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The quasilinear theory describes the resonant interaction between particles and waves with 
two coupled equations: one for the evolution of the particle probability density function 
(pdf ), the other for the wave spectral energy density (sed). In this paper, we propose a 
conservative Galerkin scheme for the quasilinear model in three-dimensional momentum 
space and three-dimensional spectral space, with cylindrical symmetry.
We construct an unconditionally conservative weak form, and propose a discretization 
that preserves the unconditional conservation property, by “unconditional” we mean that 
conservation is independent of the singular transition probability. The discrete operators, 
combined with a consistent quadrature rule, will preserve all the conservation laws 
rigorously. The technique we propose is quite general: it works for both relativistic and 
non-relativistic systems, for both magnetized and unmagnetized plasmas, and even for 
problems with time-dependent dispersion relations.
We represent the particle pdf by continuous basis functions, and use discontinuous 
basis functions for the wave sed, thus enabling the application of a positivity-preserving 
technique. The marching simplex algorithm, which was initially designed for computer 
graphics, is adopted for numerical integration on the resonance manifold. We introduce 
a semi-implicit time discretization, and discuss the stability condition. In addition, we 
present numerical examples with a “bump on tail” initial configuration, showing that the 
particle-wave interaction results in a strong anisotropic diffusion effect on the particle pdf.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The Vlasov-Maxwell system and the Vlasov-Poisson system are widely used to describe the collective (mean-field) effect 
of particles. Although a lot of work has been done in numerical methods for these systems, in practice a reduced model is 
often preferred when the problem is in high dimension and some loss of details is justified from physics consideration.

For example, the electron runaway problem, which is the motivation of our research, has attracted a lot of attention 
as a risk factor for magnetic confinement fusion reactors like ITER [14,4]. Runaway electrons are a group of extremely fast 
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electrons generated inside the tokamak, the release of which can damage the wall. Therefore, it is important to have an 
answer to the questions like how they are generated and how to mitigate them.

The dynamics of runaway electrons is determined by external electromagnetic fields, collision, and particle-wave interac-
tion. The quasilinear theory, as a reduced mean-field model governing particle-wave interaction, arises from averaging and 
linearizing over the original Vlasov-Maxwell system in weak turbulence regime.

The quasilinear theory for unmagnetized plasmas was proposed by Vedenov et al. [19] and Drummond et al. [6]. It was 
later generalized by Shapiro et al. [15] to model the magnetized plasma. The same idea has been used extensively in the 
following years, for example in the work of Kennel [10], Lerche [11], and Kaufman [9], etc. The validity of such a model 
reduction was studied numerically by Besse et al. [3], and analytically by Bardos and Besse [2] for Vlasov-Poisson system. 
The existence of global weak solutions in one dimensional electrostatic case has been proved in [8].

Since the quasilinear theory studies the spectrum of waves and the averaged particle distribution function, it does not 
require a small time step to characterize the high wave frequency numerically. However, the numerical computation of 
the particle-wave resonance system is still challenging, due to the resonance condition described with the Dirac delta 
function, the complicated dispersion relation, high dimension, nonlinearity, and conservation laws consisting of integrals in 
two different spaces. Therefore, although the theory has been widely used in physics, there is no preceding work focusing 
on the numerical method for quasilinear theory in magnetized plasmas.

In this paper, we propose a conservative Galerkin solver for the homogeneous quasilinear particle-wave interaction sys-
tem.

Despite being a paradigm approach in the analysis and discretization of other kinetic equations, the weak formulation of 
the quasilinear model has not gained enough attention, partly because the equation for particles was usually written in a 
nonlinear diffusion form, and the equation for waves was treated as independent first-order ODEs with parameters. There 
are infinitely many equivalent forms to the same equation because of the resonance condition. Among all the equivalent 
forms, some are superior to the others, the reason is as follows.

The quasilinear theory inherits the conservation laws from the original Vlasov-Maxwell system. However, generally the 
conservation is conditional, which means the gain and loss parts only offset each other on the resonance manifold. When the 
resonance manifold is broadened or approximated, conservation laws are no longer guaranteed. In this paper, we propose a 
novel integro-differential form and the corresponding unconditionally conservative weak form.

It is desired that the discrete weak form will preserve the unconditional conservation property above, unfortunately, 
naive standard finite element discretizations turn out to fail. We located the cause of discretization errors by analyzing the 
weak form, and managed to construct a perfect discretization by replacing some quantities with their projection in the 
discrete finite element spaces.

Apart from that, for numerical integration on resonance manifold, we adopt the marching simplex algorithm [5,12], 
which enables us to deal with arbitrary wave modes.

This paper is organized as follows. In section 2 we review the relativistic quasilinear model for magnetized plasmas and 
introduce the integro-differential system with its weak form. The conservative semi-discrete system, as the main result of 
this paper, will be presented in section 3. In section 4, we derive the nonlinear ODE system associated with our conservative 
semi-discrete form, and the relation between two interaction tensors is proved. Stability and positivity will be discussed in 
section 5. The numerical results are presented in section 6.

2. The quasilinear particle-wave interaction system

The quasilinear particle-wave interaction system consists of a diffusion equation for electron pdf (probability distribution 
function) and a reaction equation for wave sed (spectral energy density). They couple with each other through the coef-
ficients. As a reduced model for the Vlasov-Maxwell system, the quasilinear theory inherits the conservation properties: 
mass, momentum, and energy. Moreover, the entropy of particles dissipates as a result of diffusion.

In this section, we are going to show that the system can be written in a novel integro-differential form, which will 
finally lead to a conservative discrete scheme.

2.1. The integro-differential strong form

There are two ways to interpret the quasilinear theory. In classical language, it is a model reduction of the Vlasov-
Maxwell system in a weak turbulence regime. Meanwhile, in quantum mechanical language, the waves in a plasma can 
also be regarded as a group of plasmons (wave packets, analogous to photons). Hence the interaction between particles 
and waves can be interpreted as a stochastic process of particles emitting/absorbing plasmons. For a derivation in quantum 
mechanical language, we refer the readers to the review paper of Vedenov [18] and the book of Thorne et al. [17]. In what 
follows, we will rely more on the latter interpretation.

The particle pdf is a non-negative function defined on the particle momentum space R3
p , i.e.

f (p, t) : R3
p ×R+ → R+.

Each particle carries mass m, momentum p, and energy E(p). The particle velocity is v(p) = ∇p E(p).
2
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At the same time, the wave sed is a non-negative function defined on the wave momentum space R3
k (the spectral 

space), i.e.

W (k, t) : R3
k ×R+ → R+.

Each plasmon carries momentum h̄k, energy h̄ω and no mass. The relation between wave frequency ω and wave-vector 
k is called the dispersion relation, ω := ω(k). The wave spectral energy density can be expressed in terms of plasmon 
number density, W (k) = N(k)h̄ω(k). Therefore it makes no difference whether we use W (k) or N(k) as the unknown.

The equations for quasilinear particle-wave interaction share the following structure,

∂

∂t
f (p, t) = ∇p · (D[W ](p, t) · ∇p f (p, t)

)
,

∂

∂t
W (k, t) = �[ f ](k, t)W (k, t).

(2.1)

Both relations, D : L1(R3
k ) → (L∞(R3

p))3×3 and � : H1(R3
p) → L∞(R3

k ), are determined by transition probabilities of the 
stochastic emission/absorption process. The transition probabilities per se, depend solely on pre-interaction and post-
interaction kinetic variables: particle momentum p, particle energy E(p), plasmon momentum h̄k and plasmon energy 
h̄ω(k). Hence the particle energy relation E(p) and plasmon dispersion relation ω(k) must be specified before numerical 
simulation.

Remark 1. The wave dispersion relation ω(k) depends on the medium, i.e. the plasma itself, which is evolving. Since the 
computational cost for an accurate dispersion relation ω := ω(k) can be quite high, there is, in practice, a tendency to use 
low-order approximations based on appropriate assumptions, for example, the cold plasma assumption (see Appendix).

