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Abstract

For the spatially homogeneous Boltzmann equation with cutoff hard poten-
tials, it is shown that solutions remain bounded from above uniformly in time by a
Maxwellian distribution, provided the initial data have a Maxwellian upper bound.
The main technique is based on a comparison principle that uses a certain dissi-
pative property of the linear Boltzmann equation. Implications of the technique to
propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are
discussed.

1. Introduction and main result

The nonlinear Boltzmann equation is a classical model for a gas at low or mod-
erate densities. The gas in a spatial domain � ⊆ R

d , d � 2, is modeled by the mass
density function f (x, v, t), (x, v) ∈ � × R

d , where v is the velocity variable, and
t ∈ R is time. The equation for f reads

(∂t + v · ∇x ) f = Q( f ), (1)

where Q( f ) is a quadratic integral operator, expressing the change of f due to
instantaneous binary collisions of particles. The precise form of Q( f ) will be
introduced below, refer also [10,34].

Although some of our results deal with more general situations, we will be
mostly concerned with a special class of solutions that are independent of the spa-
tial variable (spatially homogeneous solutions). In this case f = f (v, t) and one
can study the initial-value problem

∂t f = Q( f ), f |t=0 = f0, (2)

where 0 � f0 ∈ L1(Rd). The spatially homogeneous theory is very well developed
although not complete. In the present paper, we shall solve one of the most notice-
able open problems remaining in the field, by establishing the following result.
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Theorem 1. Assume that 0 � f0(v) � M0(v), for almost all v ∈ R
d , where

M0(v) = e−a0|v|2+c0 is the density of a Maxwellian distribution, a0 > 0, c0 ∈ R.
Let f (v, t), v ∈ R

d , t � 0 be the unique solution of equation (2) for hard poten-
tials with the angular cutoff assumptions (5), (7), that preserves the initial mass and
energy (12). Then there are constants a > 0 and c ∈ R such that f (v, t) � M(v),

for almost all v ∈ R
d and for all t � 0, where M(v) = e−a|v|2+c.

Before going on, let us make a few comments about the interest of these bounds.
Maxwellian functions

M(v) = e−a|v|2+b·v+c, with a > 0, c ∈ R, b ∈ R
d constants,

are unique, within integrable functions, equilibrium solutions of (2), and they
provide global attractors for the time-evolution described by (2) [or (1), with appro-
priate boundary conditions]. Classes of functions bounded above by Maxwellians
provide a convenient analytical framework for the local existence theory of strong
solutions for (1), see Grad [22] and Kaniel–Shinbrot [25]. Such bounds also
play an important role in the proof of validation of the Boltzmann equation by
Lanford [27], see also [10]. However, establishing the propagation of uniform
bounds is generally a difficult problem, solved only in the context of small solu-
tions in an unbounded space, see Illner–Shinbrot [24] and subsequent works [4,
21,23,29]. These results rely in a crucial way on the decay of solutions for large
|x | and on the dispersive effect of the transport term, in order to control the non-
linearity. Dispersive effects may not have such a strong influence in other physical
situations, and the spatially homogeneous problem presents the simplest example
of such a regime, in which case our results may be relevant.

In the spatially homogeneous case many additional properties of solutions can
be established. Upper bounds with polynomial decay for |v| large hold uniformly
in time, see Carleman [8,9] and Arkeryd [2]. Solutions are also known to have a
lower Maxwellian bound for all positive times, even for compactly supported ini-
tial data [32]. Many results have been established that concern the behavior of the
moments with respect to the velocity variable, following the work by Povzner [31],
see in particular [1,6,12,15,30]. The Carleman-type estimates [2,8,9] were crucial
in the treatment of the weakly inhomogeneous problem given in [3]. However, as
also pointed out in Reference [3], Maxwellian bounds of the local existence the-
ory [22,25] are not known to hold on longer time-intervals, and it remains an open
problem to characterize the approach to the Maxwellian equilibrium in classes of
functions with exponential decay. The present work aims to at least partially rem-
edy this situation, and to develop a technique that could be used to obtain further
results in this direction.

We will next introduce the notation and the necessary concepts to make the
statement of Theorem 1 more precise. We set in (2)

Q( f ) (v, t) =
∫

Rd

∫
Sd−1

( f ′∗ f ′ − f∗ f ) B(v − v∗, σ ) dσ dv∗, (3)

where, adopting common shorthand notations, f = f (v, t), f ′ = f (v′, t),
f∗ = f (v∗, t), f ′∗ = f (v′∗, t). Here v, v∗ denote the velocities of two particles
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either before or after a collision,

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ, (4)

are the transformed velocities, and σ ∈ Sd−1 is a parameter determining the direc-
tion of the relative velocity v′ − v′∗. In the more general case of (1), the space
variable x appears (similarly to t above) in each occurrence of f , f∗, f ′, f ′∗; we
shall often omit the t and x variables from the notation for brevity.

Many properties of the solutions of the Boltzmann equation depend crucially
on certain features of the kernel B in (3). Its physical meaning is the product of the
magnitude of the relative velocity by the effective scattering cross-section (see [26,
Section 18] for terminology and explicit examples); this quantity characterizes the
relative frequency of collisions between particles. Our assumptions on B fall in the
category of “hard potentials with angular cutoff”, refer to [34]. More precisely, we
assume that

B(v − v∗, σ ) = |v − v∗|β h(cos ϑ), cos ϑ = (v−v∗)·σ|v−v∗| , (5)

where 0 < β � 1 is a constant and h is a nonnegative function on (−1, 1) such that

h(z) + h(−z) is nondecreasing on (0, 1) (6)

and

0 � h(cos ϑ) sinα ϑ � C, ϑ ∈ (0, π), (7)

where α < d − 1 and C is a constant. Assumption (7) implies in particular that the
integral

∫
Sd−1 h(cos ϑ) dσ is finite; for convenience we normalize it by setting

∫
Sd−1

h(cos ϑ) dσ = ωd−2

∫ 1

−1
h(z) (1 − z2)

d−3
2 dz = 1, (8)

where ωd−2 is the measure of the (d − 2)-dimensional sphere. The classical hard-
sphere model in R

d , satisfies (5) with β = 1, (6) and (7) with α = d − 3.
Notice that we can write Q( f ) = Q+( f )−Q−( f ), where Q+( f ) is the “gain”

term, and Q−( f ) is the “loss” term,

Q+( f ) =
∫

Rd

∫
Sd−1

f ′ f ′∗ B(v − v∗, σ ) dσ dv∗, Q−( f ) = ( f ∗ |v|β) f,

and ∗ denotes the convolution in v. Because of the symmetry σ �→ −σ in the
integral defining Q+( f ) we can restrict the σ -integration above to the half-sphere
{cos ϑ > 0} if we simultaneously replace B(v − v∗, σ ) by

B(v − v∗, σ ) := (B(v − v∗, σ ) + B(v − v∗,−σ)) 1{cos ϑ>0}.

It will be convenient to introduce the following (nonsymmetric) bilinear forms of
the collision terms,

Q+( f, g) =
∫

Rd

∫
Sd−1

f ′∗ g′ B(v − v∗, σ ) dσ dv∗, Q−( f, g) = ( f ∗ |v|β) g,

(9)

for which obviously Q±( f ) = Q±( f, f ).
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We say that a nonnegative function f ∈ C([0,∞); L1(Rd)), such that (1 +
|v|2) f ∈ L∞((0,∞); L1(Rd)), is a (mild) solution of (2) if for almost all v ∈ R

d

f (v, 0) = f0(v); f (v, t) − f (v, s) =
∫ t

s
Q( f )(v, τ ) dτ, (10)

for all 0 � s < t . Notice that the conditions on f imply (in the spatially-
homogeneous case!) that

Q+( f ), Q−( f ) ∈ L∞((0,∞); L1(Rd)), (11)

so the integral form in (10) is well-defined. This also implies that f is weakly
differentiable with respect to t and that the differential equation (2) holds in the
sense of distributions on R

d × (0,∞).
The existence of a unique solution satisfying the conservations of mass and

energy,
∫

Rd
f (v, t) dv =

∫
Rd

f0(v) dv,

∫
Rd

f (v, t) |v|2 dv =
∫

Rd
f0(v) |v|2 dv (12)

follows from a theorem by Mischler and Wennberg [30], for all f0 � 0 for which
the above integrals are finite. The second condition in (12) is also necessary for
the uniqueness [35]. For the initial data with strong decay (as in Theorem 1) one
could also refer to the well-known results by Carleman, Arkeryd and DiBlasio
[1,2,13].

