Existence of Global Weak Solutions to Quasilinear Theory for Electrostatic Plasmas

Kun Huang and Irene M. Gamba
Oden Institute for Computational Sciences and Engineering, University of Texas at Austin

Abstract

The quasilinear theory has been widely used to describe the resonant particle-wave interaction in plasmas. The electrostatic case, i.e. the model originating from Vlasov-Poisson system, is the most fundamental and representative one. In this paper, we prove the existence of global weak solutions for electrostatic plasmas in one dimension.

Keywords: quasilinear theory, plasma physics, weak turbulence model, porous medium equation

1 Introduction

The quasilinear theory is a model reduction of the Vlasov-Maxwell(or Vlasov-Poisson) system in weak turbulence regime. Since first proposed by Vedenov et al. [8] and Drummond et al. 3], it has found extensive use in plasma physics to describe the interaction between particles and waves(plasmons). Despite that, not much work from analysis point of view can be found. A recent paper by Bardos and Besse [2] discussed the asymptoticity. The well-posedness of quasilinear systems remains an open problem. This paper is devoted to proving the existence of weak solutions to the one dimensional problem.
Our strategy can be summarized as follows. Firstly, we use the trick in Ivanov et.al. 4] to show that, in one dimensional case, the system is equivalent to a porous medium equation with nonlinear source terms. This allows us to use existing techniques from that field. In particular, the proposed proof is inspired by the book of Vazquez [7]. The basic idea is to analyze a series of approximate problems with parameter n and try to establish regularity estimates uniform in n. Then it is possible to pass the limit to infinity.
In order to pass the limit, the strong convergence of the gradient term is necessary. And that is the most challenging part. Similar problems has been tackled by Abdellaoui, Peral and Walias [1, where the nonlinear source contains a gradient term to some power. A significant difference is that they require positive source, while in our problem, the gradient square term has a minus sign. Nevertheless, their proof for a.e. convergence can still be adopted if we can find an alternative way to prove the prerequisites.
The paper is organized as follows. In Section 2, we derive the equivalent porous medium equation and state the main result. In Section 3, we resort to the book of Ladyzenskaja [5 for the maximum principle and the well-posedness of the strictly coercive approximate problems with parameter n. Section 4 aims at proving the regularity estimates uniform in parameter n, which paves the way to convergence results. In Section 5, the a.e. convergence of gradient term is proved, using the technique from Abdellaoui, Peral and Walias 1 . The proof of main theorem is contained in Section 6. And we will further discuss the nontrivial equilibrium states in Section 7.

2 From Quasilinear System to Porous Medium Equation with Source Term

The goal of this section is to transform the system into a single equation for only one unknown function. The quasilinear system for particle-wave interaction contains two equations, as there are two unknown functions: the particle probability density function $f(\mathbf{p}, t)$ and the wave spectral energy density $W(\mathbf{k}, t)$.

The most important feature of the system lies in the fact that particles and waves interact through the absorption/emission kernel, which contains a Dirac delta. In physics this is called "resonance", since particles with certain momentum only interact with waves with some particular wave vectors. The one dimensional plasma is special, because in this case each momentum \mathbf{p} corresponds to only one wave vector \mathbf{k}, and vice versa. This is the reason that the following trick is feasible.
In electrostatic case, the equations are as follows,

$$
\left\{\begin{aligned}
\partial_{t} f(\mathbf{p}, t) & =\nabla_{p} \cdot\left(\left[\int_{\Omega_{k}} W(\mathbf{k})(\hat{\mathbf{k}} \otimes \hat{\mathbf{k}}) \delta\left(\omega-\nabla_{p} E(\mathbf{p}) \cdot \mathbf{k}\right) d \mathbf{k}\right] \cdot \nabla_{p} f\right) \\
\partial_{t} W(\mathbf{k}, t) & =\left[\int_{\Omega_{p}}\left(\nabla_{p} f\right) \cdot(\hat{\mathbf{k}} \otimes \hat{\mathbf{k}}) \cdot\left(\nabla_{p} E(\mathbf{p})\right) \delta\left(\omega-\nabla_{p} E(\mathbf{p}) \cdot \mathbf{k}\right) d \mathbf{p}\right] W
\end{aligned}\right.
$$

where $E(\mathbf{p})=\frac{1}{2} \mathbf{p}^{2}$ is the kinetic energy of a single particle, and the constant ω is the plasma frequency.
In one dimensional plasma, after normalization, the system can be written as

$$
\left\{\begin{aligned}
\partial_{t} f & =\partial_{p}\left(\left[\int_{\Omega_{k}} W \delta(1-p k) d k\right] \partial_{p} f\right) \\
\partial_{t} W & =\left[\int_{\Omega_{p}}\left(\partial_{p} f\right) p \delta(1-p k) d p\right] W
\end{aligned}\right.
$$

with initial condition being

$$
\left\{\begin{aligned}
f(p, 0) & =f_{0}(p) \\
W(k, 0) & =W_{0}(k)
\end{aligned}\right.
$$

Here $p=1 / k$ is the so-called resonance condition. Consequently, for $p>0$ and $k>0$, after eliminating the Dirac delta by performing integration, the system becomes

$$
\left\{\begin{aligned}
\partial_{t} f(p, t) & =\partial_{p}\left(\left[W\left(\frac{1}{p}\right) \frac{1}{p}\right] \partial_{p} f\right) \\
\partial_{t} W(k, t) & =\left[\partial_{p} f\left(\frac{1}{k}\right) \frac{1}{k^{2}}\right] W(k, t)
\end{aligned}\right.
$$

Introducing a new function $w(p)=\frac{1}{p^{3}} W\left(\frac{1}{p}\right)$ to obtain

$$
\left\{\begin{array}{l}
\partial_{t} f=\partial_{p}\left(p^{2} w \partial_{p} f\right) \tag{2.1}\\
\partial_{t} w=p^{2} w \partial_{p} f
\end{array}\right.
$$