Remark 2. In a plasma, there can be multiple wave modes, i.e. multiple “species” of plasmons, each having a distinct dis-
persion relation ω(k). In our numerical experiment, we use the dispersion relation of whistler waves in a cold magnetized 
plasma. Nevertheless, our numerical method is compatible with any dispersion relation, and can be used to simulate multi-
ple wave modes at the same time.

In the previous paragraphs, we introduced the general governing equations for particles absorbing/emitting plasmons. 
Next, let us focus on a specific example that the proposed method is designed for.

The particle-wave interaction system for magnetized plasmas with cylindrical symmetry
We are interested in particle-wave interaction for plasmas embedded in the magnetic field B(t) = B0, as a consequence, 

we will focus on gyro-averaged particle distribution functions f (p, t) having cylindrical symmetry. For simplicity, it is further 
assumed that W (k, t) is cylindrically symmetric.

The background magnetic field B0 induces an axis direction e‖ = B0/|B0| and the associated cylindrical coordinates, 
where u‖ = u · e‖ and u⊥ = (u2 − u2‖)1/2 for any vector u ∈ R3. Then we have f (p, t) = f (p‖, p⊥, t) and W (k, t) =
W (k‖, k⊥, t).

Particles with charge q and mass m have gyro-frequency ωc = qB0/mc. Note that for electrons, q = −e. Particles with 
momentum p have relativistic energy E(p) = γ (p)mc2, where γ is the Lorentz factor.

To model the runaway electrons in a tokamak, Breizman et al. [4] used the following equations written in spherical 
coordinates (i.e. θ = arccos p‖/p),

∂ f (p, t)

∂t
= 1

p2

∂

∂ p
p2(D pp

∂ f

∂ p
+ D pθ

∂ f

p∂θ
) + 1

p sin θ

∂

∂θ
sin θ(Dθ p

∂ f

∂ p
+ Dθθ

∂ f

p∂θ
),

∂W (k, t)

∂t
= �(k, t)W ,

(2.2)

where the diffusion coefficients are weighted integrals of wave sed W (k, t),

D pp(p, t) =
+∞∑

l=−∞

ˆ
d3k

{
W (k, t)Ul(p,k)δ(ω(k) − k‖v(p) cos θ − lωc/γ )

}
,

D pθ (p, t) = D pθ (p, t) =
+∞∑

l=−∞

ˆ
d3k

{(
lωc/γ − ω sin2 θ

ω sin θ cos θ

)
W (k, t)Ul(p,k)δ(ω − k‖v cos θ − lωc/γ )

}
,

Dθθ (p, t) =
+∞∑

l=−∞

ˆ
d3k

⎧⎨
⎩
(

lωc/γ − ω sin2 θ

ω sin θ cos θ

)2

W (k, t)Ul(p,k)δ(ω − k‖v cos θ − lωc/γ )

⎫⎬
⎭ ,
3
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and the growth rate is a weighted integral of particle pdf ’s gradient, ∇p f (p, t),

�(k, t) =
+∞∑

l=−∞

ˆ
d3 p

{
v(p)(

∂ f

∂ p
+ lωc/γ − ω sin2 θ

ω(k) sin θ cos θ

∂ f

p∂θ
)Ul(p,k)δ(ω − k‖v cos θ − lωc/γ )

}
.

The coefficients characterizing transition probability, are a function of p and k that always takes finite non-negative 
values,

Ul(p;k) = 8π2e2

{
lωc
k⊥ p Jl + E3 cos θ Jl + iE2 sin θ J ′

l

}2

(
1 − E2

2

) 1
ω

∂
∂ω (ω2ε) + 2iE2

1
ω

∂
∂ω (ω2 g) + E2

3
1
ω

∂
∂ω (ω2η)

, (2.3)

where the dielectric tensor components ε, g , η and the wave polarization vector components E j are functions of wave 
frequency ω as defined in Equation (A.3) and Equation (A.4), argument of the Bessel functions is k⊥ p⊥/mωc , for details, see 
Breizman et al. [4].

The above formulas are sufficient to perform a trivial numerical simulation: treat Equation (2.1) as a normal diffusion 
equation and a normal reaction equation with time-varying coefficients. The challenging part is to preserve conservation, 
especially when there are integrals containing the Dirac delta function. Numerical integrals are always performed by quadra-
ture rules, however, the quadrature points usually do not reside exactly on the resonance manifold. In this paper, we propose 
an unconditionally conservative approach by employing a novel equivalent integro-differential form instead of the original 
equation. By “unconditional” we mean that the scheme is conservative no matter how the resonance manifold is discretized 
or broadened.

The emission/absorption kernel and directional differential operator
To rephrase Equation (2.2) in integral-differential form, let us introduce two important concepts, the emission/absorption 

kernel and the directional differential operator, along with some necessary notations.
Particles with momentum p do not emit or absorb plasmons with wave vector k unless a certain resonance condition is 

satisfied. Define the l-th resonance indicator function sl(p, k) := ω(k) −k‖v‖ − lωc/γ (p), l ∈Z, then the resonance condition 
reads sl(p, k) = 0. Define the l-th resonance manifold as

Sl =
{
(p,k) ∈ R3

p ×R3
k : sl(p,k) = ω(k) − k‖v‖ − lωc/γ (p) = 0

}
, (2.4)

then we can say that particles with momentum p emit or absorb plasmons with wave vector k only when (p, k) belongs 
to one of the resonance manifolds.

Analogous to the definition of collisional kernels in Boltzmann equations and Fokker-Planck-Landau equations, we define 
the emission/absorption kernel which characterizes the probability for a particle with momentum p to absorb or emit a 
plasmon with wave vector k,

B(p,k) =
+∞∑

l=−∞
Ul(p;k)δ(sl(p;k)). (2.5)

As we have mentioned above, interaction happens only if the resonance condition is satisfied, so the emission/absorption 
kernel contains a Dirac delta function. The coefficients Ul(p, k) are given in Equation (2.3). They take finite non-negative 
values for any coordinates (p, k).

Interaction with a plasmon results in diffusion of particle pdf f (p, t) along a particular direction β(p, k), thus we define 
the directional differential operator

L(g(p)) := β(p,k) · ∇p g(p) = k‖v‖
ω

p

p‖
∂ g

∂ p‖
+ (1 − k‖v‖

ω
)

p

p⊥
∂ g

∂ p⊥
(2.6)

Further, define the L2 inner product in particle momentum space (u(p), v(p))p := ´
R3

p
uvd3 p, and the L2 inner product 

in wave spectral space (U (k), V (k))k = ´
R3

k
U V d3k.

Denote the adjoint operator of L by L∗ , then by definition, we have

(L∗u, v)p = (u,Lv)p .

The bilinear integro-differential operators
Now all the ingredients are prepared, we claim that the diffusion term and reaction term can be rewritten as bilinear 

integro-differential operators.
4
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Theorem 1. The particle-wave interaction system in Equation (2.2) is equivalent to

∂ f (p, t)

∂t
= B(W , f ) = −

ˆ

R3
k

L∗ (B(p,k)WL f )dk,

∂W (k, t)

∂t
= H( f , W ) =

ˆ

R3
p

(LE(p))WB(L f )dp.

(2.7)

Proof. By definition,

ˆ
δ(s(x))s(x)g(x)dx = 1

|∇xs|
ˆ

{x:s(x)=0}
s(x)g(x)dπs = 0

Note that

lωc/γ − ω sin2 θ

ω sin θ cos θ
= ω cos θ − k‖v

ω sin θ
,

on the resonance manifold.
We obtain Equation (2.7) by substituting the above identity into Equation (2.2) and rewriting everything in cylindrical 

coordinates (i.e. replacing θ with arccos p‖/p). �
Remark 3. Both the particle diffusion operator B and the wave reaction operator H mix particle momentum p and plasmon 
wave vector k through the absorption/emission kernel B(p, k).

Remark 4. One might have noticed that LE(p) = v(p). The reason we write LE rather than v is to induce our conservative 
semi-discrete form and to save preprocessing time. The details will be addressed next.

2.2. The unconditionally conservative weak form and H-theorem

For the purpose of either modeling or numerical implementation, the absorption/emission kernel B(p, k) is usually 
replaced with its approximation Bε(p, k). Here we present two examples for such approximation.

