields
1

Ē

(

p̄+ λ̄
)

=
1

Ē

(

q̄ + λ̄
)

≤ 1.

This inequality is an analogue of (4.3) for mi = mj . Note than when masses are
the same we can make use of the Young inequality, while in the case of different
masses, we had to be more precise since both 1

E (p+ λ) and 1
E (q + λ) attain 1 as a

maximal value for some values of their arguments, and therefore there is no room
for any inequality. In particular, this inequality will be of decisive importance for
the success of the Povzner lemma that will guarantee decay of the gain term with
respect to the number of moments.

Proof of Povzner lemma 2.2. In order to compute the angular average estimate
(2.22) we use the representation (4.1) and (4.2) from the energy identity Lemma 4.1
raised to power k/2. Then, the left hand side integral of (2.22) becomes
∫

S2

(

〈v′〉ki + 〈v′∗〉
k
j

)

bij(σ · û) dσ

=

∫

S2

(

(

p+ λσ · V̂
)

k
2

+
(

q − λσ · V̂
)

k
2

)

bij(σ · û) dσ. (4.11)

Now we use polar coordinates for σ and V̂ with zenith û. Namely, denoting with θ
the angle between σ and û, we decompose σ as

σ = cos θ û+ sin θ ω, with û · ω = 0 and ω = (cosϕ, sinϕ), θ ∈ [0, π), ϕ ∈ [0, 2π).
(4.12)

In the same fashion we decompose V̂ , by denoting with α ∈ [0, π) the angle between

V̂ and û,

V̂ = cosα û+ sinαΦ, where Φ ∈ S1 with û · Φ = 0.

Then the scalar product σ · V̂ becomes

σ · V̂ = cos θ cosα+Φ · ω sin θ sinα.

Defining τ := cos θ and expressing sin θ =
√
1− τ2, since sin θ ≥ 0 on the range of

θ, this scalar product reads

σ · V̂ = τ cosα+ Φ · ω
√

1− τ2 sinα =: µ = µ(τ, α,Φ · ω). (4.13)

In the integral (4.11), we first express σ in its polar coordinates (4.12) and then
change variables θ 7→ τ = cos θ, which yields
∫

S2

(

(

p+ λσ · V̂
)

k
2

+
(

q − λσ · V̂
)

k
2

)

bij(σ · û) dσ

=

∫ 2π

0

∫ π

0

(

(

p+ λσ · V̂
)

k
2

+
(

q − λσ · V̂
)

k
2

)

bij(cos θ) sin θdθdϕ

=

∫ 2π

0

∫ 1

−1

(

(p+ λµ)
k
2 + (q − λµ)

k
2

)

bij(τ)dτdϕ.
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For k ≥ 4, Taylor expansion of (p+ λµ)
k/2

and (q − λµ)
k/2

around µ = 0 up to
second order yields:

(p+ λµ)
k
2 = p

k
2 + k

2p
k
2−1λµ+ k

2

(

k
2 − 1

)

λ2µ2

∫ 1

0

(1− z)(p+ λµz)
k
2
−2dz,

(q − λµ)
k
2 = q

k
2 − k

2 q
k
2
−1λµ+ k

2

(

k
2 − 1

)

λ2µ2

∫ 1

0

(1− z)(q − λµz)
k
2
−2dz.

For 2 < k < 4, we stop at the first order and proceed similarly.
Now, let us analyze the integrands. By the Young inequality, for λ the following

estimates hold

± λ ≤ q − 1 ≤ q, and ± λ ≤ p− 1 ≤ p. (4.14)

We recall definition of p and q,

p = (r(1 − s) + (1− r)s)E, q = (rs+ (1− r)(1 − s))E,

for r ∈ (0, 1) and s ∈ [0, 1]. Considering r as parameter, for both coefficients
maximum with respect to variable s is achieved on the boundary, i.e. for either
s = 0 or s = 1, and moreover the following estimate holds for both coefficients

r(1 − s) + (1 − r)s ≤ max{r, (1− r)}, rs+ (1− r)(1 − s) ≤ max{r, (1− r)}.

Denoting

r = max{r, 1− r}, (4.15)

we conclude on upper bound for both p and q,

p ≤ rE, q ≤ rE.

Moreover, for p and q it holds

p = r(1 − s)E + (1− r)sE ≥ rE and q ≥ rE.

where we have denoted

r = min{r, 1− r}. (4.16)

Taking into account inequalities above, one has

p+ λµz ≤ p+ qµz = E − q(1 − µz) ≤ E(1− r(1− |µ|z)),

and similarly

q − λµz ≤ E(1− r(1− |µ|z)).
Therefore,

(p+ λµ)
k
2 + (q − λµ)

k
2 ≤ p

k
2 + q

k
2 + k

2µ
(

p
k
2 + q

k
2

)

+ k
(

k
2 − 1

)

r2µ2E
k
2

∫ 1

0

(1− z)(1− r(1− |µ|z)) k
2
−2dz.

Then
∫ 2π

0

∫ 1

−1

(

(p+ λµ)
k
2 + (q − λµ)

k
2

)

bij(τ) dτ dϕ ≤ P1 + P2 + P3,
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with

P1 :=
(

p
k
2 + q

k
2

)

∫ 2π

0

∫ 1

−1

bij(τ) dτ dϕ,

P2 := k
2

(

p
k
2 + q

k
2

)

∫ 2π

0

∫ 1

−1

µ bij(τ) dτ dϕ,

P3 := k
(

k
2 − 1

)

r2E
k
2

∫ 2π

0

∫ 1

−1

µ2

×
(∫ 1

0

(1− z)(1− r(1− |µ|z)) k
2
−2dz

)

bij(τ) dτ dϕ.

Term P1. Introducing constant C̃n

C̃n = rn, 0 < r < 1, (4.17)

which clearly decays in n, we have

P1 = ‖bij‖L1(dσ)

(

p
k
2 + q

k
2

)

≤ ‖bij‖L1(dσ) 2C̃ k
2
E

k
2 .

Term P2. Taking into account definition of µ from (4.13), the parity arguments
yield

P2 = k
2

(

p
k
2 + q

k
2

)

∫ 2π

0

∫ 1

−1

τ cosα bij(τ) dτ dϕ,

after bounding cosα ≤ 1. Using the estimate above for P1 and the fact that
τ cosα ≤ 1, we finally obtain

P2 ≤ ‖bij‖L1(dσ) k C̃ k
2
E

k
2 .

Since the constant C̃ k
2
has power decay in k, the constant k C̃ k

2
also decreases in k.

Term P3. We can compute explicitly the integral with respect to z

∫ 1

0

(1− z)(1− a(1−Az))n−2dz

=
1

a2A2

1

n(n− 1)

(

(1 + a(A− 1))
n − (1− a)n − aA(1− a)n−1n

)

,

for any 0 < a < 1 and A > 0. If A = 0, then we easily obtain
∫ 1

0

(1 − z)(1− a)n−2dz =
1

2
(1 − a)n−2.

In our case a = r and A = |µ|, µ being a function of variables of integration τ and
ϕ defined in (4.13) that satisfies |µ| ≤ 1, and thus P3 becomes

P3 = 2
r2

r2
E

k
2

∫ 2π

0

∫ 1

−1

(

(1 + r(|µ| − 1))
k
2

−(1− r)
k
2 − r|µ|(1− r)

k
2
−1 k

2

)

bij(τ) dτ dϕ

=: P31 + P32 + P33 ,

≤ E
k
2

(

Č
bij
k
2

+ ‖bij‖L1(dσ)

(

C̄ k
2
+ Ĉ k

2

))

,
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where we have denoted

P31 := 2
r2

r2
E

k
2

∫ 2π

0

∫ 1

−1

(1 + r(|µ| − 1))
k
2 bij(τ) dτ dϕ,

P32 := −2
r2

r2
(1 − r)

k
2E

k
2

∫ 2π

0

∫ 1

−1

bij(τ) dτ dϕ,

P33 := −r
2

r
k (1 − r)

k
2
−1E

k
2

∫ 2π

0

∫ 1

−1

|µ| bij(τ) dτ dϕ.

Term P31 . We rewrite term P31 ,

P31 = Č
bij
k
2

E
k
2 ,

by introducing the constant Č
bij
n

Čbij
n = 2

r2

r2

∫ 2π

0

∫ 1

−1

(1 + r(|µ| − 1))
n
bij(τ) dτ dϕ. (4.18)

In order to study its properties, we first note that 1 + r(|µ| − 1) ≤ 1, since |µ| ≤ 1,

and the equality holds only when |µ| = 1 (or σ =
{

±V̂
}

). Therefore, the sequence

of functions

An(x) := (1 + r(x − 1))
n

decreases monotonically in n and tends to 0 as n → ∞ for every x ∈ (0, 1) up to a
set of measure zero. Finally, we conclude by monotone convergence Theorem that

Č
bij
k
2

ց 0 as k → ∞.

When bij ∈ L∞(S2; dσ), we can obtain the explicit decay rate of the constant

Č
bij
k
2

, since in this case the integral (4.18) significantly simplifies. The rate will be

calculated in the Remark 6 below.

Term P32 . For the term P32 we immediately obtain

P32 = ‖bij‖L1(dσ) C̄ k
2
E

k
2 ,

with the constant

C̄n = −2
r2

r2
(1− r)n.