Compare the right hand side of the above two equations, the second row is identical to the term inside bracket, therefore $\partial_{t} f=\partial_{p}\left(\partial_{t} w\right)$, and by fundamental theorem of calculus,

$$
f=\partial_{p}\left(w-w_{0}\right)+f_{0}
$$

Substitute it into the second row of Equation(2.1), we obtain an equation with only one unknown function $w(p, t)$,

$$
\partial_{t} w=p^{2} w \partial_{p}\left(\partial_{p} w+f_{0}-\partial_{p} w_{0}\right)=p^{2} w \partial_{p}^{2} w+g_{0} w
$$

where $g_{0}=p^{2} \partial_{p}\left(f_{0}-\partial_{p} w_{0}\right)$.
Consider the case where $w_{0}(p)=0$ for any $p \in\left(-\infty, p_{a}\right] \cup\left[p_{b},+\infty\right)$, with $p_{a}>0$. This is also the case of interest in physics, for example the "bump on tail" configuration is included in this scenario. The original problem is equivalent to

$$
\left\{\begin{array}{lr}
\partial_{t} w=p^{2} w \partial_{p}^{2} w+g_{0} w, & \text { in } \Omega_{p}=\left(p_{a}, p_{b}\right) \\
w(p, t)=0, & \text { on } \partial \Omega_{p} \\
w(p, 0)=w_{0}(p) &
\end{array}\right.
$$

In the rest of the article, to keep it consistent with existing literature in mathematics, we will use u, x instead of w, p.
Denote the following problem as problem (\mathcal{S}).

$$
\left\{\begin{array}{lr}
\partial_{t} u=x^{2} u \partial_{x}^{2} u+g_{0} u=\partial_{x}\left(x^{2} u \partial_{x} u\right)-x^{2}\left(\partial_{x} u\right)^{2}-x \partial_{x} u^{2}+g_{0} u, & \text { in } \Omega=\left(x_{a}, x_{b}\right) \tag{2.2}\\
u(x)=0, & \text { on } \partial \Omega \\
u(x, 0)=\varphi_{0}(x) &
\end{array}\right.
$$

This equation belongs to porous medium equations, with nonlinear source terms. We are seeking for a non-negative solution u because otherwise it does not make sense in physics. However the extra term $-x^{2}\left(\partial_{x} u\right)^{2}-x \partial_{x} u^{2}+g_{0} u$ is not necessarily positive, which means existing techniques for regularity estimates are not applicable anymore. And here lies the main contribution of the proposed work. The details will be presented in Section 4.

Define $Q_{T}=\Omega \times[0, T]$, the main result of the paper can be stated as follows,
Theorem 1. If $g_{0} \in C^{\infty}(\bar{\Omega})$, $\varphi_{0} \in C^{\infty}(\bar{\Omega})$, and $\partial_{x}^{2} \varphi_{0}=0$ on $\partial \Omega$, then for problem (\mathcal{S}) there exists a weak solution $u \in L^{2 l}\left(0, T ; W_{0}^{1,2 l}(\Omega)\right)$ with $l=1,2, \cdots$ such that, for any $\eta \in C^{\infty}\left(\overline{Q_{T}}\right)$ that vanishes on $\partial \Omega \times[0, T] \cup\{(x, t): x \in \Omega, t=T\}$, the following identity holds,

$$
\begin{equation*}
-\left(u, \partial_{t} \eta\right)_{Q_{T}}+\left(\frac{x^{2}}{2} \partial_{x} u^{2}, \partial_{x} \eta\right)_{Q_{T}}=\left(-x^{2}\left(\partial_{x} u\right)^{2}, \eta\right)_{Q_{T}}+\left(-x \partial_{x} u^{2}, \eta\right)_{Q_{T}}+\left(g_{0} u, \eta\right)_{Q_{T}}+\left(\varphi_{0}, \eta(x, 0)\right)_{\Omega} \tag{2.3}
\end{equation*}
$$

3 The Solvability of Approximate Problems

The problem (2.2) is difficult to tackle due to its degeneracy. Therefore we consider a series of approximate problems first. They are arbitrarily close to the original problem, but each one of them is strictly coercive, which ensures the existence of classical solutions. Furthermore, these approximate solutions have enough regularity, allowing us to test with various functions and to obtain bounds that are uniform in the parameter n.
In this section the following approximate problem $\left(\mathcal{S}_{n}\right)$ is considered,

$$
\left\{\begin{array}{lr}
\partial_{t} u=x^{2} \mathcal{P}_{n}(u) \partial_{x}^{2} u+g_{0} u, & \text { in } \Omega \\
u(x)=0, & \text { on } \partial \Omega \\
u(x, 0)=\varphi_{0}(x), &
\end{array}\right.
$$

where $\mathcal{P}_{n} \in C^{\infty}(\mathbb{R})$ is a family of functions with the following properties,
(i) $\mathcal{P}_{n}(y) \geq \frac{1}{2 n}, \forall y \in \mathbb{R}$
(ii) $\mathcal{P}_{n}(y)=y+\frac{1}{n}, \forall y \in \mathbb{R}^{+}$
(iii) $\mathcal{P}_{n}^{\prime}(y) \geq 0$

The following maximum principle can be found in Theorem 2.1, Chapter I of Ladyzenskaja's book [5]. Note that the bounds are independent of the parameter n.