The following theorem summarizes the main results about qualitative properties
of solutions in the case of “hard potentials with cutoff” known before this work.

Theorem 2. Let f (v, t), v ∈ R
d , t � 0, (n � 2) be a solution of (2) that satis-

fies (12), and let the kernel B in the Boltzmann operator (3) satisfy (5), (7). Then

(i) if f0 ∈ L∞(Rd) then f (t, ·) ∈ L∞(Rd), t � 0. Moreover, if (1 + |v|)s

f0 ∈ L∞(Rd
v ) for some s > s0, then (1 + |v|)s f (v, t) ∈ L∞(Rd

v ), t � 0.
Here s0 is a constant dependent on the dimension d.

(ii) if the integral of f is nonzero, then for every t0 > 0 there is a Maxwellian
M(v) = K e−κ|v|2 , K > 0, κ > 0 such that

f (v, t) � M(v), t � t0, for almost all v ∈ R
d .

(iii) for all t0 > 0 and for all k > 1, the quantity mk(t) = ∫
Rd f (v, t) |v|2k dv

is bounded uniformly for t � t0; moreover, this bound is uniform in t � 0 if
mk(0) < +∞.

(iv) In the case d = 3 and B(v − v∗, σ ) = c |v − v∗| (hard spheres) or B(v −
v∗, σ ) = h

(
(v−v∗)·σ|v−v∗|

)
, h ∈ L1(−1, 1) (pseudo-Maxwell particles) if f0 sat-

isfies

f0

M0
∈ L1(Rd)
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for some Maxwellian M0(v) = e−a0|v|2 , a0 > 0, then there exists constants
a > 0, C such that

∫
Rd

f (v, t)

M(v)
dv � C,

where M(v) = e−a|v|2 .

Part (i) of this theorem is due to Carleman [9] in the case of the hard spheres;
the general case was studied by Arkeryd in [2]. Part (ii) is due to Pulvirenti
and Wennberg [32]. Part (iii) is due to Desvillettes [12] under the additional
assumption that a moment mk0(t) of order k0 > 1 is finite initially; this assump-
tion was removed by Mischler and Wennberg [30]. Earlier results by Arke-
ryd [1] and Elmroth [15] state that all moments remain bounded uniformly in
time, once they are finite initially. Finally, part (iv) is due to Bobylev [6]; we will
give an extension of this result to the class of Boltzmann kernels satisfying (5–7) in
Section 2.

Our main contribution in the present work is to show that the estimates for
the spatially homogeneous Boltzmann equation [precisely, parts (i) and (iv) of
Theorem 2, together with the conservation of mass] imply Theorem 1. Since we
do not use other properties of the spatially-homogeneous problem we can state our
result in a more general, spatially inhomogeneous setting.

We consider solutions of (1) with the spatial domain � = T
d := R

d/Z
d

(the unit hypercube with periodic boundary conditions), on an arbitrary finite time
interval [0, T ]. Spatially homogeneous solutions are then a special subclass charac-
terized by the constant dependence on the x variable. To simplify the presentation,
let us assume sufficient regularity (smoothness) of the solutions f (x, v, t) with
respect to the x and t variables; this is not a restriction in the setting of Theorem 1,
and the requirements of smoothness will be relaxed significantly later on to include
a sufficiently wide class of weak solutions of the spatially inhomogeneous problem.

Theorem 3. Let T > 0 and let f ∈ C([0, T ]; L1(Td × R
d)), f � 0, be a (suffi-

ciently regular) solution of the Boltzmann equation (1), with the initial condition

f (x, v, 0) = f0(x, v) � M0(v), for almost all (x, v) ∈ T
d × R

d ,

where M0(v) = e−a0|v|2+c0 , a0 > 0, c0 ∈ R. Assume that the solution f (x, v, t)
satisfies the estimates

∫
Rd

f (x, v, t) dv � ρ0, (x, t) ∈ T
d × [0, T ], (13)

and

sup
(x,t) ∈ Td×[0,T ]

‖ f (x, v, t)‖L∞
v

� C0, sup
(x,t)∈Td×[0,T ]

∫
Rd

f (x, v, t)

M1(v)
dv � C1,

(14)
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where M1(v) = e−a1|v|2+c1 and 0 < a1 < a0, c1, ρ0, C0, C1 are constants. Then
for any 0 < a < a1, for any t ∈ [0, T ]

f (x, v, t) � M(v), for almost all (x, v) ∈ T
d × R

d ,

where M(v) = e−a|v|2+c, and the constant c depends on a, a0, c0, a1, c1, ρ0, C0
and C1 only.

Remark 1. The regularity assumptions in Theorem 3 are not particularly restric-
tive. The precise conditions in the spatially inhomogeneous case are that f is a
mild (renormalized) solution of (1) that is dissipative in the sense of Lions (see
Definition 1 in Section 3). A sufficient condition that is naturally satisfied in the
spatially-homogeneous case is that (11) holds in addition to (10).

The plan of the paper is as follows. In Section 2, we extend property (iv)
from Theorem 2 to the class of Boltzmann kernels satisfying (5–7). This part uses
properties specific to the spatially-homogeneous problem, and develops the ideas
from [5–7]. The result of Section 2 illustrates an important point that the type of
behavior described by Theorem 1 is not a particular feature of the hard-sphere
model, but rather a generic phenomenon that holds for a wide class of collision
kernels of “hard” type. The key step occurs in Section 3: there we introduce the
technique based on a comparison principle which plays a crucial role in the der-
ivation of pointwise estimates. In Section 4 we prove a weighted bound for the
collision term, based on the Carleman representation of the gain operator, which is
used in the comparison argument. Finally, some classical results used throughout
the text are recalled in three Appendices.
Convention: Throughout the text, the function sign z is defined as 1 for z > 0, −1
for z < 0 and an arbitrary fixed value in [−1, 1] for z = 0.

2. Weighted L1 estimates of solutions

The aim of this section is to establish the following weighted integral bound
for the solution of the Boltzmann equation (2).

Theorem 4. Let f (v, t), v ∈ R
d , t � 0 (n � 2) be a solution of the spatially

homogeneous Boltzmann equation (2) with the collision kernel B satisfying (5–7)
and with the initial datum f0 � 0 such that

f0

M0
∈ L1(Rd) (15)

for a certain Maxwellian M0(v) = e−a0|v|2 , where a0 is a positive constant. Then
there exist constants D, a > 0, such that∫

Rd

f (v, t)

M(v)
dv � D, t � 0, (16)

where M(v) = e−a|v|2 .
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This result was obtained by Bobylev in the case of the “hard spheres” and
Maxwell molecules [5,6]. Here we present a generalization to the case of more
general kernels B that satisfy (5–7). The basic approach that we use is based on the
method of moments. We introduce the central moments of order 2k,

mk(t) =
∫

Rd
f (v, t) |v|2k dv, k = 0, 1, . . . , (17)

and use the Taylor expansion 1
M(v)

= ea|v|2 =
∞∑

k=0

|v|2k

k! ak to obtain

∫
Rd

f (v, t)

M(v)
dv =

∞∑
k=0

mk(t)

k! ak . (18)

The series above converges if and only if the integral is finite. To establish the esti-
mate (16) it is then sufficient to show that the radius of convergence of the power
series in (18) remains positive, uniformly in time. To this end we will look for an
estimate

sup
t�0

mk(t)

k! � Cqk, (19)

for certain C > 0, q > 0 and for k large enough; that would imply that the series (18)
converges for a < q−1, and the estimate (16) then follows.

There are two important steps to our proof. The first one is a sharp form of
the Povzner lemma as presented by Bobylev [6] for hard spheres in three dimen-
sions and extended here for the more general class of kernels satisfying (5–7). The
next step is the study of the asymptotic behavior of the constants in the moment
inequalities in which a sharper control of the constants is required for the case of
the kernels with an integrable angular singularity.

Multiplying the Boltzmann equation (2) by �(|v|2) where � : R+ → R is a
convex function and integrating with respect to v we obtain, after standard changes
of variables,

d

dt

∫
Rd

f (v, t)�(|v|2) dv =
∫

Rd

∫
Rd

f (v, t) f (v∗, t) W�(v, v∗) dv dv∗, (20)

where

W�(v, v∗) = |v − v∗|β
(
G�(v, v∗) − L�(v, v∗)

)
,

g�(v, v∗) = 1

2

∫
Sd−1

(
�(|v′∗|2) + �(|v′|2)) h

(
(v−v∗)·σ|v−v∗|

)
dσ,

where h is as in (5), v′∗, v′ are defined in (4), and

L�(v, v∗) = 1

2

(
�(|v|2) + �(|v∗|2)

)
.