• Approximation to the identity.
The kernel is approximated with

Bati
h (p,k) =

∑
l

Ul(p,k)
1

ε
ϕ

(
sl(p,k)

ε

)
, (2.8)

where the compactly supported and positive function ϕ(z) has unit mass, i.e. 
´
R ϕ(z)dz = 1.

Recall the definition of resonance manifold in Equation (2.4), it is a hypersurface implicitly determined by the reso-
nance condition. The above approximation is equivalent to broadening of the resonance manifold, as the approximated 
hypersurface has finite “width” proportional to ε.

• Marching cube/simplex algorithm.
The kernel is approximated with

Bmsa
ε (p,k) =

∑
l

Ul(p,k)δ (Lεsl(p,k)) , (2.9)

where Lεsl represents the piecewise linear interpolation of sl . As have been illustrated in [5,12], such approximation dis-
cretizes the resonance manifold, i.e. replaces the smooth hypersurface with a disjoint union of simplices, thus enabling 
convenient numerical integration.

In what follows we derive the special weak form, and prove that even if the emission/absorption kernel B is replaced/ap-
proximated, we can still preserve mass, momentum and energy with the proposed form.
5
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To obtain the weak formulation associated with the system (2.7), test it with φ(p) and η(k), we obtain thatˆ

R3
p

∂ f

∂t
φdp = −

ˆ

R3
k

dp
ˆ

R3
p

dk{LφL f WB}

ˆ

R3
k

∂W

∂t
ηdk =

ˆ

R3
k

dk
ˆ

R3
p

dp{ηLEL f WB}

Note that the order of integration here is different on the right-hand side. In what follows, assume that 
´
R3

k ×R3
p

dkdp|Lφ

L f WB| and 
´
R3

k ×R3
p

dkdp|ηLEL f WB| are finite, therefore by Fubini’s theorem, the order of integration does not matter,

ˆ

R3
p

⎛
⎜⎜⎝
ˆ

R3
k

LφL f WBdk

⎞
⎟⎟⎠dp =

ˆ

R3
k

⎛
⎜⎜⎝
ˆ

R3
p

LφL f WBdp

⎞
⎟⎟⎠dk =

¨

R3
p×R3

k

dkdp {LφL f WB}

ˆ

R3
k

⎛
⎜⎜⎝
ˆ

R3
p

ηLEL f WBdp

⎞
⎟⎟⎠dk =

ˆ

R3
p

⎛
⎜⎜⎝
ˆ

R3
k

ηLEL f WBdk

⎞
⎟⎟⎠dp =

¨

R3
p×R3

k

dkdp {ηLEL f WB} .

On the right-hand side is inner products of bilinear integro-differential operators with test functions. Therefore to sim-
plify the notation, we can define trilinear forms B and H as follows:

B( f , W , φ) :=
¨

R3
p×R3

k

dkdp {LφL f WB} ,

H(W , f , η) :=
¨

R3
p×R3

k

dkdp {ηLEL f WB} .

(2.10)

As a result, the weak form of system (2.7) can be written as,(
∂ f

∂t
, φ

)
p

= −B( f , W , φ),

(
∂W

∂t
, η

)
k
= H(W , f , η).

(2.11)

Due to resonance, there are infinitely many equivalent forms for the same equation, for example,∑
l

Ul(p,k)δ(ω − k‖v‖ − lωc/γ )

(
k‖v‖
ω

p

p‖
∂φ

∂ p‖
+ (1 − k‖v‖

ω
)

p

p⊥
∂φ

∂ p⊥

)

is always equal to

∑
l

Ul(p,k)δ(ω − k‖v‖ − lωc/γ )

((
k‖v‖ + lωc/γ

ω

)α k‖v‖
ω

p

p‖
∂φ

∂ p‖
+ (1 − k‖v‖

ω
)

p

p⊥
∂φ

∂ p⊥

)
,

for any constant α > 0.
In the following theorem, we prove the superiority of the proposed form, i.e. the unconditional conservation property.

Theorem 2 (unconditional conservation). If f (p, t) and W (k, t) solve the system (2.11) with emission/absorption kernel being re-
placed by Bε , then for any Bε we have the following conservation laws,

• Mass Conservation

∂

∂t
Mtot = ∂

∂t

(
( f ,1)p + (W ,0)k

)= 0

• Momentum Conservation

∂
Ptot‖ = ∂

(
( f , p‖)p + (

W
, h̄k‖)k

)
= 0,
∂t ∂t h̄ω

6
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• Energy Conservation

∂

∂t
Etot = ∂

∂t
(( f , E)p + (

W

h̄ω
, h̄ω)k) = 0

Proof. Sum the two rows in Equation (2.11), we have(
∂ f

∂t
, φ

)
p
+
(

∂W

∂t
, η

)
k
=

ˆ

R3
p×R3

k

dkdp {(ηLE −Lφ)L f WBε} (2.12)

Substitute the test functions {φ, η} with conservation quantity pairs {φc, ηc}, i.e. mass pair {1, 0}, parallel momentum pair 
{p‖, k‖

ω } and energy pair {E, 1}. In principle the condition for conservation is ηcLE −Lφc = 0 on the approximate resonance 
manifold S = {

(p,k) ∈R3
p ×R3

k : Bε(p,k) 
= 0
}

. However, due to our particular definition of the directional differential op-

erator L, we actually have ηcLE −Lφc = 0 on the whole domain R3
p ×R3

k . Therefore the conservation laws hold regardless 
of emission/absorption kernel Bε . �
Remark 5. The unconditionally conservative form also exists for unmagnetized plasmas with cylindrical symmetry, where 
we just replace the emission/absorption kernel with B = 1

2π

´ 2π
0

ω2

k2 v2 δ(ω − k‖v‖ − k⊥v⊥ cosα)dα.

Remark 6. Since the conservation laws solely depend on ηLE −Lφ = 0, the unconditional conservative form and the scheme 
we are going to propose can be generalized for time-dependent dispersion relation ω(k; t) with no extra effort. An important 
example is the self-consistent dispersion relation ω = ω(k; f1(t), f2(t), · · · ). The only obstacle is the extra computational 
cost of updating the interaction tensors in each step. As will be shown in section 4, that calculation can be expensive.

Recall the definition of emission/absorption kernel B,

B(p,k) =
+∞∑

l=−∞
Ul(p;k)δ(sl(p;k)).

Test the equation for particle pdf with φ(p) = log f (p), since Ul and W are non-negative, the right-hand side will be 
non-positive,

(
∂ f

∂t
, log f )p = −

¨
dkdp

1

f
(L f )2WB ≤ 0,

thus we can prove the dissipation of entropy, i.e. H-theorem for the particle pdf,

∂

∂t
( f , log f )p = (

∂ f

∂t
, log f )p + (

∂ f

∂t
,1)p ≤ 0. (2.13)

3. The conservative discretization

This section aims to find a semi-discrete problem that consistently approximates the original system, and at the same 
time preserves discrete conservation laws. So in the following subsections, we will first introduce our finite element dis-
cretization, the necessary projection operators, and then elaborate on the conservation technique.

3.1. The finite element discretization

The cut-off domain and boundary conditions
Analogous to existing work on kinetic equations, for example, the papers of Zhang et al. [20,21], we assume that given 

any 0 < εp � 1 and 0 < εk � 1, there exist finite cylindrical domains �L
p �R3

p and �L
k �R3

k such that for any t ≥ 0,∣∣∣∣∣1 −
´
�L

p
f (p, t)d3 p´

R3
p

f (p, t)d3 p

∣∣∣∣∣≤ εp,

and ∣∣∣∣∣∣1 −
´
�L

k
W (k, t)d3k´

R3 W (k, t)d3k

∣∣∣∣∣∣≤ εk.
k

7
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The particle momentum cut-off domain �L
p is supposed to be adaptive, while in our numerical experiments it turns out 

that, as a result of anisotropic diffusion, there is no need to extend it.
Then it is reasonable to solve the equations in cut-off domains �L

p and �L
k . For the wave sed W (k), there is no need for 

a boundary condition since there is no flux in wave vector space. For the particle pdf, we have the following choices, and 
when the domain �L

p is large enough, they are actually equivalent.