Term P33 . We first estimate the term P33 using |µ| ≤ 1,

P33 ≤ r2

r
k (1− r)

k
2
−1E

k
2

∫ 2π

0

∫ 1

−1

bij(τ) dτ dϕ. ≤ ‖bij‖L1(dσ) Ĉ k
2
E

k
2 ,

and the constant is defined with

Ĉn = 2
r2

r
n (1− r)n−1. (4.19)

Gathering estimates for P1, P2 and P3 completes the proof of (2.22) with

C
ij
n = ‖bij‖L1(dσ)

(

(2n+ 2)C̃n + C̄n + Ĉn

)

+ Čbij
n , n > 2,

and C
ij
n = ‖bij‖L1(dσ) 2C̃n, if 1 < n ≤ 2. Thus, the constant C

ij
k
2

issuing from

Povzner lemma satisfies Cij
k
2

→ 0, as k → ∞, and so there exists kij∗ = kij∗ (rij , bij)

for which C
ij
k
2

< ‖bij‖L1(dσ), for k > kij∗ . �
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Remark 6 (The case bij ∈ L∞(S2; dσ)). When the angular kernel is assumed
bounded, some calculations are simpler. Pulling out the L∞ norm of bij , we have

∫ 2π

0

∫ 1

−1

bij(τ) dτ dϕ ≤ 4π ‖bij‖L∞(dσ) ,

and so terms P1 and P32 become

P1 ≤ 8π ‖bij‖L∞(dσ) C̃ k
2
E

k
2 , P32 = 4π ‖bij‖L∞(dσ) C̄ k

2
E

k
2 .

Moreover, when bij is assumed bounded, the starting integral (4.11) do not de-

pend σ · û anymore, so we may instead of û take V̂ as a zenith of polar coordinates
in (4.12), which amounts to take α = 0 in (4.13) that implies µ = τ . In this case,
thanks to the parity arguments, term P2 vanishes, and term P33 can be explicitly
calculated, without using any estimate,

P33 = −r
2

r
k (1− r)

k
2
−1E

k
2

∫ 2π

0

∫ 1

−1

|τ | bij(τ) dτ dϕ = −2π ‖bij‖L∞(dσ) Ĉ k
2
E

k
2 ,

with the constant Ĉ k
2
from (4.19).

Finally, let us compute explicitly the constant Č
bij
n from (4.18) when bij(σ · û) ∈

L∞(S2; dσ). Namely, pulling out the L∞ norm of bij from the integral and using
µ = τ , we get

Čbij
n = 2

r2

r2
‖bij‖L∞(dσ)

∫ 2π

0

∫ 1

−1

(1 + r(|τ | − 1))
n
dτ dϕ

= 8π
r2

r3
‖bij‖L∞(dσ)

(

1

n+ 1
− (1− r)n+1

n+ 1

)

,

that shows its decay rate.
To summarize, the constant from the Povzner lemma in the case of bounded

angular part reads

C
ij
n = 4π ‖bij‖L∞(dσ) C

∞
n (r), (4.20)

where we have denoted

C
∞
n (r) = 2C̃n + C̄n − 1

2
Ĉn + 2

r2

r3

(

1

n+ 1
− (1− r)n+1

n+ 1

)

, n > 2, (4.21)

and C
∞
n (r) = 2C̃n if 1 < n ≤ 2, recalling (4.16) and (4.15). Moreover, it satisfies

C
ij
k
2

< 4π ‖bij‖L∞(dσ), or equivalently C
∞
n (r) < 1, for sufficiently large kij∗ depending

on rij and bij .

4.1. Study of the Povzner constant for bij(σ · û) ∈ L∞(S2; dσ). In this para-
graph we study in detail the constant (4.20) from the Povzner lemma 2.2 in the
case of bounded angular part. More precisely, we study its normalized part (4.21)

C
∞
n (r) = 2rn−2

r2

r2
(1− r)n− r2

r
n (1− r)n−1+2

r2

r3

(

1

n+ 1
− (1 − r)n+1

n+ 1

)

, (4.22)

for n > 2 and C
∞
n (r) = 2rn if 1 < n ≤ 2, with r = max {r, 1− r} and r =

min {r, 1− r}, and elaborate more on its decay rate in n depending on r.
First, taking r = 1

2 we expect to recover the same properties as for the single gas

when decay rate of the Povzner constant [3] was 2
n+1 , that monotonically decreases
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Figure 2. Comparison of the Povzner constant for r = 1
2 in the

mixture setting and the single component gas for n > 1.

and tends to zero in n > 1. In our case,

C
∞
n

(

1

2

)

=

{

4
n+1 −

(

1
2

)n
(

n+ 2
n+1

)

, if n > 2,

2
(

1
2

)n
, if 1 < n ≤ 2.

that keeps the same properties as for the single gas, which can be illustrated as in
Figure 2.

For general r ∈ (0, 1) decay properties of the constant issuing from the Povzner
lemma (4.21) strongly depend on r or on the fact how much species masses mi,
i = 1, . . . , I are disparate. It is clear that, since 0 < r < 1, the constant C∞

n (r) will
tend to zero as n goes to infinity. Here we are interested in a more subtle question:
determine n∗ such that it holds C

∞
n (r) < 1 for n ≥ n∗ and any fixed 0 < r < 1.

Converge of C∞
n (r) in n towards zero for any 0 < r < 1 ensures existence of such

n∗. It can be observed that n∗ grows as much as r is deviated from 1
2 , since the

constants in C
∞
n (r) with power decay rate will decay more slowly as r deviates from

1
2 . This behavior is illustrated in Figure 3. We can reformulate the question: for
some fixed value of n determine the interval of r for which it holds C∞

n (r) < 1, that
is illustrated in Figure 4.

5. Proof of Existence and Uniqueness Theorem 2.3

Before proving Theorem 2.3, we first study a property of the collision operator
that is a consequence of the Povzner lemma 2.23 and lemma B.1.

Lemma 5.1. Let F = [fi]i=1,...,I ∈ Ω and k∗ as defined in (2.24). Then, the
following estimate holds

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ −Ak∗
mk∗

[F](t)1+
γ
k∗ +Bk∗

mk∗
[F](t), (5.1)
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Figure 3. Constant C∞
n (r) from Povzner lemma 2.2 for some fixed

value of r =: r∗. This figure illustrates the non-monotonic behavior
in n variable, and the growth of n needed to ensure that C∞

n (r∗) < 1
caused by a deviation of r with respect to 1

2 .

with positive constants

Ak∗
= min

1≤i,j≤I

(

‖bij‖L1(dσ) − C
ij
k∗
2

) clb
max1≤i≤I mi

(IC0)
− γ

k∗ ,

Bk∗
= 2C2 max

1≤i,j≤I

((

∑I
i=1mi√
mimj

)γij

C
ij
k∗
2

) ⌊ k∗+1

2
⌋

∑

ℓ=1

(

k∗
ℓ

)

,

(5.2)

where C0 and C2 are from the characterization of the set Ω, clb is from the lower
bound (B.4), and C

ij
k∗
2

is a constant from the Povzner lemma 2.2 with k∗ > k, as

defined in (2.24), ensuring the property (2.23) for any pair (i, j) that yields positivity
of the constant Ak∗

.

Remark 7. It is important to notice that the strict positivity of the constant Ak∗

can be view as a coercive condition that secures global in time solutions, without
the need to require boundedness of entropy.
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Figure 4. Constant C∞
n (r) from Povzner lemma 2.2 for some fixed

value of n =: n∗. This figure illustrates the interval of r for which
it holds C∞

n∗
(r) < 1.

Proof. We start with the weak form (3.9). Taking test function ψi(x) = 〈v〉k∗

i , and
cross section (2.20), we have

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv =

I
∑

i=1

I
∑

j=1

∫

R3

〈v〉k∗

i Qij(fi, fj) dv

=
1

2

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

|v − v∗|γij fi(v)fj(v∗)

×
(

〈v′〉k∗

i + 〈v′∗〉
k∗

j − 〈v〉k∗

i − 〈v∗〉k∗

j

)

bij(σ · û) dσdv∗dv, (5.3)

where collisional rules are (3.2). The primed quantities integrated over sphere S2

are estimated via Povzner lemma. Indeed, by Lemma 2.2 , (5.3) becomes

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫

R3×R3

fi(v)fj(v∗) |v − v∗|γij

×
(

C
ij
k∗
2

(

〈v〉2i + 〈v∗〉2j
)

k∗
2 − ‖bij‖L1(dσ)

(

〈v〉k∗

i + 〈v∗〉k∗

j

)

)

dv∗dv, (5.4)

where C
ij
k∗
2

is a constant from Povzner lemma 2.2 with k∗ ≥ k = max1≤i,j≤I{kij∗ }
chosen large enough to ensure (2.23) uniformly in i, j-pairs. On one hand, we use
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polynomial inequalities from Lemmas C.1 and C.2
(

〈v〉2i + 〈v∗〉2j
)

k∗
2 ≤

(

〈v〉i + 〈v∗〉j
)k∗

≤ 〈v〉k∗

i + 〈v∗〉k∗

j +

ℓk∗
∑

ℓ=1

(

k∗
ℓ

)

(

〈v〉ℓi 〈v∗〉
k∗−ℓ
j + 〈v〉k∗−ℓ

i 〈v∗〉ℓj
)

,

≤ 〈v〉k∗

i + 〈v∗〉k∗

j +
(

〈v〉i 〈v∗〉
k∗−1
j + 〈v〉k∗−1

i 〈v∗〉j
)





ℓk∗
∑

ℓ=1

(

k∗
ℓ

)





with ℓk∗
= ⌊k∗+1

2 ⌋, and therefore

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫

R3×R3

fi(v)fj(v∗) |v − v∗|γij

×
{

−
(

‖bij‖L1(dσ) − C
ij
k∗
2

)(

〈v〉k∗

i + 〈v∗〉k∗

j

)

+C
ij
k∗
2





ℓk∗
∑

ℓ=1

(

k∗
ℓ

)





(

〈v〉i 〈v∗〉
k∗−1
j + 〈v〉k∗−1

i 〈v∗〉j
)







dv∗dv. (5.5)

On the other hand we use upper and lower bound of the non-angular cross section
|v − v∗|γij . For the upper bound, from (B.2) it follows

|v − v∗|γij ≤
(

∑I
i=1mi√
mimj

)γij
(

〈v〉γij

i + 〈v∗〉γij

j

)

≤
(

∑I
i=1mi√
mimj

)γij
(

〈v〉¯̄γi + 〈v∗〉¯̄γj
)

,

for ¯̄γ = max1≤i,j≤I γij ∈ (0, 1]. For the lower bound, we use Lemma B.1, but we
first check that all assumptions are satisfied from the fact that F ∈ Ω. Indeed,
bounds on m0 implies

c0 min
1≤i≤I

mi ≤
I
∑

i=1

∫

R3

mi fi dv ≤ C0 max
1≤i≤I

mi.