Theorem 2. (maximum principle) If u_{n} is a classical solution to the problem $\left(\mathcal{S}_{n}\right)$, then $u_{n}(x, t)$ satisfies the maximum principle on $\overline{Q_{T}}$:

$$
\left\{\begin{array}{l}
u_{n}(x, t) \geq 0 \\
u_{n}(x, t) \leq \max \left(\varphi_{0}\right) \exp \left(\max \left(\left|g_{0}\right|\right) t\right)
\end{array}\right.
$$

For the existence of classical solution to the approximate problems $\left(\mathcal{S}_{n}\right)$, we refer the readers to Theorem 6.1, Chapter V of Ladyzenskaja's book [5].

Theorem 3. (classical solution) For any $T>0$, the problem $\left(\mathcal{S}_{n}\right)$ admits an unique classical solution $u_{n}(x, t)$ on $\overline{Q_{T}}$. Moreover, $u_{n}(x, t)$ belongs to Hölder space $\mathcal{H}^{2+\beta,(2+\beta) / 2}\left(\overline{Q_{T}}\right) \cap \mathcal{H}^{3+\beta,(3+\beta) / 2}\left(Q_{T}\right)$ when $g_{0}, \varphi_{0} \in \mathcal{C}^{\infty}(\bar{\Omega})$.
Proof. To begin with, write the equation in divergence form.

$$
\begin{aligned}
\mathcal{L} u & \equiv \partial_{t} u-x^{2} \mathcal{P}_{n}(u) \partial_{x}^{2} u-g_{0} u \\
& =\partial_{t} u-\partial_{x}\left(x^{2} \mathcal{P}_{n}(u) \partial_{x} u\right)+x^{2} \mathcal{P}_{n}^{\prime}(u)\left(\partial_{x} u\right)^{2}+2 x \mathcal{P}_{n}(u) \partial_{x} u-g_{0} u
\end{aligned}
$$

Define

$$
\varphi(x, t):=\varphi_{0}(x)+\left[x^{2} \mathcal{P}_{n}^{\prime}\left(\varphi_{0}\right) \partial_{x}^{2} \varphi_{0}+g_{0} \varphi_{0}\right] t
$$

Recall the assumption that $\partial_{x}^{2} \varphi_{0}=0$ on $\partial \Omega$, the initial-boundary condition can be written as

$$
\left.u\right|_{\Gamma_{T}}=\left.\varphi\right|_{\Gamma_{T}}
$$

where $\Gamma_{T}=\partial \Omega \times[0, T] \cup\{(x, t): x \in \Omega, t=0\}$.
In accordance with the notation of Ladyzenskaja, define

$$
\begin{aligned}
a_{1}(x, t, u, p) & :=x^{2} \mathcal{P}_{n}(u) p \\
a(x, t, u, p) & :=x^{2} \mathcal{P}_{n}^{\prime}(u) p^{2}+2 x \mathcal{P}_{n}(u) p-g_{0}(x) u \\
A(x, t, u, p) & :=-g_{0}(x) u
\end{aligned}
$$

The conditions in Ladyzenskaja's theorem can be easily verified. See Appendix.

By Theorem 2, u_{n} is always non-negative, therefore by the second property of function \mathcal{P}_{n}, the problem $\left(\mathcal{S}_{n}\right)$ in divergence form is as follows,

$$
\left\{\begin{array}{lr}
\partial_{t} u_{n}=\partial_{x}\left(x^{2}\left(u_{n}+\frac{1}{n}\right) \partial_{x} u_{n}\right)-x^{2}\left(\partial_{x} u_{n}\right)^{2}-x \partial_{x}\left(u_{n}+\frac{1}{n}\right)^{2}+g_{0} u_{n}, & \text { in } \Omega \tag{3.1}\\
u_{n}(x)=0, & \text { on } \partial \Omega \\
u_{n}(x, 0)=\varphi_{0}(x) &
\end{array}\right.
$$

Define $\tilde{u}_{n}=u_{n}+\frac{1}{n}$, then \tilde{u}_{n} is strictly positive, and it solves the following problem,

$$
\begin{cases}\partial_{t} \tilde{u}_{n}=\partial_{x}\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}\right)-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), & \text { in } \Omega \tag{3.2}\\ \tilde{u}_{n}(x, t)=\frac{1}{n} & \text { on } \partial \Omega \\ \tilde{u}_{n}(x, 0)=\varphi_{0}(x)+\frac{1}{n} & \end{cases}
$$

4 The Regularity Estimates on Approximate Solutions

As have been mentioned, in order to prove a.e. convergence of the gradient term in the next section, several regularity estimates are of necessity. In the work of Abdellaoui, Peral and Walias [1, the authors used existing results for an elliptic-parabolic problem with measure data. However for the problem we are dealing with, the nonlinear source term is not "measure data", thus it calls for a different approach. And that is the aim of this section.
To begin with, we introduce the following energy estimate.
Proposition 1. If \tilde{u}_{n} is a classical solution to problem(3.2) $t \in[0, T]$, then the energy inequality holds,

$$
\left\|x \partial_{x} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}=\left(\int_{0}^{T} \int_{\Omega}\left|x \partial_{x} \tilde{u}_{n}^{2}\right|^{2} d x d t\right)^{\frac{1}{2}} \leq C\left(\varphi_{0}, g_{0}, T, \Omega\right)
$$

where the constant C is independent of n.
Proof. Test Equation (3.2) with $\tilde{u}_{n}^{2}-\frac{1}{n^{2}}$, since $\tilde{u}_{n}^{2}-\frac{1}{n^{2}}=0$ on $\partial \Omega$, after integration by parts, the equation becomes

$$
\begin{aligned}
& \left(\partial_{t} \tilde{u}_{n}, \tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)_{\Omega}+\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \partial_{x}\left(\tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)\right)_{\Omega} \\
= & \left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, \tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)_{\Omega}+\left(-x \partial_{x} \tilde{u}_{n}^{2}, \tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)_{\Omega}+\left(g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)_{\Omega}
\end{aligned}
$$