On the boundary ∂�L
p of cut-off domain �L

p , | f | and |∇p f | are nearly zero, two types of boundary conditions can be 
applied,

1. The zero-value boundary condition

f = 0, ∀p ∈ ∂�L
p

2. The zero-flux boundary condition(
D[W ]∇p f

) · n = 0, ∀p ∈ ∂�L
p

Suppose we test the diffusion equation with φh ∈ Vh . With Neumann’s boundary condition, i.e. in the zero-flux case, the 
semi-discrete weak form reads:

(
∂ fh

∂t
, φh) + (D[Wh]∇p fh,∇pφh) = 0

For Dirichlet’s boundary conditions given by to zero-value on the discretized boundary, i.e. f ini |∂�L
p
≡ 0, Nitsche’s method 

[13] applies, hence the weak the semi-discrete form reads

(
∂ fh

∂t
, φh) + (D[Wh]∇p fh,∇pφh) − 〈(D[Wh]∇p fh

) · np, φh〉∂�L
p
+ 〈(D[Wh]∇pφh

) · np, fh〉∂�L
p
= 0

The only difference between them is the boundary integral, which can be below machine epsilon for large enough �L
p , 

because D and φh are finite, while | fh| and |∇p fh| goes to zero as we enlarge the domain. Stability can be proved for both 
formulations, in the rest of the article, for simplicity, we will use the zero-flux boundary condition.

The finite element spaces
Since we have assumed cylindrical symmetry, the 3P-3K problem actually becomes 2P-2K.

p = (p1, p2, p3) ∈ �L
p ⇔ (p‖, p⊥) ∈ �̃L

p ⊂R×R+

k = (k1,k2,k3) ∈ �L
k ⇔ (k‖,k⊥) ∈ �̃L

k ⊂R×R+

Let T p
h = {R p}, T k

h = {Rk} be rectangular partitions of �̃L
p and �̃L

k respectively. We define the meshsize for momentum 
space as hp = maxR p∈T p

h
diam(R p) and the meshsize for wave vector space as hk = maxRk∈T k

h
diam(Rk).

The test space for particle pdf consists of continuous piecewise polynomials with degree α1,

Gα1
h = { f (p‖, p⊥) ∈ C0(�p) : f |R p ∈ Q α1(R p),∀ R p ∈ T p

h }. (3.1)

The test space for wave sed consists of discontinuous piecewise polynomials with degree α2,

Wα2
h = {W (k‖,k⊥) : W |Rk ∈ Q α2(Rk),∀ Rk ∈ T k

h }. (3.2)

To ensure positivity of Wh , it is required that α2 = 0 or α2 = 1, the reason will be addressed later.
As will be shown in the next section, one of the key points to conservation is replacing v‖ , v⊥ and k‖/ω with ∂ Eh(p)

∂ p‖ , 
∂ Eh(p)
∂ p⊥ and N‖,h , where Eh = �p,h E(p) is the discrete particle kinetic energy, and N‖,h = �k,h N‖ is the discrete refraction 

index. The projection operators can be arbitrarily chosen as long as they satisfy the following conditions:

1. The projection �p,h into test space Gα1
h must satisfy that

lim
h→0

‖�p,h g(p) − g(p)‖L2(�L
p) = 0, ∀g ∈ L2(�L

p),

and

lim
h→0

‖�p,h E(p) − E(p)‖H1(�L
p) = 0.

2. The projection �k,h into test space Wα2
h must satisfy that

lim ‖�k,hξ(k) − ξ(k)‖L2(�L) = 0, ∀ξ ∈ L2(�L
k).
h→0 k

8
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There is no need to specify particular projections until we implement them in the numerical examples, our method 
works with any of them.

3.2. The conservative semi-discrete form

Adopting the zero-flux boundary condition, testing the system on the cut-off domain with φh ∈ Gα1
h and ηh ∈ Wα2

h , we 
write the following semi-discrete weak form,

(
∂ fh

∂t
, φh)p = −Bu

L ( fh, Wh, φh) := −
¨

�L
k×�L

p

dkdp{LφhL fh WhB},

(
∂Wh

∂t
, ηh)k = Hu

L (Wh, fh, ηh) :=
¨

�L
k×�L

p

dkdp{ηhLEL fh WhB},

where the subscript L means integral on cut-off domain, the superscript u means unconservative. We will first analyze the 
source of conservation errors and then present our conservative semi-discrete trilinear forms B L and H L .

The source of conservation errors
Suppose different quadrature rules R1 and R2 are used for different equations,

(
∂ fh

∂t
, φh)p = R1

⎡
⎢⎢⎣−

ˆ

�L
p

dp
ˆ

�L
k

dk{LφhL fh WhB}

⎤
⎥⎥⎦

(
∂Wh

∂t
, ηh)k = R2

⎡
⎢⎢⎣
ˆ

�L
k

dk
ˆ

�L
p

dp{ηhLEL fh WhB}

⎤
⎥⎥⎦

The error of conservation laws can be decomposed into three terms,

∂

∂t
(( fh,�p,hφ)p + (Wh,�k,hη)k)

=R1

⎡
⎢⎢⎣−

ˆ

�L
p

dp
ˆ

�L
k

dk
{(
L�p,hφ

)
L fh WhB

}
⎤
⎥⎥⎦+ R2

⎡
⎢⎢⎣
ˆ

�L
k

dk
ˆ

�L
p

dp
{(

�k,hηLE
)
L fh WhB

}
⎤
⎥⎥⎦

=A1 + A2 + A3,

where

A1 = (R1 − I)

⎡
⎢⎢⎣
ˆ

�L
k

dk
ˆ

�L
p

dp
{(−L�p,hφ

)
L fh WhB

}
⎤
⎥⎥⎦ ,

A2 = (I − R2)

⎡
⎢⎢⎣
ˆ

�L
k

dk
ˆ

�L
p

dp
{(−L�p,hφ

)
L fh WhB

}
⎤
⎥⎥⎦ ,

A3 = R2

⎡
⎢⎢⎣
ˆ

�L
k

dk
ˆ

�L
p

dp
{(

�k,hηLE −L�p,hφ
)
L fh WhB

}
⎤
⎥⎥⎦ .

The error terms A1 and A2 are caused by inconsistent numerical integration on the resonance manifold. Suppose that 
R1 − I is of the same order as O (ha), and quadrature rule R2 has error O (hb), then the sum will be roughly O (hmin{a,b}). 
The last error term A3 is a result of projection error, whose order depends on the degree of test spaces, α1 and α2.

Note that A1 and A2 cancel out when we use the same quadrature rules, i.e. R1 = R2. In what follows, we will introduce 
a conservative semi-discrete form such that A3 disappears.
9
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The conservative semi-discrete form
Recall the definition of directional differential operator L,

Lg = k‖v‖
ω

p

p‖
∂ g

∂ p‖
+ (1 − k‖v‖

ω
)

p

p⊥
∂ g

∂ p⊥
= N‖

∂ E

∂ p⊥
p

p⊥
∂ g

∂ p‖
+ (1 − N‖

∂ E

∂ p‖
)

p

p⊥
∂ g

∂ p⊥
.

We propose a discretized operator Lh defined as follows,

Lh g := N‖,h
∂ Eh

∂ p⊥
p

p⊥
∂ g

∂ p‖
+ (1 − N‖,h

∂ Eh

∂ p‖
)

p

p⊥
∂ g

∂ p⊥
, (3.3)

where the discretized kinetic energy is defined as Eh = �p,h E(p), and the discretized wave refractive index is defined as 
N‖,h = �k,h N‖ = �k,h

k‖
ω(k)

.
The main result of this paper is stated in the following theorem.