From the other side, bounds on m2 yield

(c2 − C0)

I
∑

j=1

mj ≤
I
∑

i=1

∫

R3

mi |v|2 fi dv ≤ (C2 − c0)

I
∑

j=1

mj .

Therefore, for constants c and C from assumptions of Lemma B.1 we can choose

c := min







c0 min
1≤i≤I

mi, (c2 − C0)
I
∑

j=1

mj







,

C := max







C0 max
1≤i≤I

mi, (C2 − c0)
I
∑

j=1

mj







.

Note that positivity of c is guaranteed by the definition of the set Ω. Finally, since
it can be estimated

I
∑

i=1

∫

R3

mi |v|2+ǫ
fi dv ≤ m2+ε





I
∑

j=1

mj





1+ ε
2

max
1≤i≤I

m
− ε

2

i ,
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we can choose

B := C2+ε





I
∑

j=1

mj





1+ ε
2

max
1≤i≤I

m
− ε

2

i .

Then (B.4) implies

I
∑

i=1

∫

R3

fi(v) |v − v∗|γij dv ≥ 1

max1≤i≤I mi
clb 〈v∗〉γj ,

and
I
∑

j=1

∫

R3

fj(v∗) |v − v∗|γij dv ≥ 1

max1≤j≤I mj
clb 〈v〉γi .

With these estimates, (5.5) becomes

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ −Dk∗
mk∗+γ + Ek∗

(m1+¯̄γ mk∗−1 +mk∗−1+¯̄γ m1) ,

where Dk∗
and Ek∗

are positive constants

Dk∗
= min

1≤i,j≤I

(

‖bij‖L1(dσ) − C
ij
k∗
2

) clb
max1≤i≤I mi

,

Ek∗
= max

1≤i,j≤I

((

∑I
i=1mi√
mimj

)γij

C
ij
k∗
2

) ℓk∗
∑

ℓ=1

(

k∗
ℓ

)

.

In particular, Dk∗
is positive since, by assumption, k∗ ≥ k defined in (2.24) large

enough ensuring (2.23) for the constant Cij
k∗
2

from Povzner lemma (2.22).

Arriving in moment notation, we can use monotonicity of moments (2.18), to-
gether with an estimate on m2 from characterization of set Ω, to get the following
estimate

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ −Dk∗
mk∗+γ + 2Ek∗

C2 mk∗
.

It remains to use a control from below derived in (C.3) for the highest order moment
mk∗+γ , taking k = k∗, λ = γ and Cm0

= C0 there,

mk∗+γ ≥ (IC0)
− γ

k∗ m
1+ γ

k∗

k∗

,

which yields final estimate (5.1). �

We turn to the proof of Existence and Uniqueness Theorem 2.3. Our proof follows
the one given in [3] for the single Boltzmann equation. In particular, our aim is to
apply Theorem A.1 from a general ODE theory in Banach spaces. In order to do
so, we first show that the collision operator is a mapping Q : Ω → L1

2. Indeed, take
any F ∈ Ω. Then,

‖Q(F)‖L1
2
=

I
∑

i=1

∫

R3

|[Q(F)]i (v)| 〈v〉
2
i dv ≤

I
∑

i=1

I
∑

j=1

∫

R3

|Qij(fi, fj)(v)| 〈v〉2i dv.

(5.6)
The absolute value |Qij(fi, fj)(v)| is written with the help of sign function and
shorter notation

|Qij(fi, fj)(v)| = Qij(fi, fj)(v) sij(v), sij(v) := sign (Qij(fi, fj)(v)) .
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Then sij(v) 〈v〉2i in (5.6) are viewed as test functions, so the weak form (3.9) implies

‖Q(F)‖L1
2
≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

fi(v)fj(v∗)Bij(v, v∗, σ)

×
(

sij(v
′) 〈v′〉2i + sji(v

′
∗) 〈v′∗〉

2
j − sij(v) 〈v〉2i − sji(v∗) 〈v∗〉2j

)

dσdv∗dv.

Since the sign function is upper bounded by 1, we obtain

‖Q(F)‖L1
2
≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

fi(v)fj(v∗)Bij(v, v∗, σ)

×
(

〈v′〉2i + 〈v′∗〉
2
j + 〈v〉2i + 〈v∗〉2j

)

dσdv∗dv.

Using conservation of energy (3.1), together with the form of cross section (2.20),
implies

‖Q(F)‖L1
2
≤

I
∑

i=1

I
∑

j=1

‖bij‖L1(dσ)

∫∫

R3×R3

fi(v)fj(v∗) |v − v∗|γij

×
(

〈v〉2i + 〈v∗〉2j
)

dv∗dv.

Finally, using upper bound (B.3), we obtain the estimate in terms of norms,

‖Q(F)‖L1
2
≤ max

1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

×
I
∑

i=1

I
∑

j=1

∫∫

R3×R3

fi(v)fj(v∗) 〈v〉¯̄γi 〈v∗〉
¯̄γ
j

(

〈v〉2i + 〈v∗〉2j
)

dv∗dv

= 2 max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

(

‖F‖L1
2+¯̄γ

‖F‖L1
¯̄γ

)

.

Since F ∈ Ω the right hand side is bounded, and therefore Q(F) ∈ L1
2.

The next task is to show that the mapping F 7→ Q(F), when restricted to Ω sat-
isfies (i) Hölder continuity, (ii) sub-tangent and (iii) one-sided Lipschitz conditions.
Indeed, the proof is divided into proofs of these three properties.

Assume that F,G ∈ Ω and cross section Bij is given in (2.20). Then, the following
three properties hold

(i) Hölder continuity condition:

‖Q(F)−Q(G)‖L1
2
≤ CH ‖F−G‖

1
2

L1
2

, (5.7)

(ii) Sub-tangent condition:

lim
h→0+

dist (F+ hQ(F),Ω)

h
= 0,

where

dist (H,Ω) = inf
ω∈Ω

‖H− ω‖L1
2
.
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(iii) One-sided Lipschitz condition:

[Q(F)−Q(G),F−G] ≤ CL ‖F−G‖L1
2
,

where, by Remark 9,

[Q(F)−Q(G),F−G] = lim
h→0−

(

‖(F−G) + h (Q(F)−Q(G))‖L1
2
− ‖(F−G)‖L1

2

)

h

≤
I
∑

i=1

∫

R3

([Q(F)]i (v)− [Q(G)]i (v)) sign (fi(v)− gi(v)) 〈v〉2i dv.

Constants CH and CL depend on ‖bij‖L1(dσ), number of species I and their masses

mi, i = 1, . . . , I, and constants from characterization of the set Ω.

Proof of (i) Hölder continuity condition. Let F = [fi]1≤i≤I and G = [gi]1≤i≤I be-
long to Ω. We need to estimate the following expression

IH := ‖Q(F)−Q(G)‖L1
2
=

I
∑

i=1

∫

R3

∣

∣

∣

∣

∣

∣

I
∑

j=1

(Qij(fi, fj)−Qij(gi, gj))

∣

∣

∣

∣

∣

∣

〈v〉2i dv. (5.8)

Using the binary structure of collision operator (2.1), it follows

Qij(fi, fj)−Qij(gi, gj) =
1

2
(Qij(fi − gi, fj + gj) +Qij(fi + gi, fj − gj)) . (5.9)

Therefore, using properties of absolute value, (5.8) becomes

IH ≤ 1

2

I
∑

i=1

I
∑

j=1

∫

R3

(|Qij(fi − gi, fj + gj)|+ |Qij(fi + gi, fj − gj)|) 〈v〉2i dv. (5.10)

The absolute value of collision operator will be written with the help of sign function,
using |·| = · sign(·). Since, at the end, all sign functions will be bounded by 1, we
will not go deeply into details of its structure. So, let us for the moment denote

sign(Qij(fi − gi, fj + gj)) = s−+
ij , sign(Qij(fi + gi, fj − gj)) = s+−

ij .

Then, (5.10) becomes

IH ≤ 1

2

I
∑

i=1

I
∑

j=1

∫

R3

(

Qij(fi − gi, fj + gj)s
−+
ij 〈v〉2i

+Qij(fi + gi, fj − gj)s
+−
ij 〈v〉2i

)

dv. (5.11)

Now we use the weak form (3.6), and in order to do so, we have to match pairs.
Indeed, we notice that the pair for ij-th element of the first sum is the ji-th element
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of the second sum. That is, (3.6) implies, after dropping the sign function,

∫

v∈R3

(

Qij(fi − gi, fj + gj)s
−+
ij 〈v〉2i +Qji(fj + gj, fi − gi)s

+−
ji 〈v〉2j

)

dv

≤
∫∫∫

R3×R3×S2

|fi(v)− gi(v)| (fj(v∗) + gj(v∗))

×
(

〈v′〉2i + 〈v′∗〉
2
j + 〈v〉2i + 〈v∗〉2j

)

Bij(v, v∗, σ)dσdv∗dv

= 2

∫∫∫

R3×R3×S2

|fi(v) − gi(v)| (fj(v∗) + gj(v∗))

×
(

〈v〉2i + 〈v∗〉2j
)

Bij(v, v∗, σ)dσdv∗dv,

the last equality is due to the conservation law at the microscopic level (3.1). There-
fore, (5.11) becomes

IH ≤
I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

|fi(v) − gi(v)| (fj(v∗) + gj(v∗))

×
(

〈v〉2i + 〈v∗〉2j
)

Bij(v, v∗, σ)dσdv∗dv.