Since the expression for G�(v, v∗) is clearly the most complicated part of (20)
we look for a simpler upper bound. This is generally achieved by Povzner-type
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inequalities; the present version has the advantage of yielding an explicit constant
for the moments of the “gain” term [the case �(z) = zk] with a “good” asymptotic
behavior for k → ∞.

Lemma 1. (Angular averaging lemma [6,7].) Let � : R+ → R be convex and
assume that the function h̄(z) = 1

2 (h(z)+h(−z)) is nondecreasing on (0, 1). Then

G�(v, v∗) � ωd−2

∫ 1

−1
�

((|v|2 + |v∗|2
) 1 + z

2

)
h̄(z) (1 − z2)

d−3
2 dz,

where ωd−2 is the area of the unit sphere in R
d−1.

Proof. See [7, Lemma 1] for the case d = 3; the extension to general d is straight-
forward.

The next step is to choose in (20) �(z) = zk , k � 1 to obtain the time-evolution
of the moments mk(t). By Lemma 1 we have in that case

G�(v, v∗) � ak(|v|2 + |v∗|2)k,

where the constant ak is given by

ak = ωd−2

∫ 1

−1

(1 + z

2

)k
h̄(z) (1 − z2)

d−3
2 dz, (21)

Notice that a1 = 1, ak < 1 for k > 1 and ak is strictly decreasing with increasing k.
By (20) we then have

m′
k(t) �

∫
Rd

∫
Rd

f (v, t) f (v∗, t) Wk(v, v∗) dv dv∗, (22)

where

Wk = 1

2
|v − v∗|β

(
ak(|v|2 + |v∗|2)k − |v|2k − |v∗|2k)

= −1

2
(1 − ak) |v − v∗|β

(|v|2k − |v∗|2k)

+1

2
ak |v − v∗|β

(
(|v|2 + |v∗|2)k − |v|2k − |v∗|2k) =: −Uk + Vk . (23)

Since ak < 1 for k > 1, the leading term −Uk on the right-hand side is non-positive,
and the terms in Vk can be estimated using the inequalities |v−v∗|β � |v|β +|v∗|β ,

(|v|2 + |v∗|2)k − |v|2k − |v∗|2k �

[
k+1

2

]
∑
i=1

(
k

j

)(
|v|2 j |v∗|2(k− j) + |v|2(k− j)|v∗| j

)
,

where [ · ] denotes the integer part (refer to [7]). We then have
∫

Rd

∫
Rd

f (v, t) f (v∗, t) Vk(v, v∗) dv dv∗ � ak Sk(t),
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where

Sk(t) =

[
k+1

2

]
∑
j=1

(
k

j

) (
m j+ β

2
(t) mk− j (t) + mk− j+ β

2
(t) m j (t)

)
. (24)

and ∫
Rd

∫
Rd

f (v, t) f (v∗, t) Uk(v, v∗) dv dv∗

� (1 − ak)

∫
Rd

∫
Rd

f (v, t) f (v∗, t) |v − v∗|β |v|2k dv dv∗ (25)

To estimate the last term we will use the following lower bound for the moments
of order s ∈ (0, 1].
Lemma 2. [refer to [6] for the case s = 1] The solution of (2) satisfies∫

Rd
f (v∗, t) |v − v∗|s dv∗ � cs

∫
Rd

f0(v∗) |v − v∗|s dv∗, v ∈ R
d ,

for any s ∈ (0, 1].
Proof. By translating the solution f (v∗, t) in the velocity space, we can reduce the
proof to the case v = 0. We will establish the estimates

ms(t) � cs ms(0), (26)

for 0 < s � 1. Notice that �(z) = −zs is a convex function. Then, by the previous
computation, and using Lemma 1,

m′
s(t) �

∫
Rd

∫
Rd

f (v, t) f (v∗, t) |v − v∗|β

×
(as

2

(|v|2 + |v∗|2
)s − 1

2

(|v|2s + |v∗|2s)) dv dv∗

where as = ωd−2
∫ 1
−1

( 1+z
2

)s
b̄(z) (1 − z2)

d−3
2 dz > 1. We shall estimate the inte-

grand above in order to obtain an expression involving ms(t) and similar quantities.
For this we notice that since (x + y)β � xβ + yβ , for β ∈ [0, 1], then

|v − v∗|β � (|v| + |v∗|)β � |v|β + |v∗|β.

Also,

|v − v∗|β �
∣∣ |v|β − |v∗|β

∣∣ and (|v|2 + |v∗|2)s � | |v|2s − |v∗|2s
∣∣.

Therefore

|v − v∗|β
(as

2

(|v|2 + |v∗|2
)s − 1

2

(|v|2s + |v∗|2s))

� as

2

(|v|β − |v∗|β
)(|v|2s − |v∗|2s) − 1

2

(|v|β + |v∗|β)
(|v|2s + |v∗|2s)

= as − 1

2

(|v|β+2s + |v∗|β+2s) − as + 1

2

(|v|β |v∗|2s + |v|2s |v∗|β
)
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and we obtain

m′
s(t) � (as − 1) m0 ms+ β

2
(t) − (as + 1) m β

2
(t) ms(t).

In the particular case β = 1 we have

m′
1
2
(t) �

(
a 1

2
− 1

)
m0m1 −

(
a 1

2
+ 1

)
m2

1
2
(t),

(m0 and m1 are constants, by the conservation of mass and energy). Therefore,

m 1
2
(t) � min

{
m 1

2
(0),

(a 1
2

− 1

a 1
2

+ 1
m0 m1

) 1
2
}

� min

{
1,

(a 1
2

− 1

a 1
2

+ 1

) 1
2
}

m 1
2
(0) ,

since m0m1 � m 1
2
(0)2. (This is the argument of Bobylev.) To achieve the proof

for β < 1 we iterate this argument, applying it with s = jβ
2 , j = 1, . . . ,, until

( j+1)β
2 � 1. Consider first the case of the terminal j , when

s0 = jβ

2
< 1 � ( j + 1)β

2
.

In that case

m′
s0

(t) � (as0 − 1) m0 ms0+ β
2
(t) − (as0 + 1) mβ/2(t) ms0(t)

� (as0 − 1) m
2−

(
s0+ β

2

)
0 m

s0+ β
2

1 − (as0 + 1) m
1− β

2s0
0 m

1+ β
2s0

s0 (t)

Therefore,

ms0(t) � min

⎧⎨
⎩ms0(0),

(
as0 − 1

as0 + 1
m

(
1
s0

−1
)(

s0+ β
2

)
0 m

s0+ β
2

1

) 1

1+ β
2s0

⎫⎬
⎭

� min

{
1,

(
as0 − 1

as0 + 1

) 1

1+ β
2s0

}
ms0(0) =

(
as0 − 1

as0 + 1

) 1

1+ β
2s0 ms0(0).

Further, take s1 = s0 − β
2 > 0. Then

m′
s1

(t) � (as1 − 1) m0 ms0(t) − (as1 + 1) m
1− β

2s1
0 m

1+ β
2s1

s1 (t),

so

ms1(t) � min

{
ms1(0),

((
as1 − 1

as1 + 1

)
m

β
2s1
0 ms0(t)

) 1

1+ β
2s1

}

� min

{
ms1(0),

((
as1 − 1

as1 + 1

)(
as0 − 1

as0 + 1

) s0
s0+ β

2 m
β

2s1
0 ms0(0)

) 1

1+ β
2s1

}

�
(

as1 − 1

as1 + 1

) s1
s1+ β

2

(
as0 − 1

as0 + 1

) s1
s0+ β

2 ms1(0).