Collecting the terms with $\frac{1}{n}$ to obtain

$$
\begin{aligned}
& \left(\partial_{t} \tilde{u}_{n}, \tilde{u}_{n}^{2}\right)_{\Omega}+\left(\partial_{x} \tilde{u}_{n}, x^{2} \partial_{x}\left(\tilde{u}_{n}^{3}\right)\right)_{\Omega}+\left(\partial_{x} \tilde{u}_{n}, 2 x \tilde{u}_{n}^{3}\right)_{\Omega} \\
= & \left(\partial_{t} \tilde{u}_{n}, \frac{1}{n^{2}}\right)_{\Omega}+\frac{1}{n^{2}}\left(\partial_{x} \tilde{u}_{n}, x^{2} \partial_{x} \tilde{u}_{n}\right)_{\Omega}+\frac{1}{n^{2}}\left(\partial_{x} \tilde{u}_{n}, 2 x \tilde{u}_{n}\right)_{\Omega}+\left(g_{0},\left(\tilde{u}_{n}-\frac{1}{n}\right)\left(\tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)\right)_{\Omega}
\end{aligned}
$$

By maximum principle for u_{n}, the shifted solution $\tilde{u}_{n}(x, t) \geq \frac{1}{n}$, therefore the second term on the right hand side is bounded as follows,

$$
\left(\frac{1}{n} x \partial_{x} \tilde{u}_{n}, \frac{1}{n} x \partial_{x} \tilde{u}_{n}\right)_{\Omega} \leq\left(\tilde{u}_{n} x \partial_{x} \tilde{u}_{n}, \tilde{u}_{n} x \partial_{x} \tilde{u}_{n}\right)_{\Omega}=\frac{1}{4}\left(x \partial_{x} \tilde{u}_{n}^{2}, x \partial_{x} \tilde{u}_{n}^{2}\right)_{\Omega}
$$

Perform integration by parts on all the terms with integrand $x^{i} \partial_{x} \tilde{u}_{n}^{j}$, the following inequality holds,
$\frac{1}{2}\left(x \partial_{x} \tilde{u}_{n}^{2}, x \partial_{x} \tilde{u}_{n}^{2}\right)_{\Omega} \leq-\left(\partial_{t} \tilde{u}_{n}, \tilde{u}_{n}^{2}\right)_{\Omega}+\left(\partial_{t} \tilde{u}_{n}, \frac{1}{n^{2}}\right)_{\Omega}+\frac{1}{2 n^{4}}\left(x_{b}-x_{a}\right)+\frac{1}{2}\left(\tilde{u}_{n}^{4}, 1\right)_{\Omega}-\frac{1}{n^{2}}\left(\tilde{u}_{n}^{2}, 1\right)_{\Omega}+\left(g_{0},\left(\tilde{u}_{n}-\frac{1}{n}\right)\left(\tilde{u}_{n}^{2}-\frac{1}{n^{2}}\right)\right)_{\Omega}$.
Every integral of \tilde{u}_{n}^{j} is bounded as a result of the maximum principle, therefore

$$
\int_{0}^{T} \int_{\Omega}\left|x \partial_{x} \tilde{u}_{n}^{2}\right|^{2} d x d t \leq C\left(\varphi_{0}, g_{0}, T, \Omega\right)
$$

According to Ladyzenskaja [5], thanks to the smoothness of data, the solutions are smoother than usual, even the third order derivative is Hölder continuous. And that allows us to study a parabolic equation for the first derivative $\partial_{x} u_{n}$, which renders the following regularity estimates.

Proposition 2. If u_{n} are classical solutions to the problem(3.1) for $t \in[0, T]$, then their gradient in space are uniformly bounded in $L^{2 l}(\Omega)$,

$$
\sup _{t \in[0, T]}\left\|\partial_{x} u_{n}\right\|_{L^{2 l}(\Omega)} \leq C_{1}\left(\varphi_{0}, g_{0}, T, \Omega, l\right), l=1,2, \cdots
$$

Consequently,

$$
\left\|\partial_{x} u_{n}\right\|_{L^{2 l}\left(Q_{T}\right)} \leq C_{2}\left(\varphi_{0}, g_{0}, T, \Omega, l\right), l=1,2, \cdots
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{2 l}\left(0, T ; W_{0}^{1,2 l}(\Omega)\right)} \leq C_{3}\left(\varphi_{0}, g_{0}, T, \Omega, l\right), l=1,2, \cdots \tag{4.1}
\end{equation*}
$$

Proof. To begin with, rewrite Equation(3.1) in non-divergence form,

$$
\begin{equation*}
\partial_{t} u_{n}-x^{2}\left(u_{n}+\frac{1}{n}\right) \partial_{x}^{2} u_{n}-g_{0} u_{n}=0 \tag{4.2}
\end{equation*}
$$

Let $z_{n}=\partial_{x} u_{n}$, then by Theorem 3, $z_{n} \in \mathcal{H}^{1+\beta,(1+\beta) / 2}\left(\overline{Q_{T}}\right) \cap \mathcal{H}^{2+\beta,(2+\beta) / 2}\left(Q_{T}\right)$. Taking first derivative on both sides of Equation(4.2), every term is still continuous. Therefore z_{n} satisfies the following linear parabolic equation, if we regard u_{n} as data.

$$
\partial_{t} z_{n}-\partial_{x}\left(x^{2}\left(u_{n}+\frac{1}{n}\right) \partial_{x} z_{n}\right)-g_{0} z_{n}-u_{n} \partial_{x} g_{0}=0
$$

In addition, from Equation(4.2) and the boundary condition for u_{n}, it can be derived that

$$
\partial_{x} z_{n}=\partial_{x}^{2} u_{n}=\frac{\partial_{t} u_{n}-g_{0} u_{n}}{x^{2}\left(u_{n}+\frac{1}{n}\right)}=0 \text { on } \partial \Omega .
$$