Now we use the form of cross section (2.20). Inequality (B.2) yields the following
upper bound of the previous expression

IH ≤ max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

I
∑

i=1

I
∑

j=1

∫∫

R3×R3

|fi(v) − gi(v)| (fj(v∗) + gj(v∗))

×
(

〈v〉2+¯̄γ
i + 〈v〉2i 〈v∗〉

¯̄γ
j + 〈v∗〉2j 〈v〉

¯̄γ
i + 〈v∗〉2+¯̄γ

j

)

dv∗dv

≤ max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

(

‖F−G‖L1
2+¯̄γ

‖F+G‖L1
0

+ ‖F−G‖L1
2
‖F+G‖L1

¯̄γ
+ ‖F−G‖L1

¯̄γ
‖F+G‖L1

2
+ ‖F−G‖L1

0
‖F+G‖L1

2+¯̄γ

)

.

Monotonicity of the norm (2.18) yields

IH ≤ 2 max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

× ‖F−G‖L1
2+¯̄γ

(

‖F+G‖L1
2
+ ‖F+G‖L1

2+¯̄γ

)

.

By the interpolation inequality (C.2), it follows

IH ≤ 2I max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

× ‖F−G‖1/2
L1

2

‖F−G‖1/2
L1

2+2¯̄γ

(

‖F+G‖L1
2
+ ‖F+G‖L1

2+¯̄γ

)

. (5.12)
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Then we can bound term by term:

‖F−G‖1/2
L1

2+2¯̄γ

≤ ‖F‖1/2
L1

2+2¯̄γ

+ ‖G‖1/2
L1

2+2¯̄γ

≤ 2C
1/2
2+2¯̄γ ,

and in the same fashion

‖F+G‖L1
2
≤ 2C2, ‖F+G‖L1

2+¯̄γ
≤ 2C2+¯̄γ ,

since both F and G belong to Ω. Therefore, (5.12) becomes

IH ≤ 8 max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

C
1/2
2+2¯̄γ (C2 + C2+¯̄γ) ‖F−G‖1/2

L1
2

,

which concludes the proof of Hölder continuity. �

Proof of (ii) sub-tangent condition. In order to prove sub-tangent condition, we
first observe that, since we are in cut-off case, it is possible to split collision op-
erator Q(F) into gain and loss term. Namely,

[Q(F)]i =
[

Q+(F)
]

i
− fi(v) [ν(F)]i ,

where Q+ is a positive operator, and collision frequency ν(F), for any component
1 ≤ i ≤ I reads

[ν(F)]i =

I
∑

j=1

∫∫

R3×S2

fj(v∗)Bij(v, v∗, σ)dσdv∗ ≥ 0.

In our case, ν(F) is finite whenever F ∈ Ω. Indeed, for the cross section (2.20)-(2.21),

and since |v − v∗|γij ≤ |v − v∗|¯̄γ , for |v − v∗| ≥ 1 and |v − v∗|¯̄γ ≤ |v|¯̄γ + |v∗|¯̄γ ,

0 ≤ [ν(F)]i (v) ≤
(

max
1≤i,j≤I

‖bij‖L1(dσ)

) I
∑

j=1

∫

R3

fj(v∗) |v − v∗|γij dv∗

≤
(

max
1≤i,j≤I

‖bij‖L1(dσ)

)





I
∑

j=1

∫

|v−v∗|<1

fj(v∗) dv∗

+
I
∑

j=1

∫

|v−v∗|≥1

fj(v∗) |v − v∗|¯̄γ dv∗





≤
(

max
1≤i,j≤I

‖bij‖L1(dσ)

)



C0 + |v|¯̄γ C0 +

(

∑I
i=1mi

min1≤j≤I mj

)¯̄γ/2

‖F‖L1
¯̄γ





≤ K
(

1 + |v|¯̄γ
)

,

where

K =

(

max
1≤i,j≤I

‖bij‖L1(dσ)

)

(

2C0 +

(

∑I
i=1mi

min1≤j≤I mj

)

C2

)

. (5.13)

Proposition 2. Fix F ∈ Ω. Then, for any ε > 0 there exists h1 > 0, such that
B(F+ hQ(F), hε) ∩ Ω 6= ∅, for any 0 < h < h1.

Proof. Set χR(v) the characteristic function of the ball of radius R > 0 and intro-
duce the truncated function FR(t, v) = χR(v)F(t, v). Let

WR = F+ hQ(FR). (5.14)
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The idea of the proof is to find R such that from on one hand WR ∈ Ω, and on the
another hand WR ∈ B(F+ hQ(F), hε), with h explicitly calculated.

Step 1. We first show that it is possible to find an h1 such that WR remains non-
negative for as long 0 < h < h1. Indeed, for any F ∈ Ω its truncation FR ∈ Ω as
well. Since Q+ is a positive operator, we have

[WR]i = fi + h
[

Q+(FR)
]

i
− h [FR]i [ν(FR)]i ≥ fi

(

1− hK
(

1 +R
¯̄γ
))

≥ 0,

for any 0 < h < 1
K(1+R¯̄γ)

, and 1 ≤ i ≤ I, with K from (5.13).

Step 2. Since FR ∈ Ω, we use conservative properties of the collision operator
detailed in (3.10) and (3.11), to obtain

I
∑

i=1

∫

R3

[Q(FR)]i dv = 0,

I
∑

i=1

[Q(FR)]i 〈v〉
2
i dv = 0.

From (5.14), we get

m0[WR] = m0[F], m2[WR] = m2[F],

independently of R, which yields all needed lower and upper bounds on this quan-
tities.

Step 3. Finally, we need to show that L1
k∗

norm of WR is bounded.

Let the map Lγ,k∗
: [0,∞) → R, be defined with Lγ,k∗

(x) = −Ak∗
x1+

γ
k∗ +Bk∗

x,
where γ ∈ (0, 1] and k∗ as defined in (2.24) that yields positivity of constants Ak∗

and Bk∗
. It has only one root, denoted with x∗γ,k∗

, at which Lγ,k∗
changes from

positive to negative. Thus, for any x ≥ 0, we may write

Lγ,k∗
(x) ≤ max

0≤x≤x∗

γ,k∗

Lγ,k∗
(x) =: L∗

γ,k∗
.

Now, Lemma 5.1 implies

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
k∗

i dv ≤ Lγ,k∗
(mk∗

[F]) ≤ L∗
γ,k∗

.

Define

ξγ,k∗
:= x∗γ,k∗

+ L∗
γ,k∗

.

For any F ∈ Ω we have two possibilities: either mk∗
[F] ≤ x∗γ,k∗

or mk∗
[F] > x∗γ,k∗

.
For the former, it follows that

mk∗
[WR] ≤ x∗γ,k∗

+ h

(

I
∑

i=1

∫

R3

[Q(FR)]i 〈v〉
k∗

i dv

)

≤ x∗γ,k∗
+ hL∗

γ,k∗
≤ ξγ,k∗

,

where we have assumed, without loss of generality, that h ≤ 1. For the latter, we
choose R = R(F) sufficiently large such that mk∗

[FR] > x∗γ,k∗

, and therefore,

Lγ,k∗
(mk∗

[FR]) ≤ 0.

As a consequence,

mk∗
[WR] ≤ x∗γ,k∗

≤ ξγ,k∗
.

Therefore, we constructed a constant Ck∗
from characterization of the set Ω, that

is ξγ,k∗
.
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The conclusion is that WR ∈ Ω for any 0 < h < h∗, where

h∗ = min

{

1,
1

K (1 +R(F)¯̄γ)

}

,

and K is from (5.13).

Now, Hölder estimate (5.7) implies

h−1 ‖F+ hQ(F)−WR‖L1
2
= ‖Q(F)−Q(FR)‖L1

2
≤ CH ‖F− FR‖

1
2

L1
2

≤ ε,

for R := R(ε) sufficiently large. Then, for this choice of R, WR ∈ B(F+hQ(F), hǫ).

Finally, choosing R = max{R(F), R(ǫ)} and h1 as

h1 = min

{

1,
1

K (1 +R¯̄γ)

}

, (5.15)

with c given in (5.13), one concludes that WR ∈ B(F+ hQ(F), hǫ) ∩ Ω. �

Once the Proposition 2 is proved, it immediately follows

h−1dist (F+ hQ(F),Ω) ≤ ε, ∀ 0 < h < h1,

with h1 from (5.15), which concludes the proof of tangency condition. �

Proof of (iii) one-sided Lipschitz condition. From definition and representation (5.9),
we have

IL := [Q(F)−Q(G),F−G]

≤
I
∑

i=1

I
∑

j=1

∫

R3

(Qij(fi, fj)−Qij(gi, gj)) sign(fi(v)− gi(v)) 〈v〉2i dv

=
1

2

I
∑

i=1

I
∑

j=1

∫

R3

(Qij(fi − gi, fj + gj) +Qij(fi + gi, fj − gj)) sign(fi(v)−gi(v)) 〈v〉2i dv.

Changing i ↔ j in the second integral, we precisely obtain binary structure of the
weak form (3.6) that yields

IL ≤ 1

2

I
∑

i=1

I
∑

j=1

∫

R3

(

Qij(fi − gi, fj + gj) sign(fi(v)− gi(v)) 〈v〉2i

+Qji(fj + gj , fi − gi) sign(fj(v)− gj(v)) 〈v〉2j
)

dv

=
1

2

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

Bij(v, v∗, σ) (fi(v)− gi(v)) (fj(v∗) + gj(v∗))

×
(

sign(fi(v
′)− gi(v

′)) 〈v′〉2i + sign(fj(v
′
∗)− gj(v

′
∗)) 〈v′∗〉

2
j

−sign(fi(v)− gi(v)) 〈v〉2i − sign(fj(v∗)− gj(v∗)) 〈v∗〉2j
)

dσdv∗dv.
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Using the upper bound of the sign function, one has

IL ≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

Bij(v, v∗, σ)

×
(

|fi(v)− gi(v)| (fj(v∗) + gj(v∗))
(

〈v′〉2i + 〈v′∗〉
2
j

)

− |fi(v)− gi(v)| (fj(v∗) + gj(v∗)) 〈v〉2i
+ |fi(v)− gi(v)| (fj(v∗) + gj(v∗)) 〈v∗〉2j

)

dσdv∗dv.