The rest of the proof follows by induction. 
�
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As a consequence of Lemma 2 we have∫
Rd

f (v∗, t) |v − v∗|β dv∗ � cβ

∫
Rd

f0(v∗) |v − v∗|β dv∗ � ν0 (1 + |v|β),

where ν0 is a constant depending on β and f0. Applying this estimate to (25) we
obtain∫

Rd

∫
Rd

f (v, t) f (v∗, t) Uk(v, v∗) dv dv∗

� (1 − ak) ν0

∫
Rd

∫
Rd

f (v, t)(1 + |v|β)|v|2k dv dv∗ � (1 − ak) ν0 mk+ β
2
(t)

Thus, we obtain for any k � 1

m′
k(t) � −(1 − ak) ν0 mk+ β

2
(t) + ak Sk(t). (27)

From these inequalities we see that to characterize the behavior of the moments
mk(t) with k integer we need to include the moments

mk(t) with k = j + β
2 l, j, l = 0, 1, . . . , (28)

This property and this structure of the inequalities is due to the fact that the kernel
B in (5) has homogeneity |v − v∗|β . Since the total mass is conserved, m0(t) =
m0 = const; we shall enumerate the rest of the moments (28) by a single index kn ,
n = 1, 2 . . ., in the increasing order, and introduce the notation

J = {kn : n = 1, 2, . . . , }
for the index set.

The crucial next step is to obtain the control of the moments mk(t) using (27) and
(24) that would establish the geometric growth for the normalized sequence (19).
We introduce the normalized moments

zk(t) = mk(t)

�(k + b)
, k ∈ J, (29)

where the constant b > 0 will be chosen below depending on α in (7). For b = 1
and k nonnegative integer we have zk(t) = mk(t)/k! which is the normalization
appearing in (19).

Notice that by Stirling’s formula,

�(k + b) ∼ kb−1 �(k + 1), k → ∞, (30)

so if (19) holds for a particular b > 0 then it holds for any other.
By the assumptions on the initial data f0, we have

zk(0) � C0 qk
0 , k ∈ J, (31)

for any q0 > a−1
0 and C0 large enough, where a0 is the constant in (15). Further,

using (27) and (29) we obtain

z′
k(t) � −(1 − ak) ν0 m

− β
2k

0 �(k + b)
β
2k z

1+ β
2

k (t) + ak
Sk(t)

�(k + b)
, (32)
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where the constant ak in (32) has been defined in (21) and we used the interpola-

tion inequality mk+ β
2
(t) � m

− β
2k

0 mk(t)1+ β
2k , which is obtained as a consequence

of either Hölder or Jensen’s inequality.
An estimate of the sum Sk(t) in (32), (24) is obtained by recalling the following

result.

Lemma 3. For b > 0 fixed set zk(t) = mk(t)/�(k + b), k � 1. Then

Sk(t) � Cb �

(
k + β

2
+ 2b

)
Zk(t), k � 1,

where

Zk(t) = max
1� j�

[
k+1

2

]
{

z j+ β
2
(t) zk− j (t), z j (t) zk− j+ β

2
(t)

}
(33)

and Cb is a constant depending on b.

Proof. See [7, Lemma 4]. 
�
Using Lemma 3 the system of inequalities for the moments takes the form

z′
k(t)�−(1−ak) ν0 m

− β
2k

0 �(k+b)
β
2k z

1+ β
2

k (t) + ak Cb

�
(

k + β
2 + 2b

)

�(k + b)
Zk(t),

(34)

for k ∈ J . We have by Stirling’s formula,

�(k + b)
β
2k ∼

(k

e

)β/2
and

�
(

k + β
2 + 2b

)

�(k + b)
∼ k

β
2 +b, k → ∞. (35)

In order to estimate the constant ak we recall that by (7), h̄(z) � C (1 − z2)−α/2,
α < d − 1. Hence, setting in (21) s = z+1

2 , ε = d − 1 − α > 0 we have

ak = C 2−1+ε

∫ 1

0
sk−1+ ε

2 (1 − s)−1+ ε
2 ds

= C 2−1+ε
�

(
k + ε

2

)
�

(
ε
2

)
� (k + ε)

∼ C 2−1+ε �
(

ε
2

)
k− ε

2 , k → ∞. (36)

Thus,

z′
k(t) � −Ak z

1+ β
2k

k (t) + Bk Zk(t), (37)

where Ak ∼ Ākβ/2, Bk ∼ B̄ kβ/2+b−ε/2, k → ∞, and Ā and B̄ are explicitly
known constants. We fix 0 < b < ε/2; then for a certain c0 > 0, and for k∗ > 0
large enough, we have

Ak

Bk
� c0, k � k∗. (38)
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We next introduce some notation. Given k = kn ∈ J we set

z̄(k)(t) = (zk1(t), . . . , zkn−1(t)), (39)

which is a vector with n − 1 components. We also notice that for k ∈ J , k > 1 + β
2

the term Zk(t) is of the form Fk(z̄(k)(t)), since the highest order of moment enter-
ing (33) is k − 1 + β

2 . It is also clear the function Fk defined in this way is a
continuous function of its arguments.

To complete the proof of Theorem 4 using the obtained estimates for the
moments we invoke the following lemma that gives sufficient conditions for a solu-
tion of an infinite system of differential inequalities of the type (34) to propagate
the geometric growth of the sequence zk .

Lemma 4. Given k∗ > 0, let the sequence of nonnegative functions zk ∈ C1([0,∞)),
k ∈ J , satisfy

z′
k(t) � − Ak z

1+ β
2k

k (t) + Bk Fk(z̄
(k)(t)), k ∈ J, k � k∗ (40)

and

zk(t) � C1 qk
1 , k ∈ J, k < k∗, (41)

where k∗ >
β
2 , C1 and q1 are positive constants, Ak, Bk are positive sequences

satisfying

Ak

Bk
� C

1− β
2k

1 , k ∈ J, k � k∗, (42)

and Fk are continuous functions of their arguments such that

Fk(z̄
(k)) � C2 qk+ β

2 , whenever zk � Cqk, k ∈ J, k � k∗. (43)

We also assume that the initial sequence zk(0) satisfies (31).
Then

zk(t) � Cqk, k ∈ J, t � 0, (44)

where C = max{C0, C1} and q = max{q0, q1}.
Proof. We set C = max{C0, C1} and q = max{q0, q1}. The proof will be achieved
by induction on k ∈ J , k � k∗. For k = k∗ conditions (41) and (43) imply

z′
k(t) � − Ak z

1+ β
2k

k (t) + Bk C2 qk+ β
2 .

By a comparison argument for Bernoulli-type ordinary differential equations (refer
to [6]),

zk(t) � max
{
zk(0), z∗

k

}
, (45)
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where z∗
k is determined from the equation

Ak
(
z∗

k

)1+ β
2k = Bk C2 qk+ β

2

Using condition (42) it is easy to verify that z∗
k � C qk, which in view of (45)

and (31) implies zk(t) � Cqk , k = k∗. This provides the basis for the induction.
The induction step follows by repeating the same reasoning for any k > k∗. So the
proof of the Lemma is complete. 
�
Proof. [of Theorem 4] We will verify the assumptions of Lemma 4. It is straight-
forward to check that the moments of the solution of the Boltzmann equation (2)
are continuously differentiable in time; we refer the reader to Appendix B for
the details. Based on the series expansion (18) and the assumptions on the initial
data (15) we can check that conditions (31) are satisfied by zk(0) with q0 > a−1

0 .
From the asymptotic equalities (35) and (36) we can find k∗ > 1 + β

2 and c0 > 0
such that (38) holds. We then obtain (42) if we take

log C1 �
(

1 − β

2k∗

)−1
log c0.

By the results of Desvillettes [12], for each k ∈ J the moments mk(t) are uni-
formly bounded in time, so the constant q1 in (41) can be taken as

q1 = max
β/2�k<k∗

sup
t�0

( zk(t)

C1

)1/k
.

It is straightforward to check (43) using the definition of the term Zk(t) in (33).
Applying Lemma 4 we establish (44) with q = max{q0, q1} and C = max{C0, C1}.
By the Taylor series expansion (18) estimate (16) then holds with and a < 1/q
and the constant D depending on a, C and the initial mass m0. This completes the
proof. 
�

3. Comparison principle for the Boltzmann equation

In this section, we discuss the important technique of comparison that will
allow us to obtain pointwise estimates of the solutions. The crucial property of
the Boltzmann equation used here is a certain monotonicity of a linear Boltzmann
semigroup. The argument is roughly as follows: if f is a solution of (1), f |t=0 = f0,
and g is sufficiently regular and satisfies

(∂t + v · ∇x ) g � Q( f, g), g|t=0 = g0, (46)

then u = f − g is a solution of

(∂t + v · ∇x ) u � Q( f, u), u|t=0 = u0, (47)
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where u0 = f0 − g0. We will show that if f is nonnegative (and satisfies certain
minimal regularity conditions), then solutions of (47) satisfy the order-preserving
property,

if u0 � 0 then u � 0 (48)

[zero on the right-hand side can be replaced by any other solution ũ of (47)]. This
translates into the following estimate (comparison principle):

if f0 � g0 and g satisfies (46), then f � g. (49)

By reversing all inequalities we obtain a similar comparison principle that yields
lower bounds of solutions.