To summarize, z_{n} satisfies the following equations,

$$
\left\{\begin{array}{lr}
\partial_{t} z_{n}-\partial_{x}\left(x^{2}\left(u_{n}+\frac{1}{n}\right) \partial_{x} z_{n}\right)-g_{0} z_{n}-u_{n} \partial_{x} g_{0}=0, & \text { in } \Omega \\
\partial_{x} z_{n}=0, & \text { on } \partial \Omega \\
z_{n}(x, 0)=\partial_{x} \varphi_{0}(x) &
\end{array}\right.
$$

Test the equation with $z_{n}^{2 l+1}$ and perform integration by parts to obtain

$$
\left(\partial_{t} z_{n}, z_{n}^{2 l+1}\right)_{\Omega}+\left(x^{2}\left(u_{n}+\frac{1}{n}\right) \partial_{x} z_{n},(2 l+1) z_{n}^{2 l} \partial_{x} z_{n}\right)_{\Omega}=\left(g_{0} z_{n}, z_{n}^{2 l+1}\right)_{\Omega}+\left(u_{n} \partial_{x} g_{0}, z_{n}^{2 l+1}\right)_{\Omega}
$$

Since the second term on the left hand side is non-negative, the following inequality holds,

$$
\frac{1}{2 l+2} \frac{d}{d t}\left(\int_{\Omega} z_{n}^{2 l+2}\right) \leq \int_{\Omega} g_{0} z_{n}^{2 l+2}+\int_{\Omega} u_{n} \partial_{x} g_{0} z_{n}^{2 l+1}
$$

Again, use the maximum principle for u_{n} in Theorem 2 and by the assumption on the data g_{0},

$$
\frac{d}{d t}\left(\int_{\Omega} z_{n}^{2 l+2}\right) \leq C_{1}\left(g_{0}, T, \Omega\right) \int_{\Omega} z_{n}^{2 l+2}+C_{2}\left(\varphi_{0}, g_{0}, T, \Omega\right) \int_{\Omega}\left|z_{n}\right|^{2 l+1}
$$

Let $I=\int_{\Omega} z_{n}^{2 l+2}$, by Hölder's inequality, the above is equivalent to,

$$
\frac{d}{d t} I \leq C_{1} I+C_{3} I^{\frac{2 l+1}{2 l+2}}
$$

Apply Young's inequality on the second term to obtain

$$
\frac{d}{d t}\left(I+C_{5}\right) \leq C_{4}\left(I+C_{5}\right)
$$

Therefore by Grönwall's lemma we have

$$
I \leq\left(I_{0}+C_{5}\right) \exp \left(C_{4} t\right)-C_{5} \leq\left(I_{0}+C_{5}\right) \exp \left(C_{4} T\right)-C_{5}
$$

Consequently,

$$
\sup _{t \in[0, T]}\left\|\partial_{x} u_{n}\right\|_{L^{2 l}(\Omega)} \leq C\left(\varphi_{0}, g_{0}, T, \Omega, l\right), l=1,2, \cdots
$$

Corollary 1. For any given $l \in \mathbb{N}^{+}$, up to a subsequence, u_{n} converge to u weakly in $L^{2 l}\left(0, T ; W_{0}^{1,2 l}(\Omega)\right)$.
Proof. With inequality (4.1), use Banach-Alaoglu Theorem.
Proposition 3. The sequence \tilde{u}_{n}^{2} is uniformly bounded in $W^{1,2}\left(Q_{T}\right)$.

Proof. Firstly, test Equation(3.2) with $\partial_{t} \tilde{u}_{n}^{2}$. Integrate by parts in x, and the trace integral vanishes because $\partial_{t} \tilde{u}_{n}^{2}=0$ on $\partial \Omega$, hence

$$
\left(\partial_{t} \tilde{u}_{n}, \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}=-\left(\frac{x^{2}}{2} \partial_{x} \tilde{u}_{n}^{2}, \partial_{t} \partial_{x} \tilde{u}_{n}^{2}\right)_{Q_{T}}+\left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}
$$

Applying the fundamental theorem of calculus with respect to $t \in(0, T)$ on the first term of the right hand side,

$$
\left(\partial_{t} \tilde{u}_{n}, \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}=-\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(T)\right)^{2}\right)_{\Omega}+\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(0)\right)^{2}\right)_{\Omega}+\left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}
$$

The goal is to bound $\left(\partial_{t} \tilde{u}_{n}^{2}, \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}$, however the left hand side is $\left(\partial_{t} \tilde{u}_{n}, \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}}$.
Note that by maximum principle, there exists some constant C_{1} such that $\tilde{u}_{n} \in\left(\frac{1}{2 n}, \frac{C_{1}}{2}\right)$, therefore,

$$
\left(\partial_{t} \tilde{u}_{n}^{2}\right)^{2}=4 \tilde{u}_{n}^{2}\left(\partial_{t} \tilde{u}_{n}\right)^{2} \leq C_{1} \cdot 2 \tilde{u}_{n}\left(\partial_{t} \tilde{u}_{n}\right)^{2}=C_{1}\left(\partial_{t} \tilde{u}_{n}\right)\left(\partial_{t} \tilde{u}_{n}^{2}\right)
$$