Theorem 3. If fh(p, t) and Wh(k, t) are solutions of the following semi-discrete weak form,

(
∂ fh

∂t
, φh)p = −B L( fh, Wh, φh) := −

¨

�L
k×�L

p

dkdp{LhφhLh fh WhBh},

(
∂Wh

∂t
, ηh)k = H L(Wh, fh, ηh) :=

¨

�L
k×�L

p

dkdp{ηhLh EhLh fh WhBh},
(3.4)

then the following discrete conservation laws hold,

∂

∂t
Mtot,h = ∂

∂t
(( fh,�p,h1)p + (Wh,0)k) = 0,

∂

∂t
P‖

tot,h = ∂

∂t

(
( fh,�p,h p‖)p + (Wh,�k,h N‖)k

)= 0,

∂

∂t
Etot,h = ∂

∂t
(( fh,�p,h E(p))p + (Wh,�k,h1)k) = 0.

Proof. Substitute the discrete conservation pairs {�p,h1, 0}, {�p,h p‖, �k,h N‖} and {�p,h E(p), �k,h1} into semi-discrete form 
(3.4) and use the definition of Lh . �
Corollary 1. If in addition to the assumptions of Theorem (3), the projections are L2 orthogonal projections, i.e.

(
u − �p,hu, v

)
p = 0,∀v ∈ Gα1

h

and

(
U − �k,hU , V

)
k = 0,∀V ∈ Wα2

h ,

then the exact conservation laws are preserved, i.e.

∂

∂t
Mtot,h = ∂

∂t
(( fh,1)p + (Wh,0)k) = 0,

∂

∂t
P‖

tot,h = ∂

∂t

(
( fh, p‖)p + (Wh, N‖)k

)= 0,

∂

∂t
Etot,h = ∂

∂t
(( fh, E(p))p + (Wh,1)k) = 0.

Proof. Use the fact that fh ∈ Gα1
h and Wh ∈Wα2

h . �
Remark 7. Same as stated in Theorem (2), our semi-discrete weak form is also unconditionally conservative, i.e. the conser-
vation does not depend on a particular discrete emission/absorption kernel Bh .
10
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4. The sparse interaction tensors

Suppose that the test spaces are spanned by basis functions, i.e. Gα1
h = span{φi} and Wα2

h = span{η j}. Then we can 
express the discrete particle pdf fh and wave sed Wh as a linear combination of basis functions.

fh(p, t) =
N f∑
i=1

ai(t)φi(p)

Wh(k, t) =
Nw∑
j=1

w j(t)η j(k)

By definition, Eh = �p,h E ∈ Gα1
h , therefore it is also a linear combination of basis functions, Eh =∑N f

q=1 Eqφq .
Substitute the above expressions into Equation (3.4), then the semi-discrete system becomes a first-order finite dimension 

ODE system:

N f∑
i=1

∂ai

∂t

ˆ
φiφmd3 p = −

N f∑
n=1

Nw∑
k=1

an wk

ˆ

�L
p

dp
ˆ

�L
k

dk{LhφmLhφnηkB(p;k)}

Nw∑
j=1

∂ w j

∂t

ˆ
η jηqd3k =

Nw∑
k=1

N f∑
n=1

wkan

ˆ

�L
k

dk
ˆ

�L
p

dp{ηqLh EhLhφnηkB(p;k)}

Denote the mass matrix for particle pdf as Aim = (φi, φm)p , and denote the mass matrix for wave sed as G jq = (η j, ηq)k .
Analogously, define the interaction tensors B and H corresponding to the trilinear forms.

Bnkm = B(φn, ηk, φm)

Hknq = H(ηk, φn, ηq)

As a result, we obtain the nonlinear ODE system corresponding to semi-discrete weak form (3.4):

∂ai

∂t
Aim = −an wk Bnkm

∂ w j

∂t
G jq = wkan Hknq

(4.1)

The interaction tensors B and H are both sparse tensors for two reasons: compactly supported basis and the resonant 
feature of trilinear forms. Taking particle interaction tensor B as an example, Bnkm = 0 when

1. φm and φn are not in neighboring elements.
2. φm and ηk do not “resonate”, i.e. supp(φm) × supp(ηk) does not intersect with the resonant manifold.

Suppose in each dimension we have O (n) meshes, then the shape of particle interaction tensor B is roughly O (n2) ×
O (n2) × O (n2), while the number of nonzero elements will be only O (n3), i.e. the sparsity of tensor B is about 1 − 1

O (n3)
. A 

similar analysis can also be applied to the wave interaction tensor H .

We observed that the trilinear forms B and H defined in Equation (2.10) have similar structures. Therefore one might 
wonder if there is any relation between the interaction tensors B and H . It turns out that when α2 = 0, i.e. piecewise 
constant basis functions are used for wave sed Wh , we can infer any nonzero element of wave interaction tensor H from 
particle interaction tensor B . In practice, the interaction tensors are precomputed and saved for later use. Taking advantage 
of this relation, we can save half the time of preprocessing. The derivation is as follows.

When α2 = 0, Wα2
h = span{η j} are piecewise constant functions, we have

ηi(k)η j(k) = δi jηi(k).

Then the mass matrix for wave sed is diagonal,

G jq = (η j, ηq)k =
ˆ

R j

δ jqd3k = diag(μ(R j
k)),
k

11
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where μ(R j
k) =

´
R j

k
1d3k is the measure of j-th element in �L

k .

Moreover, note that if we define a 4-th order tensor

H̃mknq :=
ˆ

�L
k

dk
ˆ

�L
p

dp{LhφmLhφnηkηqB(p;k)}

Recall the expansion Eh =∑N f
q=1 Eqφq , and substitute it into the definition of wave interaction tensor H , we obtain the 

relation between Hknq and H̃mknq ,

Hknq = H(ηk, φn, ηq) =
N f∑

m=1

Em H̃mknq

It can be observed that the form of H̃mknq is almost identical to the definition of particle tensor Bmnk , except for the 
extra ηq . Replace ηk(k)ηq(k) with δkqηk(k), we obtain the relation between H̃mknq and Bmnk ,

H̃mknq = δkq

ˆ

�L
k

dk
ˆ

�L
p

dp{LhφmLhφnηkB(p;k)} = δkq Bmnk.

Therefore Bmnk and Em is all we need to calculate Hknq ,

Hknq =
N f∑

m=1

Em H̃mknq =
N f∑

m=1

Emδkq Bmnk = δkq

N f∑
m=1

Em Bmnk =
{

0, k 
= q∑N f
m=1 Em Bmnk k = q

5. Stability and positivity

In this section, we investigate the stability of the fully discretized nonlinear system. With semi-implicit time discretiza-
tion, there is no constraint on time step size from the CFL condition. However, the stability will rely on the positivity of Wh , 
which results in a condition for the time step size, relevant to the gradient of particle pdf fh . The condition will not cause 
any trouble for implementation, because we can always adapt the step size a posteriori.

5.1. Stability of the semi-discrete form

Consider the equation for particle pdf only, it has the form of a diffusion equation, thus its stability relies on the fact 
that the diffusion coefficient is positive semi-definite, which further relies on the positivity of wave sed Wh .

Lemma 1 (L2 stability of fh(p) and L1 bound of Wh(k)). Suppose fh(p, t) and Wh(k, t) are the solution of Equation (3.4) with the 
following initial condition:

fh(p,0) = f 0
h (p)

Wh(k,0) = W 0
h (k)

If Wh always takes non-negative values, i.e. Wh(k, t) ≥ 0, ∀ k ∈ �L
k , ∀t ≥ 0, then fh has L2 stability

‖ fh‖L2(�L
p) ≤ ‖ f 0

h ‖L2(�L
p)

and Wh has bounded L1 norm.

‖Wh‖L1(�L
k ) ≤ E0

tot,h + ‖ f 0
h ‖L2(�L

p) · ‖�p,h E‖L2(�L
p)

Proof. Since fh belongs to the test space Gα1
h , we test the equation for particles with fh , we obtain that

(
∂ fh

∂t
, fh)p = −

ˆ

�L
k

dk
ˆ

�L
p

dp{(Lh fh)
2WhB}.