Of course, the above scheme has to be implemented with suitable modifications.
For instance, since a priori only limited information about f is available we will
require that g satisfies (46) for a class of functions f (defined by the available a
priori estimates). Another important refinement is to apply the estimate (49) locally
[in the case of Theorem 3, to a “high-velocity tail” {|v| � R}] since global bounds
in all of the (v, t)-space cannot be generally obtained by this technique. We refer
to Proposition 1 and the proof of Theorem 3 given below for the necessary details.
In Theorem 5 we will give a rigorous statement of (49) in application to a general
class of weak solutions of (1) in the sense of DiPerna and Lions [14,28].

The basic approach leading to applications of (49) originated in the work by
one of the authors [34, Section 6.2] in the context of lower bounds for the spa-
tially-homogeneous equation without angular cutoff. It was also used to obtain
lower bounds for solutions in a model describing inelastic collisions [18]. Com-
pared to these earlier versions we do not require in (49) any differentiability in
the v-variable, and we make more precise the minimal regularity conditions on
f . It is interesting to compare the present technique with other methods based on
monotonicity applied to the Boltzmann equation, in particular the one by Kaniel
and Shinbrot [25] (see also [21,24]) and the pointwise estimates by Vedenjapin
[33] (the result in the latter paper follows from our approach using g = eC(1+t)).
The monotonicity property expressed by (48) has also an important relation to the
concept of dissipative solutions introduced by Lions [28].

We first explain the way to obtain (48). The bilinear form in (46), (47) is defined
by

Q( f, u)(x, v, t) =
∫

Rd

∫
Sd−1

( f ′∗u′ − f∗u) B(v − v∗, σ ) dσ dv∗, (50)

where as usual, f ′∗ = f (x, v′∗, t), u′ = u(x, v′, t), f∗ = f (x, v∗, t), u = u(x, v, t).
At this point we do not need to assume the kernel B to satisfy (5–7); the argument
goes through for a more general class of kernels with the usual symmetries, as
described in [14], for instance.

To illustrate the general principle, consider first the case of equality in (47).
Given T > 0 we fix the function f : T

d × R
d × [0, T ] → R+, which we assume

to be smooth in (x, t), bounded and rapidly decaying for |v| large. We also assume
that for every u0 ∈ D ⊆ L1(Td × R

d) the initial-value problem

(∂t + v · ∇x ) u = Q( f, u), u|t=0 = u0, (51)
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has a unique solution u ∈ C([0, T ]; L1(Td × R
d)), with enough regularity so that

Q+( f, |u|), Q−( f, |u|) ∈ L1(Td × R
d × [0, T ]). (52)

Thus, we have a well-defined flow map (or a semigroup)

�t : D  u0 �→ u(t, ·, ·) ∈ L1(Td × R
d), t ∈ [0, T ].

The map �t can be seen to satisfy the following nonexpansive property: for
any u0, ũ0 ∈ D,

∫
Rd

∫
Rd

∣∣�t (u0) − �t (̃u0)
∣∣ dv dx �

∫
Rd

∫
Rd

|u0 − ũ0| dv dx, t ∈ [0, T ].
(53)

Indeed, set w = �t (u0) − �t (̃u0); then

(∂t + v · ∇x )w = Q( f, w) on T
d × R

d × (0, T )

in the sense of distributions, and Q( f, w) ∈ L1 by our assumptions. By a standard
argument, ∀ t ∈ [0, T ], for almost all (x, v) the function w� : s �→ w(x − (t −
s)v, v, s), s ∈ [0, T ], is absolutely continuous, and we can apply the chain rule
(see Appendix A) to obtain

d

ds
|w�| = Q( f, w)� sign w�, s ∈ (0, T ), (54)

where Q( f, w)� is defined similarly to w�. Integrating with respect to s ∈ (0, t)
and (x, v) ∈ T

d × R
d we obtain, after standard changes of variables,

∫
Rd

∫
Rd

|w(x, v, t)| dv dx

=
∫

Rd

∫
Rd

|w0| dv dx +
∫ t

0

∫
Rd

∫
Rd

Q( f, w) sign w dv dx ds

where w0 = u0 − ũ0. We further notice that the bilinear collision term (50) satisfies
∫

Rd
Q( f, u) sign u dv � 0, (55)

for every f � 0 and every u so that Q+( f, |u|), Q−( f, |u|) ∈ L1. This follows
immediately from the weak form

∫
Rd

Q( f, u) sign u dv =
∫

Rd

∫
Rd

∫
Sd−1

f∗u (sign u′ − sign u) B dσ dv∗dv

by noticing that u (sign u′ − sign u) � 0.
The same approach can be followed to obtain (48). Indeed, we have by (55)

and the mass conservation∫
Rd

Q( f, u) 1
2 (sign u + 1) dv � 0, (56)
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where 1
2 (sign u+1) is the almost everywhere derivative of the Lipschitz-continuous

function u+ = max{u, 0}. We then have

d

ds
u�

+ = Q( f, u)� 1
2 (sign u + 1)�, s ∈ (0, T ),

and the integration yields∫
Rd

∫
Rd

u+(x, v, t) dv dx �
∫

Rd

∫
Rd

u0+ dv dx, t ∈ [0, T ],

which implies (48) for almost all (x, v).

Remark 2. Relation (48) can be restated as the order-preserving property of �t :

∀ u0, ũ0 ∈ D, u0 � ũ0 implies �t (u0) � �t (̃u0), t ∈ [0, T ]. (57)

In fact, the equivalence of (57) and (53) follows from a general principle applied
to (nonlinear) maps that preserve integral, as described by Crandall and Tar-
tar [11]. Inequality (48) (or 57) can then be seen as a consequence of the results
in [11], the preservation of the mass

∫
Rd

∫
Rd f dv dx along solutions of (47), and

(53).

The following localized version of the order-preserving property will be useful
for the comparison argument.

Proposition 1. Let f, u ∈ C([0, T ]; L1(Td × R
d)) satisfy

f � 0; ∂t u + v · ∇x u, Q+( f, u), Q−( f, u) ∈ L1; u|t=0 = u0 � 0,

and assume that for a certain (measurable) set U ⊆ T
d × R

d × (0, T ),

∂t u + v · ∇x u − Q( f, u) � 0 on U,

and

u � 0 on U c := (
T

d × R
d × (0, T )

) \ U.

Then u(t, ·, ·) � 0 almost everywhere on T
d × R

d , for every t ∈ [0, T ].
Proof. Let D(u) = ∂t u + v · ∇x u. We obtain by arguing as above,∫

Rd

∫
Rd

u+(x, v, t) dv dx −
∫

Rd

∫
Rd

u+(x, v, 0) dv dx

=
∫ t

0

∫
Rd

∫
Rd

D(u) 1
2 (sign u + 1) dx dv ds.

We have u+|t=0 = 0; also 1
2 (sign u+1) = 0 whenever u < 0 and D(u) = 0 outside

of a set of zero measure in {u = 0}. Therefore, setting Ut = {(x, v, s) ∈ U : s � t}
we have∫

Rd

∫
Rd

u+(x, v, t) dv dx =
∫∫∫

Ut

D(u) dx dv ds

�
∫∫∫

Ut

Q( f, u) dx dv ds =
∫ t

0

∫
Rd

∫
Rd

Q( f, u) 1
2 (sign u+1) dx dv ds � 0,
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for every t ∈ [0, T ], where we used the dissipative property (56). This shows that
u(t, ·, ·) � 0 almost everywhere. 
�

Proposition 1 is sufficient to formulate the comparison principle in the gener-
ality required for Theorem 1. We will, however, give a more general statement that
applies to weak solutions in the spatially inhomogeneous case. In the definition of
weak solutions one has to account for the fact that the bound

Q( f ) ∈ L1
loc(T

d × R
d × (0,+∞))

is generally not available, and one has to define solutions in a sense that is weaker
than distributional. The simplest way to state the definition is to require that f � 0,
f ∈ C([0, T ]; L1

xv), Q±( f )/(1 + f ) ∈ L1
loc and the renormalized form

(∂t + v · ∇x ) log(1 + f ) = Q( f )/(1 + f )

holds in the sense of distributions, refer to [14]. Such solutions are known as renor-
malized. This concept can be further refined as follows, refer to [28].