Integrate both sides on Q_{T},

$$
\begin{aligned}
\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \leq & C_{1}\left(\partial_{t} \tilde{u}_{n}, \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}} \\
= & C_{1}\left(-\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(T)\right)^{2}\right)_{\Omega}+\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(0)\right)^{2}\right)_{\Omega}\right) \\
& +C_{1}\left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \partial_{t} \tilde{u}_{n}^{2}\right)_{Q_{T}} \\
\leq & C_{1}\left(-\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(T)\right)^{2}\right)_{\Omega}+\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(0)\right)^{2}\right)_{\Omega}\right) \\
& +C_{1}\left\|-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right)\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}
\end{aligned}
$$

in which we used Hölder's inequality. Then use Young's inequality to bound the last term in the inequality above,

$$
\begin{aligned}
& \left\|-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right)\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)} \\
\leq & \frac{C_{1}}{2}\left\|-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right)\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\frac{1}{2 C_{1}}\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}^{2}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \leq & 2 C_{1}\left(-\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(T)\right)^{2}\right)_{\Omega}+\left(\frac{x^{2}}{4},\left(\partial_{x} \tilde{u}_{n}^{2}(0)\right)^{2}\right)_{\Omega}\right) \\
& +C_{1}^{2}\left\|-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}-x \partial_{x} \tilde{u}_{n}^{2}+g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right)\right\|_{L^{2}\left(Q_{T}\right)}^{2}
\end{aligned}
$$

By Theorem2, Proposition 1 and Proposition 2 the right hand side is uniformly bounded, hence $\left\|\partial_{t} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}$ is uniformly bounded. Meanwhile, $\left\|\partial_{x} \tilde{u}_{n}^{2}\right\|_{L^{2}\left(Q_{T}\right)}$ is also uniformly bounded, thus the result follows.

The following lemma shows that convergence a.e. combined with uniform boundedness implies strong convergence.

Lemma 1. For a sequence v_{n} that is uniformly bounded in $L^{4}\left(Q_{T}\right)$, if v_{n} converges to $v \in L^{4}\left(Q_{T}\right)$ almost everywhere in Q_{T}, then v_{n} converges to v strongly in $L^{2}\left(Q_{T}\right)$.

Proof. By Egorov's theorem, for any $\epsilon>0$, there exists a measurable set $S_{\epsilon} \subset Q_{T}$ such that $\left|S_{\epsilon}\right| \leq \epsilon$ and $v_{n} \rightarrow v$ uniformly in $Q_{T} \backslash S_{\epsilon}$. Therefore,

$$
\begin{aligned}
\int_{Q_{T}}\left|v_{n}-v\right|^{2} & =\int_{S_{\epsilon}}\left|v_{n}-v\right|^{2}+\int_{Q_{T} \backslash S_{\epsilon}}\left|v_{n}-v\right|^{2} \\
& =\int_{Q_{T}}\left|v_{n}-v\right|^{2} \chi_{S_{\epsilon}}+\int_{Q_{T}}\left|v_{n}-v\right|^{2} \chi_{Q_{T} \backslash S_{\epsilon}}^{2}
\end{aligned}
$$

Apply Hölder's inequality on both terms,

$$
\begin{aligned}
\int_{Q_{T}}\left|v_{n}-v\right|^{2} & \leq\left\|\left|v_{n}-v\right|^{2}\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left\|\chi_{S_{\epsilon}}\right\|_{L^{2}\left(Q_{T}\right)}+\left(\sup _{(x, t) \in Q_{T} \backslash S_{\epsilon}}\left|v_{n}-v\right|^{2}\right) \cdot\left\|\chi_{Q_{T} \backslash S_{\epsilon}}\right\|_{L^{1}\left(Q_{T}\right)} \\
& \leq\left\|v_{n}-v\right\|_{L^{4}\left(Q_{T}\right)}^{2} \cdot \epsilon+C_{1}\left(\sup _{(x, t) \in Q_{T} \backslash S_{\epsilon}}\left|v_{n}-v\right|^{2}\right)
\end{aligned}
$$

Since $v_{n} \rightarrow v$ uniformly in $Q_{T} \backslash S_{\epsilon}$, taking the limit on both sides,

$$
\limsup _{n \rightarrow \infty} \int_{Q_{T}}\left|v_{n}-v\right|^{2} \leq\left\|v_{n}-v\right\|_{L^{4}\left(Q_{T}\right)}^{2} \cdot \epsilon
$$

As ϵ is arbitrary and $\left\|v_{n}-v\right\|_{L^{4}\left(Q_{T}\right)}$ is uniformly bounded, we conclude that v_{n} converges to v strongly in $L^{2}\left(Q_{T}\right)$.

Corollary 2. Up to a subsequence, u_{n} converge to u strongly in $L^{q}\left(Q_{T}\right)$, for any $q<\infty$.
Proof. By compactness, Proposition 3 implies that, for any $q<\infty$, up to a subsequence, \tilde{u}_{n}^{2} converge to some function z strongly in $L^{q}\left(Q_{T}\right)$. Therefore by Lemma $1 \tilde{u}_{n}$ converge to $u=\sqrt{z}$ strongly in $L^{q}\left(Q_{T}\right)$, for any $q<\infty$.

Combining Corollary 1 and Corollary 2 by taking subsequence of a subsequence, we obtain a limit $u \in$ $L^{2 l}\left(0, T ; W_{0}^{1,2 l}(\Omega)\right)$ such that u_{n} converge to u weakly in $L^{2 l}\left(0, T ; W_{0}^{1,2 l}(\Omega)\right)$ and strongly in $L^{q}\left(Q_{T}\right)$. It remains to show that such a function is indeed a weak solution to the problem. That requires several convergence results, which will be elaborated in the next section.

Before proceeding to the convergence results, we introduce the following estimate, which is a prerequisite for the proof of Theorem 5. The equation of interest calls for an alternative argument to the one proposed by Abdellaoui, Peral and Walias [1].

Proposition 4. Let $\psi \in C_{0}^{\infty}\left(Q_{T}\right)$ be s.t. $\psi \geq 0$ in Q_{T}, then the sequence $x^{2} \psi \tilde{u}_{n}^{-\theta}\left|\partial_{x} \tilde{u}_{n}\right|$ is uniformly bounded in $L^{1}\left(Q_{T}\right)$ for any $\theta \in(0,1 / 2)$.