The right hand side is non-positive as long as Wh always take non-negative values, therefore the L2 norm of fh always 
decreases,
12
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1

2

∂

∂t
‖ fh‖2

L2(�L
p)

≤ 0 ⇒ ‖ fh‖L2(�L
p) ≤ ‖ f 0

h ‖L2(�L
p)

Now consider Wh , by definition,

‖Wh‖L1(�L
k ) = (Wh, sgn(Wh))k = (Wh,1)k

Recall the energy conservation property in Theorem 3:

‖Wh‖L1(�L
k ) + ( fh,�p,h E)p = E0

tot,h

Use Holder’s inequality

‖Wh‖L1(�L
k ) = E0

tot,h − ( fh,�p,h E)p

≤ E0
tot,h + |( fh,�p,h E)p|

≤ E0
tot,h + ‖ fh‖L2(�L

p) · ‖�p,h E‖L2(�L
p)

By the L2-stability of fh , we obtain the upper bound of Wh ’s L1 norm,

‖Wh‖L1(�L
k ) ≤ E0

tot,h + ‖ fh‖L2(�L
p) · ‖E‖L2(�L

p) ≤ E0
tot,h + ‖ f 0

h ‖L2(�L
p) · ‖�p,h E‖L2(�L

p) �
5.2. Time discretization

Recall our conservative semi-discrete weak form,

(
∂ fh

∂t
, φh)p = −B L( fh, Wh, φh) := −

¨

�L
k×�L

p

dkdp{LhφhLh fh WhBh},

(
∂Wh

∂t
, ηh)k = H L(Wh, fh, ηh) :=

¨

�L
k×�L

p

dkdp{ηhLh EhLh fh WhBh}.

The time step size of the explicit scheme for diffusion equations is restricted by the CFL condition. Two reasons urge us 
to avoid explicit schemes,

1. The CFL bound of step size may be too restrictive, and we might lose efficiency.
2. The upper bound depends on the eigenvalues of time-varying diffusion coefficients. However, in the proposed scheme, 

we never calculate the diffusion coefficient explicitly, instead, we compute the interaction tensor B associated with the 
trilinear form B .

On the other hand, due to nonlinearity, a fully implicit scheme requires fixed-point iteration involving both particle pdf
fh and wave sed Wh , which can be time-consuming. Therefore, the objective is to find a scheme that is only implicit for fh , 
and at the same time preserves discrete conservation laws.

We propose the following semi-implicit scheme,

(
f s+1
h − f s

h

�t
, φh)p + B L( f s+1

h , W s
h, φh) = 0

(
W s+1

h − W s
h

�t
, ηh)k − H L(W s

h, f s+1
h , ηh) = 0

(5.1)

The scheme is implicit for particle pdf fh if we focus on the first line, meanwhile it is explicit for wave sed Wh , consid-
ering the second line. For implementation, we solve the first row and then substitute the next step particle pdf f s+1

h into 
the second row. It can be easily verified that the discrete conservation laws still hold, i.e. we have

( f s+1
h , φc,h)p + (W s+1

h , ηc,h)k = ( f s
h , φc,h)p + (W s

h, ηc,h)k

The following theorem is the fully discrete version of Lemma 1, giving the unconditional L2-stability of f s
h when W s

h is 
non-negative.

Theorem 4. Suppose f s(p) and W s(k) are the solution of Equation (5.1).
h h

13
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If W s
h always takes non-negative values, i.e. W s

h(k) ≥ 0, ∀ k ∈ �L
k , ∀s ≥ 0, then f s

h has L2 stability

‖ f s
h‖L2(�L

p) ≤ ‖ f 0
h ‖L2(�L

p)

and W s
h has bounded L1 norm.

‖W s
h‖L1(�L

k ) ≤ E0
tot,h + ‖ f 0

h ‖L2(�L
p) · ‖�p,h E‖L2(�L

p)

Proof. Given that W s
h(k) ≥ 0, ∀k ∈ �L

k , we have B L( f s+1
h , W s

h, f s+1
h ) ≥ 0. Therefore, f s

h has unconditional L2-stability.
Since the scheme (5.1) preserves energy conservation, the L1 bound of Wh can be proved in the same approach as we 

have done in Lemma 1. �
Note that the stability depends on our assumption that W s

h is non-negative. Therefore, in what follows, we will discuss 
the positivity-preserving technique of W s

h .

5.3. Positivity-preserving technique for the wave SED

To ensure positivity of wave sed W s
h , we draw the strategy from Zhang et al. [22]:

1. Use a small enough time step to ensure positive cell-average of a temporary wave sed W s+1,∗
h , given that we have 

pointwise positivity of last step wave sed W s
h .

2. Apply a slope limiter on W s+1,∗
h which preserves cell-average at the same time, then we obtain a pointwise positive 

W s+1
h as our solution of the next step wave sed. (Obviously, if we use piecewise constant basis functions, this step is 

not necessary).

Firstly we will derive the constraint on time step size. After that, we explain why the slope limiter will not break discrete 
conservation laws.

Suppose η j,0 is the characteristic function of the j-th element R j
k ⊂ �L

k , i.e. η j,0 = 1
k∈R j

k
, which belongs to the test space 

Wα2
h . According to the time discretization in Equation (5.1),

(
W s+1,∗

h − W s
h

�t
, η j,0)k =

ˆ

�L
k

W s+1,∗
h − W s

h

�t
η j,0dk =

ˆ

�L
k

dk
ˆ

�L
p

dp{Lh EhLh f s+1
h W s

hη j,0Bh},

which is equivalent to

ˆ

R j
k

W s+1,∗
h d3k =

ˆ

R j
k

W s
h(1 + �t

ˆ

�L
p

dp{Lh EhLh f s+1
h Bh})dk

To ensure positive cell-average, i.e. 
´

R j
k

W s+1,∗
h dk ≥ 0, we require that there exists a constant ε > 0 such that

1 + �t

ˆ

�L
p

dp{Lh EhLh f s+1
h Bh} ≥ ε, ∀k ∈ R j

k (5.2)

As long as the time step size �t satisfy condition (5.2), we have 
´

R j
k

W s+1,∗
h dk ≥ ε

´
R j

k
W s

hdk ≥ 0.

The following theorem guarantees that our bound for �t will not shrink over time.

Theorem 5. For any ε > 0, given a regular enough discrete emission/absorption kernel Bh, there exists a constant �tM determined by 
ε , f 0 , �L

p , �L and h, such that any �t < �tM satisfies condition (5.2).
k

14
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Proof. By Hölder’s inequality, the “growth rate” is bounded as follows,∣∣∣∣∣∣∣∣
ˆ

�L
p

dp{Lh EhLh f s+1
h Bh}

∣∣∣∣∣∣∣∣
≤
ˆ

�L
p

dp
∣∣∣Lh EhLh f s+1

h Bh

∣∣∣

≤
∥∥∥∥ p⊥

p
Lh f s+1

h

∥∥∥∥
L∞(�L

p)

·
∥∥∥∥ p

p⊥
BhLh Eh

∥∥∥∥
L1(�L

p)

=2π

∥∥∥∥ p⊥
p

Lh f s+1
h

∥∥∥∥
L∞(�L

p)

·
(ˆ

pBhLh Ehdp⊥dp‖
)

(5.3)

Firstly, consider the L∞-norm factor from inequality (5.3). Recall the definition of Lh ,

p⊥
p

Lh f s+1
h := N‖,h

∂ Eh

∂ p⊥
∂ f s+1

h

∂ p‖
+ (1 − N‖,h

∂ Eh

∂ p‖
)
∂ f s+1

h

∂ p⊥
.

Both of the coefficients N‖,h ∂ Eh
∂ p⊥ and (1 − N‖,h ∂ Eh

∂ p‖ ) are bounded by some constant C dependent on �L
p and �L

k , hence it 
follows that,∥∥∥∥ p⊥

p
Lh f s+1

h

∥∥∥∥
L∞(�L

p)

=
∥∥∥∥∥N‖,h

∂ Eh

∂ p⊥
∂ f s+1

h

∂ p‖
+ (1 − N‖,h

∂ Eh

∂ p‖
)
∂ f s+1

h

∂ p⊥

∥∥∥∥∥
L∞(�L

p)

≤ C(�L
p,�L

k)

∥∥∥∥∥∂ f s+1
h

∂ p‖

∥∥∥∥∥
L∞(�L

p)

+ C(�L
p,�L

k)

∥∥∥∥∥∂ f s+1
h

∂ p⊥

∥∥∥∥∥
L∞(�L

p)

≤ C1(�
L
p,�L

k) ·
∥∥∥∇p f s+1

h

∥∥∥
L∞(�L

p)
.