Definition 1. We say that a renormalized solution f is dissipative if f |v|2 ∈
L∞([0, T ]; L1

xv) and for every sufficiently regular function g : T
d ×R

d ×[0, T ] →
R,

∂t

∫
Rd

| f −g| dv + divx

∫
Rd

| f −g| v dv �
∫

Rd

(
Q( f, g) − D(g)

)
sign( f −g) dv,

(58)

in the sense of distributions, where D(g) = (∂t + v · ∇x )g, and sign(0) is assigned
an arbitrary value in [−1, 1].
Remark 3. In the above definition “sufficiently regular” precisely means that
g ∈ C([0, T ]; L1

xv), g|v|2 ∈ L∞
t (L1

xv), D(g) ∈ L1
xvt and that for any

f ∈ C([0, T ]; L1
xv) such that f |v|2 ∈ L∞

t (L1
xv), Q+( f, |g|), Q−( f, |g|) ∈ L1

xvt
(these conditions can be made more explicit, see [28] for details).

The formal motivation for the definition of dissipative solutions is clear: the
right-hand side of the Boltzmann equation can be written as

Q( f ) = Q( f, f − g) + Q( f, g),

so we have

(∂t + v · ∇x )( f − g) = Q( f, f − g) + Q( f, g) − D(g).

Multiplying the above equation by sign( f − g) and using relation (55) (note that
f � 0) we see that every sufficiently regular solution of (1) should satisfy (58).

Dissipative solutions are known to exist globally in time, for a quite general
class of initial data. In fact, in [28] Lions established a large class of “dissipa-
tion inequalities” similar to (58) that hold for renormalized solutions of (1). Such
solutions can also be constructed so that the local mass conservation law,

∂t

∫
Rd

f dv + divx

∫
Rd

f v dv = 0, (59)
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holds in the sense of distributions. However they need not generally satisfy the
conditions Q+( f ), Q−( f ) ∈ L1

loc.
Using the order-preserving property of Proposition 1 we establish the following

comparison principle for dissipative solutions of the nonlinear Boltzmann equation.

Theorem 5. Let f ∈ C([0, T ]; L1(Td × R
d)) be a dissipative solution of (1) and

let g be a sufficiently regular function, such that f |t=0 � g|t=0,

∂t g + v · ∇x g − Q( f, g) � 0 on U

and f � g on U c, where U is a measurable subset of T
d × R

d × [0, T ]. Then
f � g almost everywhere on T

d × R
d , for every t ∈ [0, T ].

Remark 4. It is natural to call g a (localized) upper barrier. By reversing all inequal-
ities in the above formulation one can also obtain a similar comparison principle
for the lower barrier.

Proof. We use the notation D(g) = ∂t g + v · ∇x g, so that

∂t

∫
Rd

g dv + divx

∫
Rd

g v dv =
∫

Rd
D(g) dv,

in the sense of distributions. Using the mass conservation (59) and the identity

( f − g)+ = 1
2

(| f − g| + ( f − g)
)

we obtain, by combining the above relations with (58),

∂t

∫
Rd

( f − g)+ dv + divx

∫
Rd

( f − g)+ v dv

� 1

2

∫
Rd

(
Q( f, g) − D(g)

)
sign( f − g) dv − 1

2

∫
Rd

D(g) dv.

Since Q±( f, |g|) are integrable, we have
∫
Rd Q( f, g) dv = 0, almost everywhere

(x, t), and therefore,

∂t

∫
Rd

( f − g)+ dv + divx

∫
Rd

( f − g)+ v dv

�
∫

Rd

(
Q( f, g) − D(g)

) 1
2 (sign( f − g) + 1) dv. (60)

We can choose sign(0) = −1 in (60) to avoid estimating the integral over the set
{ f = g}. Since ( f − g)+ v ∈ L1(Td × R

d × [0, T ]) we can integrate over x and t
to obtain∫

Rd

∫
Rd

( f − g)+(x, v, t) dv dx �
∫

Rd

∫
Rd

( f − g)+(x, v, 0) dv dx

+
∫∫∫

Ut

(
Q( f, g) − D(g)

)
dx dv ds � 0,

(61)

where Ut = {(x, v, s) ∈ U : s � t} and we used that 1
2 (sign( f − g) + 1) vanishes

for f � g and that Q( f, g) − D(g) � 0 on Ut . The inequality in (61) implies that
f � g, almost everywhere (x, v) ∈ T

d × R
d , for every t ∈ [0, T ]. 
�
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Theorem 5 is a crucial ingredient in the proof of Theorem 3, which we give
below.

Proof. [of Theorem 3] To apply Theorem 5 we set U = {(x, v, t) : |v| > R}, where
R will be chosen large enough, and g(x, v, t) = M(v), where M(v) = e−a|v|2+c,
0 < a < a1 is fixed and c > c0 will be chosen sufficiently large, depending on R.
To prove that g can be used as a barrier for the solution on U we need to verify the
inequality

Q+( f, g)(x, v, t) � Q−( f, g)(x, v, t), (x, t) ∈ T
d × [0, T ], |v| > R.

(62)

First notice that, by elementary inequalities,

Q−( f, g)(x, v, t) = M(v)

∫
Rd

f (x, v∗, t) |v − v∗|β dv∗

� M(v)
(
ρ0|v|β −

∫
Rd

f (x, v∗, t) |v∗|β dv∗
)
,

where ρ0 is the constant in (13). The last term can be controlled using the estimate
for the integral of f/M1 from (14) as follows,

∫
Rd

f (x, v∗, t) |v∗|β dv∗ � L
∫

Rd

f (x, v∗, t)

M1(v∗)
dv∗ � L C1,

where L = max
y�0

yβ e−a1 y2+c1 . Thus, we have

Q−( f, g)(x, v, t) � M(v)
(
ρ0|v|β − L C1

)
.

The control of the “gain” term is more technical; we establish below in Lemma 5
the estimate

Q+( f, g)(x, v, t) � C (1 + |v|β−ε) M(v), (63)

where ε = min{β, n − 1 − α} > 0. This implies that (62) holds if we set R to be
the largest root of the equation

C + LC1 + Cyβ−ε − ρ0 yβ = 0.

Finally, we take c = a R2 + log C0, where C0 is the constant in (14); then it is easy
to verify that

f (x, v, t) � C0 � M(v), (x, t) ∈ T
d × [0, T ], |v| � R. (64)

The conditions 0 < a < a1 < a0 and c � c0 guarantee that we have f (x, v, 0) �
M(v). Together with the inequalities (62) and (64) this allows us to use Theorem 5
to conclude. 
�
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4. A weighted estimate for the “gain” operator

To complete the proof of Theorem 3 we prove the following weighted estimate
of the linear “gain” operator. The main technique is based on Carleman’s form of
the “gain” term (see Appendix C).

Lemma 5. Let B : R
d × Sd−1 → R

+, n � 2, be a measurable function that
satisfies

B(u, σ ) � C (1 + |u|β)
1

| sin ϑ |α 1{cos ϑ�0}, cos ϑ = u·σ
|u| ,

where β > 0 and α < n − 1. Define

Q+( f, g)(v) =
∫

Rd

∫
Sd−1

f ′∗ g′ B(v − v∗, σ ) dσ dv∗,

and set M(v) = e−a|v|2 , a > 0; wε(v) = 1 + |v|β−ε, where ε = min{β,

n − 1 − α} > 0. Then

∥∥∥ Q+( f, M)

wε M

∥∥∥
L∞(Rd )

� C
∥∥∥ f wε

M

∥∥∥
L1(Rd )

, (65)

where C is an explicitly computable constant depending on n, α, β and a.

Remark 5. For B satisfying the estimate with α = 0 (for example, the kernel B̄ for
hard spheres in three dimensions) we have ε = β for all β � d − 1 and the weight
wε(v) is constant. The estimate of the Lemma then takes a particularly simple form,

∥∥∥ Q+( f, M)

M

∥∥∥
L∞

v

� C
∥∥∥ f

M

∥∥∥
L1

v

.

For the quadratic “gain” term this implies the estimate

∥∥∥ Q+( f )

M

∥∥∥
L∞

v

� C
∥∥∥ f

M

∥∥∥
L∞

v

∥∥∥ f

M

∥∥∥
L1

v

.