Proof. Let $\psi \in C_{0}^{\infty}\left(Q_{T}\right)$ be s.t. $\psi \geq 0$ in Q_{T}. Test Equation(3.2) with $\psi \tilde{u}_{n}^{-\delta}$, where $\delta \in(0,1)$. Since $\psi=0$ on ∂Q_{T}, integrating by parts on x, the trace integral vanishes, it follows that,

$$
\begin{aligned}
\left(\partial_{t} \tilde{u}_{n}, \psi \tilde{u}_{n}^{-\delta}\right)_{Q_{T}} & +\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \partial_{x}\left(\psi \tilde{u}_{n}^{-\delta}\right)\right)_{Q_{T}} \\
& =\left(\partial_{t} \tilde{u}_{n}, \psi \tilde{u}_{n}^{-\delta}\right)_{Q_{T}}+\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \tilde{u}_{n}^{-\delta}\left(\partial_{x} \psi\right)\right)_{Q_{T}}+\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \psi\left(\partial_{x} \tilde{u}_{n}^{-\delta}\right)\right)_{Q_{T}} \\
& =\left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, \psi \tilde{u}_{n}^{-\delta}\right)_{Q_{T}}+\left(-x \partial_{x} \tilde{u}_{n}^{2}, \psi \tilde{u}_{n}^{-\delta}\right)_{Q_{T}}+\left(g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \psi \tilde{u}_{n}^{-\delta}\right)_{Q_{T}}
\end{aligned}
$$

Thus, simplifying and rearranging each inner product term in the equation above to obtain

$$
\begin{aligned}
\left(\tilde{u}_{n}^{-\delta} \partial_{t} \tilde{u}_{n}, \psi\right)_{Q_{T}} & +\left(\tilde{u}_{n}^{1-\delta} \partial_{x} \tilde{u}_{n}, x^{2}\left(\partial_{x} \psi\right)\right)_{Q_{T}}+(-\delta)\left(\tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, x^{2} \psi\right)_{Q_{T}} \\
& =-\left(\tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, x^{2} \psi\right)_{Q_{T}}-\left(\tilde{u}_{n}^{1-\delta} \partial_{x} \tilde{u}_{n}, \psi \partial_{x}\left(x^{2}\right)\right)_{Q_{T}}+\left(\tilde{u}_{n}^{-\delta}\left(\tilde{u}_{n}-\frac{1}{n}\right), \psi g_{0}\right)_{Q_{T}}
\end{aligned}
$$

Next, collecting the third term on the left hand side and the first term on the right hand side, we have

$$
\begin{align*}
(1-\delta)\left(x^{2} \psi, \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)_{Q_{T}}= & -\frac{1}{1-\delta}\left(\partial_{t} \tilde{u}_{n}^{1-\delta}, \psi\right)_{Q_{T}} \tag{4.3}\\
& -\frac{1}{2-\delta}\left(\partial_{x}\left(x^{2} \psi\right), \partial_{x} \tilde{u}_{n}^{2-\delta}\right)_{Q_{T}}+\left(\psi g_{0}, \tilde{u}_{n}^{1-\delta}\right)_{Q_{T}}-\left(\psi g_{0}, \frac{1}{n} \tilde{u}_{n}^{-\delta}\right)_{Q_{T}}
\end{align*}
$$

The first three terms on the right hand side are apparently bounded. Indeed \tilde{u}_{n} satisfies maximum principle and,

$$
\begin{aligned}
\left(\partial_{t} \tilde{u}_{n}^{1-\delta}, \psi\right)_{Q_{T}} & =-\left(\tilde{u}_{n}^{1-\delta}, \partial_{t} \psi\right)_{Q_{T}} \\
\left(\partial_{x}\left(x^{2} \psi\right), \partial_{x} \tilde{u}_{n}^{2-\delta}\right)_{Q_{T}} & =-\left(\partial_{x}^{2}\left(x^{2} \psi\right), \tilde{u}_{n}^{2-\delta}\right)_{Q_{T}}
\end{aligned}
$$

In addition, since $\tilde{u}_{n}=u_{n}+\frac{1}{n} \geq \frac{1}{n}$, the fourth term (4.3) to be estimated

$$
\frac{1}{n} \tilde{u}_{n}^{-\delta} \leq n^{\delta-1}=\frac{1}{n^{1-\delta}} \leq 1
$$

Therefore, the left hand side of (4.3) becomes uniformly bounded in x-space

$$
\begin{equation*}
\left(x^{2} \psi, \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)_{Q_{T}} \leq C\left(n, f_{0}, g_{0}\right) \tag{4.4}
\end{equation*}
$$

Finally, the L^{1} norm of the sequence $x^{2} \psi \tilde{u}_{n}^{-\theta}\left|\partial_{x} \tilde{u}_{n}\right|$ implies, by Hölder's inequality, that

$$
\begin{aligned}
\left\|x^{2} \psi \tilde{u}_{n}^{-\delta / 2}\left|\partial_{x} \tilde{u}_{n}\right|\right\|_{L^{1}\left(Q_{T}\right)} & =\left(x^{2} \psi \tilde{u}_{n}^{-\delta / 2}\left|\partial_{x} \tilde{u}_{n}\right|, 1\right)_{Q_{T}} \\
& =\left(\left(x^{2} \psi\right)^{1 / 2},\left(x^{2} \psi \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)^{1 / 2}\right)_{Q_{T}} \\
& \leq\left\|\left(x^{2} \psi\right)^{1 / 2}\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left\|\left(x^{2} \psi \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)^{1 / 2}\right\|_{L^{2}\left(Q_{T}\right)} \\
& =\left\|\left(x^{2} \psi\right)^{1 / 2}\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left(\left(x^{2} \psi \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)^{1 / 2},\left(x^{2} \psi \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)^{1 / 2}\right)_{Q_{T}} \\
& =\left\|\left(x^{2} \psi\right)^{1 / 2}\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left(x^{2} \psi, \tilde{u}_{n}^{-\delta}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right)_{Q_{T}}
\end{aligned}
$$

And so, by inequality (4.4), the sequence $x^{2} \psi \tilde{u}_{n}^{-\theta}\left|\partial_{x} \tilde{u}_{n}\right|$ is uniformly bounded in $L^{1}\left(Q_{T}\right)$ for any $\theta=\frac{\delta}{2} \in$ (0, $\frac{1}{2}$).