(5.4)

We claim that 
∥∥∥∇p f s+1

h

∥∥∥
L∞(�L

p)
is bounded uniformly in time. Indeed, since the domain �L

p is finite, all Lr norms are 

equivalent, therefore,∥∥∥∇p f s+1
h

∥∥∥
L∞(�L

p)
≤ C2(�

L
p)

∥∥∥∇p f s+1
h

∥∥∥
L2(�L

p)
.

Moreover, the inverse inequality for finite element spaces,∥∥∥∇p f s+1
h

∥∥∥
L2(�L

p)
≤ C3

hp

∥∥∥ f s+1
h

∥∥∥
L2(�L

p)
,

and the L2 stability estimate from Theorem 4∥∥∥ f s+1
h

∥∥∥
L2(�L

p)
≤
∥∥∥ f 0

h

∥∥∥
L2(�L

p)
,

leads to the following estimate for ∇p f s+1
h ,∥∥∥∇p f s+1

h

∥∥∥
L∞(�L

p)
≤ C2(�

L
p)

C3

hp

∥∥∥ f 0
h

∥∥∥
L2(�L

p)
. (5.5)

Therefore, the L∞-norm factor from inequality (5.3) is bounded as follows,∥∥∥∥ p⊥
p

Lh f s+1
h

∥∥∥∥
L∞(�L

p)

≤ C1(�
L
p,�L

k)C2(�
L
p)

C3

hp

∥∥∥ f 0
h

∥∥∥
L2(�L

p)
.

Next, consider the L1-norm factor from inequality (5.3), and write it as follows,
ˆ

pBhLh Ehdp⊥dp‖ =
ˆ [

pUl(p;k)δh(ω(k) − k‖v‖ − lωc/γ (p))
p

p⊥
∂ Eh

∂ p⊥

]
dp⊥dp‖,

where δh represents an approximation of Dirac delta, see Equation (2.8) and (2.9).
We discuss the following two cases,
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• When l 
= 0, since

lim
p⊥→0+ Ul(p;k)

p2

p⊥
= lim

p⊥→0+ 8π2e2

(
iE2 J ′

l

)2
(

p⊥
p

)2

(
1 − E2

2

) 1
ω

∂
∂ω (ω2ε) + 2iE2

1
ω

∂
∂ω (ω2 g) + E2

3
1
ω

∂
∂ω (ω2η)

p2

p⊥
= 0,

the integral is bounded as follows,

ˆ
pBhLh Ehdp⊥dp‖ =

ˆ [(
Ul(p;k)

p2

p⊥

)
∂ Eh

∂ p⊥
δh(ω(k) − k‖v‖ − lωc/γ (p))

]
dp⊥dp‖

≤ sup
�L

p

(
Ul(p;k)

p2

p⊥

)
∂ Eh

∂ p⊥

ˆ [
δh(ω(k) − k‖v‖ − lωc/γ (p))

]
dp⊥dp‖

≤ C4(�
L
p,�L

k).

(5.6)

• When l = 0, the above trick does not work, because limp⊥→0+ U0(p; k) > 0. For this special case, as an alternative to 
the original operator

Lh g := N‖,h
∂ Eh

∂ p⊥
p

p⊥
∂ g

∂ p‖
+ (1 − N‖,h

∂ Eh

∂ p‖
)

p

p⊥
∂ g

∂ p⊥
,

we adopt a new discrete operator,

L0
h g := N‖,h

∂ Eh

∂ p⊥
p

Eh
∂ Eh
∂ p⊥

∂ g

∂ p‖
+ (1 − N‖,h

∂ Eh

∂ p‖
)

p

Eh
∂ Eh
∂ p⊥

∂ g

∂ p⊥
.

The operator is still a consistent discretization since E =
√

1 + p2‖ + p2⊥ . It can also be easily verified that the L∞ bound 

in inequality (5.4) is still true with this new operator L0
h .

In addition, the L1-norm factor becomes,

ˆ
pBhL0

h Ehdp⊥dp‖ =
ˆ [

pUl(p;k)δh(ω(k) − k‖v‖ − lωc/γ (p))
p

Eh

]
dp⊥dp‖.

Therefore inequality (5.6) still holds.

Combine inequalities (5.4), (5.5), and (5.6) to obtain∣∣∣∣∣∣∣∣
ˆ

�L
p

dp{Lh EhLh f s+1
h Bh}

∣∣∣∣∣∣∣∣
≤ 2π

C1 · C2 · C3 · C4

hp

∥∥∥ f 0
h

∥∥∥
L2(�L

p)
,

which enables us to define the uniform-in-time upper bound,

�tM := (1 − ε)hp

2π · C1 · C2 · C3 · C4
∥∥ f 0

h

∥∥
L2(�L

p)

.

It can be easily verified that any �t < �tM satisfies condition (5.2). �
The condition does not need to be calculated explicitly, because we can adapt time step size a posteriori in the code: 

monitor the cell averages, if any cell average of the temporary solution W s+1,∗
h is non-positive, replace �t with 0.5�t and 

calculate W s+1,∗
h again.

Now let us discuss the effect of slope limiters on conservation laws. If α2 = 0, there is no need for any slope limiter. 
If α2 = 1, we apply the slope limiter θ and obtain W s+1

h = θ(W s+1,∗
h ). According to Zhang et al. [22], the cell average 

is preserved, i.e. 
´

R j
k

W s+1,∗
h dk = ´

R j
k

W s+1
h dk. In other words, 

(
W s+1,∗

h , η
)

k
=
(

W s+1
h , η

)
k
, for any piecewise constant test 

function, i.e. ∀η ∈ W0
h . Therefore, to preserve discrete conservation laws, in the definition of the discrete directional differ-

ential operator Lh , we need to pick a projection �k,h such that �k,hU belongs to W0 ⊂Wα2 for any function U .
h h

16



K. Huang, M. Abdelmalik, B. Breizman et al. Journal of Computational Physics 488 (2023) 112220
6. Numerical results

6.1. Problem setting

Although the emission/absorption kernel contains a summation from l = −∞ to l = +∞, it is not practical to perform 
that numerically. In practice, we keep the dominant part of those terms. In the following example, we will only consider one 
term with l = 1, associated with the anomalous Doppler resonance. We used the dispersion relation ω(k) of the whistler 
wave in cold magnetized plasma (see Appendix), with electron gyro-frequency ωc = −2ωp .

Set the cut-off computational domain as follows,

�L
p = {(p‖, p⊥) : p‖ ∈ (−5mc,25mc), p⊥ ∈ (0,15mc)}

�L
k = {(k‖,k⊥) : k‖ ∈ (0.05

ωp

c
,0.65

ωp

c
), k⊥ ∈ (0,0.6

ωp

c
)}

Take piecewise linear quadrilateral basis G1
h = { f (p‖, p⊥) ∈ C0(�L

p) : f |R p ∈ Q 1(R p), ∀ R p ∈ T p
h } and piecewise constant 

basis W0
h = {W (k‖, k⊥) : W |Rk ∈ Q 0(Rk), ∀ Rk ∈ T k

h } as our test spaces. Choose the L2 orthogonal projections �p,h and �k,h
as stated in Corollary 1.

The numerical experiment is performed with 75 × 75 elements in �L
p , and 40 × 40 elements in �L

k . The initial time step 
size is set as �t = 1.0 × 104 1

2πωp
.

The integration on resonance manifold is performed with Gauss-Legendre quadrature on �L
p and the marching simplex 

method [7,12] on �L
k .