Proof. By the Carleman representation formula (Appendix C),

Q+( f, M)(v) = 2d−1
∫

Rd

f (v′∗)
|v − v′∗|

∫
Evv′∗

M(v′) B(v − v∗, σ )

|v − v∗|n−2 dπv′ dv′∗,

where Evv′∗ is the hyperplane

{
v′ ∈ R

d : (v − v′) · (v − v′∗) = 0
}

,

and dπv′ denotes the usual Lebesgue measure on Evv′∗ . We then have

Q+( f, M)(v)

M(v)
=

∫
Rd

f (v′∗)
M(v′∗)

K (v, v′∗) dv′∗, (66)
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where

K (v, v′∗) = 2d−1

|v − v′∗|
∫

Evv′∗
M(v∗)

B(v − v∗, σ )

|v − v∗|n−2 dπv′ , (67)

and we used that, by the energy conservation,

M(v′) M(v′∗)
M(v)

= M(v∗).

Note that in (67) the variables v∗ and σ are expressed through v, v′∗ and v′ as
follows,

v∗ = v′∗ + v′ − v, σ = v′ − v′∗
|v′ − v′∗|

.

Now to establish the Lemma it suffices to verify the inequality

K (v, v′∗) � C (1 + |v − v′∗|β−ε). (68)

Indeed, since

1 + |v − v′∗|β−ε � (1 + |v|β−ε) (1 + |v′∗|β−ε),

then (66) and (68) imply

Q+( f, M)(v) � C (1 + |v|β−ε) M(v)

∫
Rd

f (v′∗)
M(v′∗)

(1 + |v′∗|β−ε) dv′∗

which is equivalent to (65).
In the remainder of the proof we will therefore verify (68). Using the identity

(v − v∗) · (v′ − v∗) = |v − v′∗|2 − |v − v′|2
for v′ ∈ Evv′∗ and recalling that B(v − v∗, σ ) vanishes for (v − v∗) · σ < 0 we see
that the integration in (67) can be restricted to the disk

Dvv′∗ = Evv′∗ ∩
{
v′ ∈ R

d : ∣∣v − v′| � |v − v′∗
∣∣} .

We notice that for v′ ∈ Dvv′∗ ,
∣∣∣∣ tan

ϑ

2

∣∣∣∣ = |v′∗ − v∗|
|v − v′∗|

, |ϑ | � π

2
,

where ϑ is the angle between the vectors v − v∗ and σ . This implies

1

| sin ϑ | � 1

2

∣∣v − v′∗
∣∣∣∣v′∗ − v∗
∣∣

Thus, K
(
v, v′∗

)
� C K̃ (v, v′∗) , where

K̃
(
v, v′∗

) = 2d−1−α

∣∣v − v′∗
∣∣1−α

∫
Dvv′∗

M(v∗)
1 + |v − v∗|β
|v − v∗|n−2

1∣∣v′∗ − v∗
∣∣α dπv′ .

To estimate the above expression we consider two cases.
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Case a.
∣∣v − v′∗

∣∣ � 1. Since for v′ ∈ Dvv′∗

∣∣v − v′∗
∣∣ � |v − v∗| �

√
2

∣∣v − v′∗
∣∣

we have 1 + |v − v∗|β � 1 + 2β/2 and

|v − v∗|2−n � |v − v′∗|2−n .

Therefore,

K̃
(
v, v′∗

)
�

2d−1−α
(
1 + 2β/2

)
|v − v′∗|n−1−α

∫
Dvv′∗

M(v∗)
1∣∣v′∗ − v∗

∣∣α dπv′ .

Since M(v∗) � 1 the last integral is estimated above by

∫
Dvv′∗

1∣∣v′∗ − v∗
∣∣α dπv′ =

∫
{w∈Rd−1 : |w|�|v−v′∗|}

1

|w|α dw = ωd−2
d−1−α

∣∣v − v′∗
∣∣d−1−α

,

if d − 1 − α > 0, that is α < d − 1. Here ωd−2 is the measure of the (n − 2)-
dimensional unit sphere. This implies the estimate

K̃
(
v, v′∗

)
� 2d−1−α(1 + 2β/2) ωd−2

d − 1 − α
,

∣∣v − v′∗
∣∣ � 1.

Case b. |v − v′∗| > 1. Then

1 + |v − v∗|β � 2 |v − v∗|β � 21+ β
2

∣∣v − v′∗
∣∣β ,

and we obtain, similarly to the previous case,

K̃
(
v, v′∗

)
� 2d−α+ β

2∣∣v − v′∗
∣∣n−1−α−β

∫
Dvv′∗

M(v∗)
1∣∣v′∗ − v∗

∣∣α dπv′ .

Since M(v∗) is a radially decreasing function of v∗ ∈ R
d , and so is |v∗|−α ,

∫
Dvv′∗

M(v∗)
∣∣v′∗ − v∗

∣∣−α dπv′ �
∫

Rd−1
M̄(w) |w|−α dw

�
∫

|w|�1
|w|−α dw +

∫
Rd−1

M̄(w) dw = ωd−2

d − 1 − α
+

(π

a

) d−1
2

,

where M̄(w) = e−a|w|2 , w ∈ R
d−1. Since |v − v′∗|β+α−n+1 � |v − v∗|β−ε this

establishes the required estimate for Case b). 
�
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Appendix A: Some properties of weakly differentiable functions

Let AC[a, b] denote the class of absolutely continuous real-valued functions
defined on an interval [a, b]. Given f ∈ AC[a, b] we set [c, d] = f ([a, b]) and use
the notation Lip[c, d] for the class of all Lipschitz continuous functions defined on
[c, d]. Every function β ∈ Lip[c, d] is differentiable (in the classical sense) almost
everywhere on (c, d); we agree to extend this derivative to a function β ′ defined
everywhere on [c, d] by assigning arbitrary finite values at the points where β is
not differentiable. The function β ′ also coincides with the weak derivative of β

almost everywhere on (c, d) The following chain rule was used in the arguments
in Section 3.

Proposition 2. Let f ∈ AC[a, b] and β ∈ Lip[c, d]. Then β ◦ f ∈ AC[a, b] and

(β ◦ f )′ = (β ′ ◦ f ) f ′,

almost everywhere on (a, b).

Remark 6. (1) The seeming ambiguity in the above formulation occurring since
β ′ ◦ f can assume arbitrarily assigned values on a set of positive measure is resolved
by observing that whenever this happens then f ′ vanishes, except on a set of mea-
sure zero (see the proof below). (2) For the purposes of Section 3 we only need the
chain rule for β(y) = |y| and β(y) = y+; these cases are covered in [17], and the
proof for the case of piecewise-C1 functions β can be found in [20]. We include a
short proof that applies to the general case to make the presentation in Section 3
self-contained.

Proof. By the definition of absolutely continuous functions,

∀ ε > 0 ∃ δ > 0 such that ∀ n ∈ N, ∀ {(x j , y j ) ⊆ [a, b] : j = 1, . . . , n},
a disjoint family,

n∑
j=1

|y j − x j | < δ ⇒
n∑

j=1

| f (y j ) − f (x j )| < ε.

Clearly then, since

| β( f (y j )) − β( f (x j )) | � L | f (y j ) − f (x j )|,
where L is the Lipschitz constant of β, the composition β ◦ f is absolutely continu-
ous on [a, b]. By Lebesgue’s differentiation theorem, f and β ◦ f are differentiable
in the classical sense on a set with complement of measure zero in (a, b). Pick
x ∈ (a, b) from this set. We will consider two cases, depending on whether β is
differentiable at f (x) or not. In the first case we have

(β ◦ f )′(x) = lim
h→0

β( f (x + h)) − β( f (x))

h

= lim
h→0

β( f (x + h)) − β( f (x))

f (x + h) − f (x)
lim
h→0

f (x + h) − f (x)

h
= β ′( f (x)) f ′(x).
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Let us further take A to be the set of y such that β is not differentiable at f (y).
We claim that f ′(x) vanishes for x ∈ A, except perhaps on a set of zero Lebesgue
measure. Indeed, let B = {y ∈ A : | f ′(y)| > 0}; then

B = ∞∪
n=1

Bn, Bn =
{

y ∈ B : | f (z) − f (y)| � |z−y|
n for |z − y| < 1

n

}
.

We prove the claim by showing that every set Bn has zero measure.
Fix an n ∈ N. Since β is Lipschitz, we know that f (A) is a set of measure zero.

Given ε > 0 we can then choose the intervals I j , j = 1, . . ., such that

f (A) ⊆ ∞∪
j=1

I j and
∞∑
j=1

|I j | < ε.