Then, conservation of energy implies

IL ≤
I
∑

i=1

I
∑

j=1

∫∫∫

R3×R3×S2

Bij(v, v∗, σ)

× |fi(v)− gi(v)| (fj(v∗) + gj(v∗)) 〈v∗〉2j dσdv∗dv.
Now, specifying the collision cross section (2.20) and using (B.3)

|v − v∗|γij ≤
(

∑I
i=1mi√
mimj

)γij

〈v〉γij

i 〈v∗〉γij

j ≤
(

∑I
i=1mi√
mimj

)γij

〈v〉¯̄γi 〈v∗〉
¯̄γ
j ,

we obtain

IL ≤ max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

‖F−G‖L1
¯̄γ
‖F+G‖L1

2+¯̄γ
.

Thanks to the monotonicity of norms (2.18)

‖F−G‖L1
¯̄γ
≤ ‖F−G‖L1

2
,

we finally obtain

IL ≤ 2 max
1≤i,j≤I

(

‖bij‖L1(dσ)

(

∑I
i=1mi√
mimj

)γij
)

C2+¯̄γ ‖F−G‖L1
2
,

which completes the proof of one-sided Lipschitz condition. �

6. Proof of Theorem 2.6 (Generation and propagation of polynomial
moments)

The proof consists of several steps. First, once the existence and uniqueness of
vector value solution F to the Boltzmann system (2.19) is proven, we can derive from
the Boltzmann system an ordinary differential inequality for the scalar polynomial
moment mk[F](t). Then, the comparison principle for ODEs will yield estimates
that guarantee both generation and propagation of these polynomial moments.

Step 1. (Ordinary Differential Inequality for the polynomial moment).

Lemma 6.1. Let F = [fi]i=1,...,I be a solution of the Boltzmann system (2.19).

Then the polynomial moment (2.13) satisfies the following Ordinary Differential
Inequality

d

dt
mk[F](t) ≤ −Ak mk[F](t)

1+ γ
k +Bk mk[F](t), (6.1)

for k ≥ k∗ as defined in (2.24), with positive constants Ak and Bk as defined in
Lemma 5.1, equation (5.2), after replacing k∗ by k ≥ k∗.
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Proof. Consider i−th equation of the Boltzmann system (2.19),

∂tfi(t, v) =
I
∑

j=1

Qij(fi, fj)(t, v), i = 1, . . . , I.

Integration with respect to velocity v with weight 〈v〉ki , k ≥ 0, and summation over
all species i = 1, . . . , I yields

d

dt
mk[F](t) =

I
∑

i=1

I
∑

j=1

∫

R3

〈v〉ki Qij(fi, fj)(t, v)dv, (6.2)

after recalling definition (2.13) of polynomial moment. Using results from Lemma
5.1 for k ≥ k∗ as defined in (2.24), we conclude the estimate (6.1). �

Step 2. (Comparison principle). The starting point is the inequality (6.1). We
associate to it an ODE of Bernoulli type

y′(t) = −a y(t)1+c + b y(t), (6.3)

whose solution will be an upper bound for mk[F](t). Indeed, solution to (6.3) reads

y(t) =
(a

b

(

1− e−c b t
)

+ y(0)−ce−c b t
)− 1

c

. (6.4)

Step 3. (Generation of polynomial moments). Dropping initial data in (6.4) yields

y(t) ≤
(a

b

(

1− e−c b t
)

)− 1
c

, ∀t > 0.

Setting y(t) := mk[F](t), a := Ak, b := Bk and c := γ/k this implies generation
estimate (2.29) with

C
m =

(

Ak

Bk

)− k
γ

, for any k ≥ k∗.

Remark 8. For later purposes, we derive also the following inequality by approxi-
mating the last result. Namely, for t < 1, we may write

(

1− e−c b t
)− 1

c = (c b t)
− 1

c

(

1 +
b

2
t+ o(t)

)

≤ (c b)
− 1

c e
b
2
t t−

1
c ≤ (c b)

− 1
c e

b
2 t−

1
c .

On the other hand, for t ≥ 1, it follows

(

1− e−c b t
)− 1

c ≤
(

1− e−c b
)− 1

c .

Therefore,

y(t) ≤
(a

b

)− 1
c

{

(c b)
− 1

c e
b
2 t−

1
c , t < 1

(

1− e−c b
)− 1

c , t ≥ 1.
(6.5)

In other words, plugging y(t) := mk[F](t), a := Ak, b := Bk and c := γ/k, it yields

mk[F](t) ≤ B
m max{1, t− k

γ }, ∀t > 0, (6.6)

where the constant is

B
m = C

m max

{

(

γ

Bkk

)− k
γ

e
Bk
2 ,
(

1− e
− γ

Bkk

)− k
γ

}

, for any k ≥ k∗.
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Step 4. (Propagation of polynomial moments). For propagation result, when y(0)
is assumed to be finite, we first notice that y(t) is a monotone function of t, which
approaches to y(0) as t→ 0 on one hand, and converges to (a/b)−1/c when t→ ∞
on the other hand. Therefore,

y(t) ≤ max{y(0), (a/b)−1/c},
for all t ≥ 0. Again, taking y(t) := mk[F](t), a := Ak, b := Bk and c := γ/k, for
any k ≥ k∗, implies the propagation estimate (7.1).

7. Generation and propagation of exponential moments

Let F be a solution of the Boltzmann system (2.19). In this section we prove
both generation and propagation of exponential moment (2.14) related to F. The
proof strongly relies on generation and propagation of polynomial moments stated in
Theorem 2.29. Moreover, it uses polynomial moment ODI, but written in a slightly
different manner than in Section 6.1, which we make precise in the following Lemma.

Lemma 7.1. Let F be a solution of the Boltzmann system (2.19) with γ = ¯̄γ. Then
there exists positive constants K1 and K2 such that the following two polynomial
moments ODI hold

• ODI needed for propagation of exponential moments

d

dt
msk[F](t) ≤ −K1msk+γ [F](t)

+K2

(

max
1≤i,j≤I

C
ij
sk
2

) ℓk
∑

ℓ=1

(

k
ℓ

)

(msℓ+γ [F](t) msk−sℓ[F](t) + msk−sℓ+γ [F](t) msℓ[F](t)) .

(7.1)

• ODI needed for generation of exponential moments

d

dt
mγk[F](t) ≤ −K1mγk+γ [F](t)

+K2

(

max
1≤i,j≤I

C
ij
γk
2

) ℓk
∑

ℓ=1

(

k
ℓ

)

(mγℓ+γ [F](t) mγk−γℓ[F](t) +mγk−γℓ+γ [F](t) mγℓ[F](t)) .

(7.2)

Proof. We briefly point out that the main steps in the proofs are adaption of the
proof given in [22]. Let us consider polynomial moment

mδq[F](t) =: mδq, 0 < δ ≤ 2, q ≥ 0, with δq > k∗,

with k∗ as defined in (2.24), and derive an ODI for it starting from (5.4) so that

C
ij
δq
2

< ‖bij‖L1(dσ) holds uniformly for any pair i, j = 1, . . . , I, with C
ij
n being the

constant from Povzner lemma 2.2. Once we derive it, (7.1) will follow setting δ := s,
and (7.2) will follow with δ := γ. Indeed, from (5.4) we get

m
′
δq =

I
∑

i=1

∫

R3

[Q(F)]i 〈v〉
δq
i dv ≤ 1

2

I
∑

i=1

I
∑

j=1

∫∫

R3×R3

fi(v)fj(v∗) |v − v∗|γij

×
(

C
ij
δq
2

(

〈v〉2i + 〈v∗〉2j
)

δq
2 − ‖bij‖L1(dσ)

(

〈v〉δqi + 〈v∗〉δqj
)

)

dv∗dv.
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Before applying Lemma C.1, we first estimate, since (δ/2) ≤ 1,

(

〈v〉2i + 〈v∗〉2j
)

δq
2 ≤

(

〈v〉δi + 〈v∗〉δj
)q

,

and then apply it, which gives the following

(

〈v〉δi + 〈v∗〉δj
)q

≤ 〈v〉δqi + 〈v∗〉δqj

+

ℓq
∑

ℓ=1

(

q
ℓ

)

(

〈v〉δℓi 〈v∗〉δq−δℓ
j + 〈v〉δq−δℓ

i 〈v∗〉δℓj
)

,

with ℓq = ⌊ q+1
2 ⌋. The bound from above and below of the non-angular part of

the cross-section, |v − v∗|γij , is used as in Section 6.1. This implies a polynomial
moment ODI

m
′
δq(t) ≤ −K1mδq+γ + C

ij
δq
2

K2

ℓq
∑

ℓ=1

(

q
ℓ

)

(mδℓ+γmδq−δℓ +mδq−δℓ+γmδℓ) ,

where K1 and K2 are positive constants since δq ≥ k∗, with k∗ as defined in (2.24),

K1 = min
1≤i,j≤I

(

‖bij‖L1(dσ) − C
ij
δq
2

) clb
max1≤i≤I mi

,

K2 =
1

2

(

max
1≤i,j≤I

(

∑I
i=1mi√
mimj

)γij
)

,

which completes the proof. �

8. Proof of Theorem 2.7 (b) (Propagation of exponential moments)

Using Taylor series of an exponential function, one can represent exponential
moment as

Es[F](α, t) =
∞
∑

k=0

αk

k!
msk[F](t).

We will show that the exponential rate α = α(k∗), that is, depending on the k∗
parameter defined in (2.24) for γ = ¯̄γ.

We consider its partial sum an a shifted by γ one, namely,

En
s [F](α, t) =

n
∑

k=0

αk

k!
msk[F](t), En

s;γ [F](α, t) =

n
∑

k=0

αk

k!
msk+γ [F](t). (8.1)

In order to have lighter writing, we will drop from moment notation dependence on
t and α, and relation to F, and we will instead write

En
s [F](α, t) =: En

s , En
s;γ [F](α, t) := En

s;γ , msk+γ [F](t) =: msk+γ .