Consider the following initial conditions, which is the so-called ’bump on tail instability’ configuration.⎧⎪⎪⎨
⎪⎪⎩

f (p‖, p⊥)|t=0 =
[

10−5 1√
π

exp

(
−
( p‖

mc
− 20

)2 −
( p⊥

mc

)2
)]

n0

m3c3

W (k‖,k⊥)|t=0 = 10−5 n0mc2

(ωp/c)3

Remark 8. The bump on tail configuration actually refers to the sum of a bulk and a bump, i.e. f (p, t) = fc(p) + fb(p, t), 
where the cold bulk fc(p) ≈ n0

m3c3 δ(p), and the bump fb(p, t) is a peak with a much smaller population, centered far from 
the origin. However, as shown in the following equation,

∂( f − fc)

∂t
= B(W , f ) = B(W , f − fc) +B(W , fc) = B(W , f − fc),

∂W

∂t
= H( f , W ) = H( f − fc, W ) +H( fc, W ) = H( f − fc, W ),

we do not have to really compute the contribution from fc .

6.2. Temporal evolution

In analogous to the analysis done by Kennel and Engelmann [10], for a given wave vector k, the characteristics associated 
with directional differential operator L are

z(p‖, p⊥) := ω

k‖
p‖ − E(p‖, p⊥) = ω

k‖
p‖ −

√
m2c4 + p2‖c2 + p2⊥c2 = const, (6.1)

which is the isoenergy contour in the reference frame moving at the wave’s phase velocity.
When the wave sed W (k, t) is concentrated around the given k, the contours as illustrated in Fig. 2 indicate the principal 

diffusion direction. For the specific problem setting, ω
k‖ is small, hence the contour lines are almost concentric circles.

In Fig. 1 we show the evolution of electron pdf f (p‖, p⊥, t) and wave sed W (k‖, k⊥, t). It can be observed that the 
bump on tail results in the excitation of the approximate waves in a narrow region of spectral space �L

k , and as predicted 
by Equation (6.1), the whistler waves in turn cause anisotropic diffusion of electron pdf almost along the contour lines in 
Fig. 2.

6.3. Verification of conservation

To verify the discrete conservation property of the proposed scheme, we define the relative error for conserved quantity 
as follows,
17
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Fig. 1. Temporal evolution of the electron pdf and wave sed.

erel
(
Qtot,h

) := ‖Qtot,h −Q0
tot,h‖L∞(0,Tmax)

Q0
tot,h

,

where Q is the conserved quantities defined in Theorem 2.
Then with Tmax = 8.0 × 107 1

2πωp
, we have

erel(Mtot,h) = 4.96 × 10−14,

erel(P‖,tot,h) = 4.58 × 10−14,

erel(Etot,h) = 4.69 × 10−14.

For the evolution of the electron-plasmon system momentum and energy, see solid lines in Fig. 3.
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Fig. 2. The characteristics of directional differential operator L given (k‖,k⊥) = (0.2,0.3).

Fig. 3. Comparison between ωimp and ωexp.

6.4. Comparison of different dispersion relations

The above results were obtained with the exact whistler wave dispersion relation ωimp(k) for cold magnetized plasma, 
given implicitly by Equation (A.2). One might wonder what if we replace it with a simpler explicit approximate relation, for 
instance,

ωexp(k) = |ωc| |k‖|kc2

ω2
p

√
1 + k2c2ω2

c /ω4
p

which is asymptotic to the implicit relation ωimp(k) when k is small, i.e.

lim
k→0

(
ωexp(k) − ωimp(k)

)= 0.

As shown in Fig. 3, for both cases, energy and momentum are transferred from particles to waves. Meanwhile, we do 
observe a different transfer rate for the approximate whistler dispersion relation when compared to the exact implicit 
dispersion relation derived from Equation (A.2) in the Appendix.

7. Summary

We studied the numerical method for the initial value problem associated with the relativistic quasilinear diffusion model 
in magnetized plasma. We showed that a conservative semi-discrete form can be derived by adopting a novel integro-
19
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differential form of this wave-particle interaction system. We incorporated the marching simplex algorithm in numerical 
integration on the resonance manifold. A semi-implicit time discretization was introduced to ensure the stability of the 
particle pdf and positivity of wave sed, which also preserves conservation in the fully discrete form. In the end, we presented 
our numerical results for the bump-on-tail instability, and the conservation properties are verified.

In the future, we will consider the problem with the spatial non-uniform setting, and other factors such as Landau colli-
sion operator and external electric field will be included. Error estimates for the Galerkin scheme will also be investigated.
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Appendix A. Waves in cold magnetized plasma

The directional differential operator and the emission/absorption kernel both vary for different wave modes. Since our 
numerical experiment is based on the whistler mode, we introduce the wave modes in cold magnetized plasma here to 
make the paper self-contained.

Inside the medium with conductivity tensor σ , we have the linear relation between current and field J = σ · E. Apply the 
Fourier transform to the Maxwell equations, we obtain that

k × k × Ê = μ0ε0ω
2(

iσ

ωε0
+ I) · Ê

Write it with Einstein’s summation notation, we have the wave equation in spectral form,

(kαkβ − δαβk2 + ω2

c2
εαβ)Êβ = 0, β = 1,2,3 (A.1)

where the dielectric tensor εαβ is dependent on σ .

Let M(ω, k) = kαkβ − δαβk2 + ω2

c2 εαβ , then the wave Equation (A.1) has nontrivial solution if and only if

Det[M(ω,k)] = 0 (A.2)

Equation (A.2) gives the graph of implicit function ω(k), which is known as the dispersion relation.

The above discussion works for any medium. Now we focus on the plasma. Consider cold magnetized plasma with 
background field B0(x) = B0b, where B0 is constant and b is a fixed unit vector. A plasma is “cold” when the waves 
propagate faster than its thermal speed.

The following dielectric tensor for cold magnetized plasmas can be found in textbooks [16,17]. (For simplicity, ion motion 
is neglected here.)

εαβ(ω) ≡ εδαβ + igeαβγ bγ + (η − ε)bαbβ,

where
20
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ε = εH ≡ 1 − ω2
pe

ω2 − ω2
ce

,

g = g H ≡ −ωce

ω

ω2
pe

ω2 − ω2
ce

,

η = ηH ≡ 1 − ω2
pe

ω2
.

(A.3)

There are two parameters in the above formulas. The electron gyro-frequency ωce = −|e|B/mec is proportional to the 
background magnetic field. The plasma frequency ωpe =√4πnee2/me is proportional to the square root of particle density.

Recall that the dispersion relation ω(k) is given implicitly in Equation (A.2), one might wonder whether ω(k) is multi-
valued, and for a specific branch, whether it is well-defined for any k ∈ �k . Textbooks never elaborate on this issue, therefore 
we provide an answer here.

Define the parallel component and perpendicular component of wave vector k, k‖ := k · B/|B|, k⊥ :=
√

k2 − k2‖ . Denote 
the magnitude k as k, and define the cosine of polar angle as ξ := k‖/k. If ion motion is neglected, then we have what 
follows.

Proposition 1. ∀ (k‖, k⊥) ∈ (0, +∞) × (0, +∞), ∃ 0 < ω1 < ω2 < ω3 < ω4 < ∞ s.t.

Det[M(ω j,k‖,k⊥)] = 0, j = 1,2,3,4

i.e. the equation admits exactly 4 positive single-value implicit functions ω j(k‖, k⊥), j = 1, 2, 3, 4, on domain (0, +∞) × (0, +∞), 
moreover, ω j(k, ξ) := ω j(k‖(k, ξ), k⊥(k, ξ)) satisfy that ∂

∂k ω j(k, ξ) ≥ 0, ∀ ξ ∈ (0, 1).

The first branch ω1(k) is defined on the whole spectral space R3
k . In a relatively strong magnetic field (ω2

p/ω2
c � 1), the 

whistler wave actually refers to waves with wave vector k ∈ �w �R3
k , and meanwhile has frequency ω1(k). Outside the 

region �w , the first branch has another name. For details, see Aleynikov et al. [1]. In our numerical experiment, the cut-off 
domain �L

k ⊂ �w , therefore we say that we consider the whistler wave.
The polarization vector components in the emission/absorption kernel are given below

E1(k) = 1,

E2(k) = i
g

ε − N2
,

E3(k) = − N‖N⊥
η − N2⊥

,

(A.4)

where N = k
ω is the refractive index.
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