Let J be an interval of length 1
n , and let D = Bn ∩ J , D j = f −1(I j ) ∩ D. Then,

from the definition of Bn , |D j | � n|I j |; therefore, |D| � nε and |Bn| � n2|b−a|ε.
Since ε is arbitrary this shows that |Bn| = 0.

We now have that for almost all x ∈ A

∣∣∣β( f (x + h)) − β( f (x))

h

∣∣∣ � L
∣∣∣ f (x + h) − f (x)

h

∣∣∣
for |h| small enough, so (β ◦ f )′(x) = 0 and β ′( f (x)) f ′(x) = 0. This proves the
claim of the lemma for almost all x ∈ (a, b). 
�

Appendix B: Time regularity for the spatially homogeneous
Boltzmann equation

We show that the solution of the Boltzmann equation (2) under the conditions
of Theorem 1 is smooth with respect to time, together with its moments of any
order.

For k � 0 the following weighted Lebesgue spaces

L1
k(R

d) =
{

f ∈ L1(Rn) :
∫

Rd
| f | (1 + |v|2)k dv < +∞

}
(.69)

with the norms defined by the integrals appearing in (.69). The regularity result that
we used in Section 2 is the following.

Proposition 3. Let f be the unique solution of the Boltzmann equation (2) that
preserves the total mass and energy. Assume that f0 ∈ L1

k(R
d), k > 1 + β

2 . Then

f ∈ C1
([0,+∞); L1

p(R
d)

)
for any p < k − β

2 .

The proof of Proposition 3 depends on the following continuity property of the
nonlinear operator Q( f ).



278 I. M. Gamba, V. Panferov & C. Villani

Lemma 6. Let the pair of positive numbers (k, p) satisfy k > p + β
2 . Then Q( f )

is continuous on L1
k(R

d) as a mapping L1
k(R

d) → L1
p(R

d). Moreover, we have the

following Hölder estimate for any f, g ∈ L1
k(R

d)

‖Q( f ) − Q(g)‖L1
p

� C p

(
‖ f − g‖1− p+ β

2
k

L1 + ‖ f − g‖L1

)
,

where the constant C p depends on p and on the upper bound of the L1
k-norms of

f and g.

Proof. Using the weak form of Q( f ) and Q(g) we compute∫
Rd

|Q( f ) − Q(g)| (1 + |v|2)p dv

=
∫

Rd

∫
Rd

∫
Sn−1

( f f∗ − gg∗) B(v − v∗, σ )
(

sign
(
Q( f )′ − Q(g)′

)
(1 + |v′|2)p

−sign
(
Q( f ) − Q(g)

)
(1 + |v|2)p

)
dσ dv dv∗

� 2p+1
∫

Rd

∫
Rd

| f f∗ − gg∗| |v − v∗|β
(
(1 + |v|2)p + (1 + |v∗|2)p) dv dv∗

Since

|v − v∗|β (1 + |v|2)p � (1 + |v∗|2) β
2 (1 + |v|2)p + (1 + |v|2)p+ β

2

� 2
(
(1 + |v|2)p+ β

2 + (1 + |v∗|2)p+ β
2
)

and | f f∗ − gg∗| � 1
2 | f − g| | f∗ + g∗| + 1

2 | f + g| | f∗ − g∗|, we obtain

‖Q( f ) − Q(g)‖L1
p

� 2p+3
∫

Rd

∫
Rd

| f + g| | f∗ − g∗|
(
(1 + |v|2)p+ β

2 + (1 + |v∗|2)p+ β
2

)
dv dv∗

� 2p+3 ‖ f + g‖L1
k

(
‖ f − g‖L1

p+ β
2

+ ‖ f − g‖L1

)
.

We use the interpolation inequality

(
mk1 (t)

m0

) 1
k1 �

(
mk (t)

m0

) 1
k �

(
mk2 (t)

m0

) 1
k2 , k1 � k � k2, (.70)

with k1 = p + β
2 to get

‖ f − g‖L1

p+ β
2

� ‖ f − g‖1− p+ β
2

k
L1 ‖ f − g‖

p+ β
2

k

L1
k

�
(‖ f ‖L1

k
+ ‖g‖L1

k

) p+ β
2

k ‖ f − g‖1− p+ β
2

k
L1 .

Substituting this bound into the previous estimate we obtain the Hölder estimate
stated in the Lemma. This completes the proof. 
�
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Proof (Proposition 3). We fix T > 0. By the results of Arkeryd and Elm-
roth [1,15] [see part (iii) of Theorem 2], f belongs to L∞([0,+∞); L1

k(R
d)). By

Lemma 6,

(1 + |v|2)p Q( f ) ∈ L1((0, T ) × R
d), for p < k − β

2
(.71)

The mild form of (2), together with the regularity condition (.71) imply that f is
weakly differentiable and ∂t f = Q( f ) in the sense of distributions on (0, T )×R

d .
Hence,

f ∈ W 1,1((0, T ); L1
p(R

d))

and therefore (refer to [16, p. 286]), f ∈ C
([0, T ]; L1

p(R
d)

)
. By the continuity of

Q( f ) established in Lemma 6 it follows that ∂t f ∈ C
([0, T ]; L1

p(R
d)

)
, where ∂t f

is the weak time-derivative of f . It is then easy to verify directly that f is strongly
differentiable on (0, T ) with values in L1

p(R
d), and its derivative is continuous on

[0, T ]. Since T is arbitrary, we obtain the conclusion of the Lemma. 
�
Remark 7. As a consequence of Proposition 3, if the moments of all orders are
finite initially then they are continuously differentiable functions of time. By iter-
ating the argument we used in the proof above one can show that in fact then
f ∈ C∞([0,∞); L1

k(R
d)), for any k � 0.

Appendix C: Carleman’s representation

Lemma 7. Let Q+( f, g) be defined by (9) and let f = f (v) and g = g(v), v ∈ R
d

be smooth functions, decaying rapidly at infinity. Then

Q+( f, g)(v) = 2d−1
∫

Rd

f
(
v′∗

)
∣∣v−v′∗

∣∣
∫

Ev,v′∗

g(v′) B
(

2v−v′−v′∗,
v′−v′∗|v′−v′∗|

)

|2v − v′ − v′∗|d−2 dπv′ dv′∗,

where Ev,v′∗ is the hyperplane {v′ ∈ R
d | (v′ − v) · (v′∗ − v) = 0} and dπv′ denotes

the Lebesgue measure on this hyperplane.

Proof. Using the change of variables u = v − v∗, and recalling the definition of
the delta function of a quadratic form, see [19], we have

Q+( f, g)(v) =
∫

Rd

∫
Rd

f (v′∗) g(v′) B(u, k) δ
( |k|2−1

2

)
dk du, (.72)

where v′ = v − u + 1
2 (u + |u|k) and v′∗ = v − 1

2 (u + |u|k). We further set
z = − 1

2 (u + |u|k); for every u fixed this defines a linear map k �→ z with determi-

nant
( |u|

2

)d . We also have

k = −2z + u

|u| and
|k|2 − 1

2
= |2z + u|2 − |u|2

2|u|2 = 2z · (z + u)

|u|2 .
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With this change of variables the integral in (.72) can be written as
∫

Rd

∫
Rd

( 2
|u|

)d
f (v + z) g(v − u − z) B

(
u,− 2z+u

|u|
)

δ
( 2z·(z+u)

|u|2
)

dz du.

We set y = −z − u; then |u| = |y + z| and δ
( 2z·(z+u)

|u|2
) = |y+z|2

2 δ(z · y). Further,
for any test function ϕ,

∫
Rd

δ(z · y) ϕ(y) dy = |z|−1
∫

z·y=0
ϕ(y) dπy,

where dπy is the Lebesgue measure on the hyperplane {y : z · y = 0}. This yields

Q+( f, g)(v)

= 2d−1
∫

z∈Rd

∫
y·z=0

f (v+z)g(v+y) |z|−1|y+z|n−2 B
(
−y − z, y−z

|y+z|
)

dπy dz

We now return to the original notations v′∗ = v + z, v′ = v + y and perform the
corresponding changes of variables to obtain the expression for Q+( f, g) stated in
the Lemma. 
�
Remark 8. The above result takes a particularly simple form in the case of the
hard-sphere model in R

3; in that case B(v − v∗, σ ) = 1
4π

|v − v∗| and

Q+( f, g)(v) =
∫

R3

f (v′∗)
π |v − v′|

∫
Ev,v′∗

g(v′) dπv′dv′∗.
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