When it will be important to highlight dependence on t and α, we will also, for
example, write En

s (α, t) instead of En
s .

The idea of proof is to show that the partial sum En
s is bounded uniformly in

time t and n. To this end, we first derive ordinary differential inequality (ODI) for
it.
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ODI for En
s . Taking derivative with respect to time t of (8.1), we get

d

dt
En
s =

k0−1
∑

k=0

αk

k!
m

′
sk +

n
∑

k=k0

αk

k!
m

′
sk,

where k0 is an index that will be determined later on. We use a polynomial moment
ODE (7.1) for the second term that yields

d

dt
En
s ≤

k0−1
∑

k=0

αk

k!
m

′
sk −K1

n
∑

k=k0

αk

k!
msk+γ

+K2

n
∑

k=k0

(

max
1≤i,j≤I

C
ij
sk
2

)

αk

k!

ℓk
∑

ℓ=1

(

k
ℓ

)

(msℓ+γmsk−sℓ +msk−sℓ+γmsℓ)

=: S0 −K1S1 +K2S2. (8.2)

We estimate each sum S0, S1 and S2 separately.

Term S0. Propagation of polynomial moments (2.30) ensures bound on msk uni-
formly in time, which implies from (6.1) bound on its derivative, i.e. there exist a
constant ck0

such that

msk,m
′
sk ≤ ck0

for all k ∈ {0, 1, . . . , k0}. (8.3)

For S0 this yields

S0 ≤ ck0

k0−1
∑

k=0

αk

k!
≤ ck0

eα ≤ 2 ck0
, (8.4)

for α small enough to satisfy

eα ≤ 2. (8.5)

Term S1. We complete first the term S1 to make appear shifted partial sum En
s;γ

by means of

S1 =

n
∑

k=k0

αk

k!
Dk msk+γ = En

s;γ −
k0−1
∑

k=0

αk

k!
Dk msk+γ .

From the bound (8.3) we can estimate msk+γ as well,

msk+γ ≤ ck0
, k = 0, . . . , k0 − 1,

which together with considerations for the term S0 yields

S1 ≥ En
s;γ − 2ck0

. (8.6)

Term S2. Term S2 can be separated into two terms, namely

S2 =
n
∑

k=k0

(

max
1≤i,j≤I

C
ij
sk
2

)

αk

k!

ℓk
∑

ℓ=1

(

k
ℓ

)

(msℓ+γmsk−sℓ +msk−sℓ+γmsℓ) =: S21 + S22 .

Their treatment is the same, so let perform an estimate on S21 . Rearranging we
can write

S21 =
n
∑

k=k0

(

max
1≤i,j≤I

C
ij
sk
2

) ℓk
∑

ℓ=1

αℓ
msℓ+γ

ℓ!

αk−ℓ
msk−sℓ

(k − ℓ)!
≤
(

max
1≤i,j≤I

C
ij
sk0
2

)

En
s;γ En

s ,
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the last inequality is due to the decreasing property of Cij
k in k ≥ k∗, uniformly for

any i, j, with k∗ defined in (2.24). Therefore, we can estimate

S2 ≤ 2

(

max
1≤i,j≤I

C
ij
sk0
2

)

En
s;γ En

s . (8.7)

Finally, desired ODI for En
s is obtained from (8.2) gathering all estimates (8.4),

(8.6) and (8.7). Namely,

d

dt
En
s ≤ −K1En

s;γ + 2ck0
(1 +K1) + 2K2

(

max
1≤i,j≤I

C
ij
sk0
2

)

En
s;γ En

s . (8.8)

Bound on En
s . For each n ∈ N we define

Tn := sup{t ≥ 0 : En
s (α, τ) ≤ 4M0, ∀τ ∈ [0, t]},

where M0 is a bound on initial data in (2.31). We will show that En
s (t) is uniformly

bounded in t and n by proving that Tn = ∞ for all n ∈ N.

The sequence Tn is well-defined and positive. Indeed, since α ≤ α0, at time t = 0
we have

En
s (α, 0) =

n
∑

k=0

αk

k!
msk(0) ≤

n
∑

k=0

αk
0

k!
msk(0) ≤ Es(α0, 0) < 4M0,

uniformly in n, by assumption (2.31). Since each term msk(t) is continuous function
of t, so is En

s (α, t). Therefore, En
s (α, t) < 4M0 on some time interval [0, tn), tn > 0.

Thus Tn is well-defined and positive for every n ∈ N.

For t ∈ [0, Tn] it follows En
s (α, t) ≤ 4M0, which from (8.8) implies

d

dt
En
s ≤ −En

s;γ

(

K1 − 8K2

(

max
1≤i,j≤I

C
ij
sk0
2

)

M0

)

+ 2ck0
(1 +K1) . (8.9)

Since Cij
sk0
2

, for any i, j, converges to zero as sk0

2 > k∗ goes to infinity we can choose

k0 > 2k∗

s such that

K1 − 8K2

(

max
1≤i,j≤I

C
ij
k∗

)

M0 >
K1

2
,

or, equivalently,

K1 < 16K2

(

max
1≤i,j≤I

C
ij
k∗

)

M0, (8.10)

with K1 depending on k∗ as defined in (2.24). Hence, (8.9) becomes

d

dt
En
s ≤ −K1

2
En
s;γ + 2ck∗

(1 +K1) . (8.11)
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Next step consists in finding lower bound for En
s;γ in terms of En

s . Indeed, we can
estimate

En
s;γ =

n
∑

k=0

αk

k!
msk+γ ≥

n
∑

k=0

αk

k!

I
∑

i=1

∫

{〈v〉i≥α−1/2}
fi(t, v) 〈v〉sk+γ

i dv

≥ α−γ/2

(

En
s −

n
∑

k=0

αk

k!

I
∑

i=1

∫

{〈v〉i<α−1/2}
fi(t, v) 〈v〉ski dv

)

≥ α−γ/2

(

En
s −

n
∑

k=0

αk(1− s
2
)

k!
m0(0)

)

≥ α−γ/2
(

En
s −m0(0)e

α1− s
2

)

.

Plugging this result into (8.11) yields

d

dt
En
s ≤ −K1

2
α−γ/2En

s +
K1

2
α−γ/2

m0(0)e
α1− s

2 + 2ck0
(1 +K1) .

By the maximum principle for ODEs, it follows

En
s (α, t) ≤ max

{

En
s (α, 0),m0(0) e

α1− s
2 +

4ck0
(1 +K1)

K1 α−γ/2

}

≤M0 +m0(0) e
α1− s

2 + αγ/2 4ck0
(1 +K1)

K1
, (8.12)

for any t ∈ [0, Tn]. On the other hand, since s ≤ 2, the following limit property
holds

m0(0) e
α1− s

2 + αγ/2 4ck0
(1 +K1)

K1
→ m0(0), as α→ 0,

and m0(0) < En
s (α0, 0) for any α0, and therefore, by (2.31), m0(0) < M0. Thus, we

can choose sufficiently small α = α1 such that

m0(0) e
α1− s

2 + αγ/2 4ck∗
(1 +K1)

K1
< 3M0, (8.13)

for any s ≤ 2 and K1 = K1(k∗) from (8.10). In that case, inequality (8.12) implies
the following strict inequality

En
s (α, t) < 4M0, (8.14)

for any t ∈ [0, Tn] and 0 < α(k∗) ≤ α1, with α depending on k∗ defined in (2.24).

Conclusion I. If k0 is chosen such that (8.11) holds, and the choice of α is
such that 0 < α ≤ α0 and (8.5), (8.13) are satisfied, which amounts to take
α = min {α0, ln 2, α1}, then we have strict inequality (8.14), En

s (α, t) < 4M0, that
holds on the closed interval [0, Tn] uniformly in n. Because of the continuity of
En
s (α, t) with respect to time t, this strict inequality actually holds on a slightly

larger time interval [0, Tn + ε), ε > 0. This contradicts the maximality of Tn unless
Tn = +∞. Therefore, En

s (α, t) ≤ 4M0 for all t ≥ 0 and n ∈ N. Thus, letting n→ ∞
we conclude

Es[F](α, t) = lim
n→∞

En
s [F](α, t) ≤ 4M0, ∀t ≥ 0,

i.e. the solution F to system of Boltzmann equations with finite initial exponential
moment of order s and rate α0 will propagate exponential moments of the same
order s and a rate α that satisfies α = min {α0, ln 2, α1}. It is also very interesting
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to note that the rate α depends on the k∗ parameter from (2.24), which depends
on uniform in the i, j pairs upper bounds for the intermolecular potentials γij and

for controls of the kij∗ as defined in (2.23) in the Povzner lemma 2.2.

9. Proof of Theorem 2.7 (a) (Generation of exponential moments)

We consider an exponential moment of order γ = ¯̄γ and rate αt, where α depends
on k∗ from (2.24), for the solution F of the Boltzmann system, namely

Eγ [F](αt, t) =
I
∑

i=1

∫

R3

fi(t, v) e
αt〈v〉γi dv =

∞
∑

k=0

(αt)k

k!
mγk[F](t).

Consider its partial sum, and a shifted one

En
γ [F](αt, t) =

n
∑

k=0

(αt)k

k!
mγk[F](t), En

γ;γ [F](αt, t) =

n
∑

k=0

(αt)k

k!
mγk+γ [F](t).

As usual, we will most of the time relieve notation by omitting explicit dependence
on time t and relation to F, and write

En
γ [F](αt, t) =: En

γ , En
γ;γ [F](αt, t) := En

γ;γ .

Fix α and γ and define

T̄n := sup
{

t ∈ [0, 1] : En
γ [F](αt, t) ≤ 4M̄0

}

.

T̄n is well defined. Indeed, taking M̄0 :=
∑I

i=1 fi(t, v) 〈v〉
2
i dv =

∑I
i=1 fi(0, v) 〈v〉

2
i dv,

for t = 0, we get En
γ (0, 0) ≤ Eγ(0, 0) = m0(0) < 4M̄0. By continuity of partial sum

En
γ with respect to t, En

γ (αt, t) ≤ 4M̄0 on a slightly larger time interval t ∈ [0, tn),

tn > 0, and thus T̄n > 0.

ODI for En
γ . Taking time derivative of En

γ yields

d

dt
En
γ = α

n
∑

k=1

(αt)k−1

(k − 1)!
mγk +

k0−1
∑

k=0

(αt)k

k!
m

′
γk +

n
∑

k=k0

(αt)k

k!
m

′
γk.

For the first term we simply re-index the sum and use definition of shifted partial
sum, and for the last one we use polynomial moment ODI (7.2), which together
implies

d

dt
En
γ ≤ α En

γ;γ +

k0−1
∑

k=0

(αt)k

k!
m

′
γk −K1

n
∑

k=k0

(αt)k

k!
mγk+γ

+K2

n
∑

k=k0

(αt)k

k!

(

max
1≤i,j≤I

C
ij
γk
2

) ℓk
∑

ℓ=1

(

k
ℓ

)

(mγℓ+γmγk−γℓ +mγk−γℓ+γmγℓ)

=: α En
γ;γ + S0 −K1S1 +K2 (S21 + S22) . (9.1)

Term S0. From polynomial moment generation estimate (6.6) we can bound polyno-
mial moment of any order, as well as its derivative by means of (6.1). In particular,

mγk ≤ B
m max

t>0
{1, t−k}, m

′
γk ≤ BγkB

m max
t>0

{1, t−k}.

Denote

c̄k0
:= max

k∈{0,...k0−1}
{Bm, BγkB

m} .
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For S0 taking t ≤ 1, we have m
′
γk ≤ c̄k0

t−k and therefore

S0 :=

k0−1
∑

k=0

(αt)k

k!
m

′
γk ≤ c̄k0

k0−1
∑

k=0

αk

k!
≤ c̄k0

eα ≤ 2c̄k0
,

for α such that

eα ≤ 2. (9.2)

Term S1. Using boundedness of mγk+γ , we can write

S1 :=

n
∑

k=k0

(αt)k

k!
mγk+γ = En

γ;γ −
k0−1
∑

k=0

(αt)k

k!
mγk+γ ≥ En

γ;γ − 2c̄k0

1

t
,

for α chosen as in (9.2).

Term S2. Terms S21 and S22 are treated in the same fashion. We will detail calcu-
lation for S21 . We first reorganize the terms in sum and get

S21 :=
n
∑

k=k0

(αt)k

k!

(

max
1≤i,j≤I

C
ij
γk
2

) ℓk
∑

ℓ=1

(

k
ℓ

)

mγℓ+γmγk−γℓ

=

n
∑

k=k0

(

max
1≤i,j≤I

C
ij
γk
2

) ℓk
∑

ℓ=1

(αt)ℓmγℓ+γ

ℓ!

(αt)k−ℓ
mγk−γℓ

(k − ℓ)!
≤
(

max
1≤i,j≤I

C
ij
γk0
2

)

En
γ;γ En

γ .

since constant Cij
γk
2

decays with respect to k, for any i, j and large enough k0 ≥ 2k∗

γ ,

with k∗ from (2.24) to ensure (2.23), and therefore C
ij
γk
2

≤ C
ij
k∗

. Gathering all

estimates together, (9.1) becomes

d

dt
En
γ ≤ α En

γ;γ + 2c̄k0
−K1

(

En
γ;γ − 2c̄k0

1

t

)

+K2

(

max
1≤i,j≤I

C
ij
k∗

)

En
γ;γ En

γ , (9.3)

for α satisfying (9.2).

Bound on En
γ . Consider t ∈ [0, T̄n]. On this interval, En

γ (αt, t) ≤ 4M̄0, as well as

since T̄n ≤ 1 yields t−1 ≥ 1, which implies for (9.3) the following estimate

d

dt
En
γ ≤ −En

γ;γ

(

−α+K1 −K2

(

max
1≤i,j≤I

C
ij
k∗

)

4M̄0

)

+
2c̄k∗

(1 +K1) t
.

Since C
ij
γk0
2

converges to zero as k0 ≥ 2k∗

γ , uniformly i, j, so choosing such large k0

and small enough α such that

−α+K1 −K2

(

max
1≤i,j≤I

C
ij
k∗

)

4M̄0 >
K1

2
.

with K1 = K1(k∗), yields

d

dt
En
γ ≤ −K1

2
En
γ;γ +

K3

t
,

for K3(k∗) := 2c̄k∗
(1 +K1(k∗)). Finally, shifted moment can be bounded as follows

En
γ;γ(αt, t) =

n+1
∑

k=1

(αt)kmγk(t)

k!

k

αt
≥ 1

αt

n
∑

k=2

(αt)kmγk(t)

k!
≥

En
γ (αt, t)− M̄0

αt
,
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that yields

d

dt
En
γ ≤ −K1

2αt

(

En
γ − M̄0 −

2α

K1
K3

)

.

Now we choose α small enough so that

M̄0 +
2α

K1
K3 < 2M̄0, or, equivalently α = α(k∗) <

K1(k∗)M̄0

2K3(k∗)
,

which implies

d

dt
En
γ (αt, t) ≤ −K1

2αt

(

En
γ (αt, t)− 2M̄0

)

.

As in [22], integrating this differential inequality with an integrating factor t
K1
2α ,

yields

En
γ (αt, t) ≤ max

{

En
γ (0, 0), 2M̄0

}

≤ 2M̄0, ∀t ∈ [0, T̄n], (9.4)

since Eγ(0, 0) = m0(0) < 2M̄0.

Conclusion II. From (9.4) the following bound on En
γ (αt, t) holds

En
γ (αt, t) ≤ 2M̄0 < 4M̄0, ∀t ∈ [0, T̄n].

Exploring the continuity of the partial sum En
γ (αt, t) this inequality holds on a

slightly larger interval, which contradicts maximality of T̄n, unless T̄n = 1. There-
fore, we can conclude T̄n = 1 for all n ∈ N, or in other words

En
γ (αt, t) ≤ 4M̄0, ∀t ∈ [0, 1], ∀n ∈ N.

Letting n→ ∞, we conclude

En
γ (αt, t) ≤ 4M̄0, ∀t ∈ [0, 1]. (9.5)

In particular, for time t = 1, (9.5) can be seen as an initial condition for propagation
(2.31), and thus the exponential moment of the order γ and a rate 0 < ᾱ ≤ α(k∗)
stays uniformly bounded for all t > 1, for k∗ as in (2.24).
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Appendix A. Existence and Uniqueness Theory for ODE in Banach
spaces

Theorem A.1. Let E := (E, ‖·‖) be a Banach space, S be a bounded, convex and
closed subset of E, and Q : S → E be an operator satisfying the following properties:

(a) Hölder continuity condition

‖Q[u]−Q[v]‖ ≤ C ‖u− v‖β , β ∈ (0, 1), ∀u, v ∈ S;
(b) Sub-tangent condition

lim
h→0+

dist (u+ hQ[u],S)
h

= 0, ∀u ∈ S;

(c) One-sided Lipschitz condition

[Q[u]−Q[v], u− v] ≤ C ‖u− v‖ , ∀u, v ∈ S,
where [ϕ, φ] = limh→0− h

−1 (‖φ+ hϕ‖ − ‖φ‖).
Then the equation

∂tu = Q[u], for t ∈ (0,∞), with initial data u(0) = u0 in S,
has a unique solution in C([0,∞),S) ∩ C1((0,∞), E).

The proof of this Theorem on ODE flows on Banach spaces can be found in the
unpublished notes [10] or in [3].

Remark 9. In Section 5, we will concentrate on E := L1
2. Therefore, for one-sided

Lipschitz condition, we will use the following inequality,

[ϕ, φ] ≤
I
∑

i=1

∫

R3

ϕi(v) sign(φi(v)) 〈v〉2i dv,

for ϕ = [ϕi]1≤i≤I and φ = [φi]1≤i≤I , as pointed out in [3].

Appendix B. Upper and lower bound of the cross section

In this section, we derive an upper and lower estimate for the non-angular part
of the cross section, |v − v∗|γij , γij ∈ (0, 1], with 1 ≤ i, j,≤ I. First, for the upper
estimate, by triangle inequality, we have

√

mi
∑I

i=1mi

√

mj
∑I

i=1mi

|v − v∗| ≤ min







√

mi
∑I

i=1mi

,

√

mj
∑I

i=1mi







|v − v∗|

≤ min







√

mi
∑I

i=1mi

,

√

mj
∑I

i=1mi







(|v|+ |v∗|) ≤
√

mi
∑I

i=1mi

|v|+
√

mj
∑I

i=1mi

|v∗|

(B.1)

≤
√

1 +
mi

∑I
i=1mi

|v|2 +
√

1 +
mj

∑I
i=1mi

|v∗|2.

Therefore,

|v − v∗|γij ≤
(

∑I
i=1mi√
mimj

)γij
(

〈v〉γij

i + 〈v∗〉γij

j

)

, (B.2)

for γij ∈ (0, 1], and any i, j ∈ {1, . . . , I}.
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From (B.1) it also follows

√

mi
∑I

i=1mi

√

mj
∑I

i=1mi

|v − v∗| ≤
√

mi
∑I

i=1mi

|v|+
√

mj
∑I

i=1mi

|v∗|

=

(

mi
∑I

i=1mi

|v|2 + mj
∑I

i=1mi

|v∗|2 + 2

√
mimj

∑I
i=1mi

|v| |v∗|
)1/2

≤ 〈v〉i 〈v∗〉j .

Therefore,

|v − v∗|γij ≤
(

∑I
i=1mi√
mimj

)γij

〈v〉γij

i 〈v∗〉γij

j , (B.3)

for γij ∈ (0, 1] and 1 ≤ i, j ≤ I.
Than, for the lower estimate we use ideas of Lemma 2.1 in [4], to prove the

following Lemma. Note that here functions F do not need to be solutions of the
Boltzmann problem. Moreover, this lower bound may not hold for F being a sin-
gular measure, since the estimate degenerates as c goes to zero.

Lemma B.1. Let γij ∈ [0, 2], for any i, j ∈ {1, . . . , I}, and assume

0 ≤
{

F (t) = [f1(t) . . . fI(t)]
T
}

t≥0
⊂ L1

2 satisfies

c ≤
I
∑

i=1

∫

R3

mi fi(t, v)dv ≤ C, c ≤
I
∑

i=1

∫

R3

fi(t, v)mi |v|2 dv ≤ C,

I
∑

i=1

∫

R3

fi(t, v)mivdv = 0,

for some positive constants c and C. Assume also boundedness of the moment

I
∑

i=1

∫

R3

fi(t, v)mi |v|2+ε
dv ≤ B, ε > 0.

Then, there exists a constant clb characterized in (B.11), such that

I
∑

i=1

∫

R3

mifi(t, w) |v − w|γij dw ≥ clb 〈v〉γj , (B.4)

for any j ∈ {1, . . . , I}, with γ = min1≤i,j≤I γij.

Proof. Case γij = 0 is trivial, so take γij ∈ (0, 2], for any i, j,= 1, . . . , I.
Let us denote the open ball centered at the origin and of radius r > 0 with

B(0, r) ⊂ R3. We consider separately cases when v ∈ B(0, r) and v ∈ B(0, r)c, with
r to be chosen later on depending on constants c, C, and γij .

For v ∈ B(0, r)c we first consider the whole domain R3, and write, by the Young
inequality, for any v ∈ R3 and γij ∈ (0, 2]

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥
I
∑

i=1

mi

∫

R3

fi(t, w) (c̃ |v|γij − |w|γij ) dw,
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where c̃ = min1≤i,j≤I

(

min{1, 21−γij}
)

. Since

I
∑

i=1

mi

∫

R3

fi(t, w) |w|γij dw

≤
I
∑

i=1

mi

∫

B(0,1)

fi(t, w)dw +

I
∑

i=1

mi

∫

B(0,1)c
fi(t, w) |w|2 dw ≤ 2C,

we obtain that for any v ∈ R3 it holds

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥ c̃

I
∑

i=1

|v|γij mi

∫

R3

fi(t, w)dw − 2C. (B.5)

Now define the following two parameters, both smaller than one,

m :=

√

min1≤j≤I mj
∑I

i=1mi

, and m :=

√

max1≤j≤I mj
∑I

i=1mi

.

In addition, we define the parameter r∗ by

m r∗ :=

(

4C

c̃ c

)
1
γ

≥ 1, (B.6)

since C ≥ c by assumption and c̃ ≤ 1.
Hence, for any i, j = 1, . . . , I and v ∈ R3 ∩ B(0, r)c we have the following lower
bound

|v|γij = |v|γij
(

1|v|<1(v) + 1|v|≥1(v)
)

≥ |v|γ ,

for any r ≥ r∗ ≥ 1, where

γ = min
1≤i,j≤I

γij .

Therefore, using the choice of r∗ with the inequality (B.6), (B.5) becomes

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥ c̃ c |v|γ − 2C

≥ c̃ c

2





√

mj
∑I

i=1mi

|v|





γ

+
c̃ c

2
(m r∗)

γ − 2C,

for every j ∈ {1, . . . , I}. Therefore, for v ∈ B(0, r∗)
c we have

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥ c̃ c

2





√

mj
∑I

i=1mi

|v|





γ

, (B.7)

for any j ∈ {1, . . . , I}.
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On the other hand, let us study the case v ∈ B(0, r∗). First note that for any
R > 0,

I
∑

i=1

mi

∫

|v−w|≤R

fi(t, w) |v − w|2 dw

=

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|2 dw −
I
∑

i=1

mi

∫

|v−w|≥R

fi(t, w) |v − w|2 dw

≥ c |v|2 + c−
I
∑

i=1

mi

∫

|v−w|≥R

fi(t, w) |v − w|2 dw

≥ c(1 + |v|2)− 1

Rε

I
∑

i=1

mi

∫

|v−w|≥R

fi(t, w) |v − w|2+ε
dw. (B.8)

Next, we have

I
∑

i=1

mi

∫

|v−w|≥R

fi(t, w) |v − w|2+ε dw ≤ 21+ε max{C,B}
(

1 + |v|2+ε
)

≤ 21+ε max{C,B}
(

1 + |v|2
)

2+ε
2 ≤ 21+ε max{C,B}

(

1 + r2∗
)

2+ε
2 .

Choosing R := R(r∗, c, C,B) > 0 sufficiently large such that

1

Rε
21+ε max{C,B}

(

1 + r2∗
)

2+ε
2 ≤ c

2
, or R ≥

(

22+ε

(

max{C,B}
c

)

(

1 + r2∗
)

2+ε
2

)
1
ε

,

(B.9)
from (B.8) we have

I
∑

i=1

mi

∫

|v−w|≤R

fi(t, w) |v − w|2 dw ≥ c

2
∀v ∈ B(0, r∗).

Moreover, for this choice of R, for any γij ∈ (0, 2] we have

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥
I
∑

i=1

mi

∫

|v−w|≤R

fi(t, w) |v − w|γij dw

≥
I
∑

i=1

Rγij−2mi

∫

|v−w|≤R

fi(t, w) |v − w|2 dw.

Since R ≥ 1, we can bound Rγij−2 ≥ Rγ−2, which yields the estimate

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥ c

2R2−γ
, ∀v ∈ B(0, r∗). (B.10)
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Finally, summarizing (B.7) and (B.10),

I
∑

i=1

mi

∫

R3

fi(t, w) |v − w|γij dw ≥ c

2R2−γ
1B(0,r∗)(v)

+
c̃ c

2





√

mj
∑I

i=1mi

|v|





γ

1B(0,r∗)c(v)

≥ c̃ c

2R2−γ






1B(0,r∗)(v) +





√

mj
∑I

i=1mi

|v|





γ

1B(0,r∗)c(v)






.

Then there exists a constant clb such that

c̃ c

2R2−γ






1B(0,r∗)(v) +





√

mj
∑I

i=1mi

|v|





γ

1B(0,r∗)c(v)






≥ clb 〈v〉γj .

for any j ∈ {1, . . . , I}. In fact, one may even construct clb in order to ensure the
last inequality. For example, clb can take the following value

clb =
c

2
c̃



22+ε

(

max{C,B}
c

)

(

1 +
1

m2

(

4C

c̃ c

)
2
γ

)

2+ε
2





−2+γ
ε

×
(

1 +

(

m

m

)2(
4C

c̃ c

)
2
γ

)−γ/2

, (B.11)

by taking into account (B.6) and (B.9). �

Appendix C. Some technical results

Lemma C.1 (Polynomial inequality I, Lemma 2 from [8]). Assume p > 1, and let

np = ⌊p+1
2 ⌋. Then for all x, y > 0, the following inequality holds

(x+ y)
p − xp − yp ≤

np
∑

n=1

(

p
n

)

(

xnyp−n + xp−nyn
)

.

Lemma C.2 (Polynomial inequality II). Let b + 1 ≤ a ≤ p+1
2 . Then for any

x, y ≥ 0,

xayp−a + xp−aya ≤ xbyp−b + xp−byb.

Proof. This Lemma is modified version of Lemma A.1 from [22]. Indeed, the proof
is the same, one just needs to observe that a−b ≥ 0 and p−a−b ≥ 0, and therefore

(

ya−b − xa−b
)

xbyb
(

yp−a−b − xp−a−b
)

≥ 0,

for any x, y ≥ 0. �

Lemma C.3 (Interpolation inequality). Let k = αk1 + (1 − α)k2, α ∈ (0, 1),
0 < k1 ≤ k ≤ k2. Then for any g ∈ L1

k,i

‖g‖L1
k,i

≤ ‖g‖αL1
k1,i

‖g‖1−α
L1

k2,i
. (C.1)
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We can extend this interpolation inequality for vector functions G = [gi]1≤i≤I .
Namely, under the same assumptions,

‖G‖L1
k
≤ I ‖G‖αL1

k1

‖G‖1−α
L1

k2

. (C.2)

Lemma C.4 (Jensen’s inequality). Let f(x) be positive and integrable in Rd and
G a convex function. Then

G

(

1
∫

f(x)dx

∫

f(x)g(x)dx

)

≤ 1
∫

f(x)dx

∫

f(x)G(g(x))dx,

for any positive function g.

We apply this lemma specifying g(x) = 〈x〉ki and G(x) = x1+
λ
k , λ ∈ (0, 1] and

k ≥ 1. This implies
∫

R3

fi(v) 〈v〉k+λ
i dv ≥

(∫

R3

fi(v)dv

)−λ
k
(∫

R3

fi(v) 〈v〉ki dv
)1+λ

k

.

If additionally we have an upper bound on zero order scalar polynomial moment,
that is, if it holds

∫

R3

fi(v)dv = m0,i[F] ≤ m0[F] ≤ Cm0
,

then
∫

R3

fi(v) 〈v〉k+λ
i dv ≥ C

−λ
k

m0

(∫

R3

fi(v) 〈v〉ki dv
)1+ λ

k

.

Summing over i = 1, . . . , I after some manipulation we get a control from below
for the moment mk+λ[F]. In deed,

mk+λ[F] ≥ (ICm0
)−

λ
k mk[F]

1+λ
k . (C.3)
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[9] L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for
gaseous mixtures, Kin. and Rel. Models, 6(1): 137–157, 2013.

[10] A. Bressan, Notes on the Boltzmann equation, Lecture notes for a summer course, S.I.S.S.A.,
2005. (http://www.math.psu.edu/bressan/)

[11] M. Briant and E. Daus, The Boltzmann equation for a multi-species mixture close to global
equilibrium, Arch. Ration. Mech. Anal., 222(3): 1367–1443, 2016.



52 IRENE M. GAMBA AND MILANA PAVIĆ-ČOLIĆ
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