5 Convergence Results

The aim of this section is to prove that the sequence $\partial_{x} u_{n}$ converge to $\partial_{x} u$ a.e. in Q_{T}, where we have adopted the techniques in the work of Abdellaoui, Peral and Walias [1]. The roadmap is as follows:

1. Using Proposition 1, Proposition 2 and Proposition 3 to prove Lemma 2,
2. Theorem 4 is a simple corollary of Lemma 2,
3. Combining Theorem 4 and Proposition 4 to prove Theorem 5

Lemma 2. If \tilde{u}_{n} is the solution to Equation(3.2), then for any $s \in(0,1)$

$$
\lim _{n \rightarrow \infty} \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s}=0
$$

Proof. Recall that $u \in L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)$, introduce the time-regularization of $u(x, t)$ by Landes et. al. [6],

$$
u_{\nu}(x, t)=\exp (-\nu t) \varphi_{0}(x)+\nu \int_{0}^{t} \exp (-\nu(t-s)) u(x, s) d s
$$

It is known that

1. $u_{\nu}(x, t)$ converge to $u(x, t)$ strongly in $L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)$.
2. u_{ν} is the solution of the following problem,

$$
\left\{\begin{array}{l}
\frac{1}{\nu} \partial_{t} u_{\nu}+u_{\nu}=u \tag{5.1}\\
u_{\nu}(x, 0)=\varphi_{0}(x)
\end{array}\right.
$$

Define a cut-off function T_{ε} as

$$
T_{\varepsilon}(y)=\left\{\begin{array}{lr}
y, & y \in(-\varepsilon, \varepsilon) \tag{5.2}\\
\operatorname{sign}(y) \varepsilon, & \text { otherwise }
\end{array}\right.
$$

And define a non-negative function $J_{\varepsilon}(y)$, such that $J_{\varepsilon}^{\prime}(y)=T_{\varepsilon}(y)$,

$$
J_{\varepsilon}(y)=\left\{\begin{array}{lr}
-\varepsilon y-\frac{1}{2} \varepsilon^{2}, & y \in(-\infty,-\varepsilon) \tag{5.3}\\
\frac{1}{2} y^{2}, & y \in(-\varepsilon, \varepsilon) \\
\varepsilon y-\frac{1}{2} \varepsilon^{2}, & y \in(\varepsilon, \infty)
\end{array}\right.
$$

It takes two steps to prove that $\int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s}$ converge to zero,

1. prove that $\int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}$ converge to zero
2. prove that $\int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s} \chi\left\{\left|u_{n}-u_{\nu}\right|>\varepsilon\right\}$ converge to zero

For the first step, do the following decomposition

$$
\begin{aligned}
& \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right] \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\} \\
= & \int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2} \\
= & \int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(\tilde{u}_{n}-u\right)-\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} u\right) \partial_{x}\left(\tilde{u}_{n}-u\right) \\
= & \int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(\tilde{u}_{n}-u\right) \\
& -\int_{Q_{T}}\left[x^{2}\left(\tilde{u}_{n} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}-u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\right)\left(\partial_{x} u\right) \partial_{x}\left(\tilde{u}_{n}-u\right)\right] \\
& -\int_{Q_{T}}\left[x^{2} u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\left(\partial_{x} u\right) \partial_{x}\left(\tilde{u}_{n}-u\right)\right] \\
= & A_{1}+A_{2}+A_{3}
\end{aligned}
$$

Start first from A_{2} and A_{3}, as their estimates are relatively simple and straightforward.

Indeed, by Hölder's inequality and Corollary 2 it follows that,

$$
\begin{align*}
A_{2} & =-\int_{Q_{T}}\left[x^{2}\left(\tilde{u}_{n} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}-u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\right)\left(\partial_{x} u\right) \partial_{x}\left(\tilde{u}_{n}-u\right)\right] \\
& \leq C_{1}(\Omega, T)\left\|\tilde{u}_{n} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}-u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\right\|_{L^{2}\left(Q_{T}\right)}\left\|\left(\partial_{x} u\right) \partial_{x}\left(\tilde{u}_{n}-u\right)\right\|_{L^{2}\left(Q_{T}\right)} \tag{5.4}\\
& \leq C_{2}\left(\varphi_{0}, g_{0}, \Omega, T\right)\left\|\tilde{u}_{n} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}-u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\right\|_{L^{2}\left(Q_{T}\right)}
\end{align*}
$$

also, the following term will converge to zero,

$$
\begin{equation*}
A_{3}=-\int_{Q_{T}} x^{2} u\left(\partial_{x} u\right)\left(\partial_{x} \tilde{u}_{n}-\partial_{x} u\right) \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\} . \tag{5.5}
\end{equation*}
$$

It remains to bound $A_{1}=\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(\tilde{u}_{n}-u\right)$.
This estimate is performed by first testing Equation(3.2) with $T_{\varepsilon}\left(u_{n}-u_{\nu}\right)$, where T_{ε} is defined in Equation(5.2), to obtain,

$$
\begin{align*}
& \left(\partial_{t} \tilde{u}_{n}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \partial_{x}\left(T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)\right)_{Q_{T}} \\
= & \left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\left(-x \partial_{x} \tilde{u}_{n}^{2}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\left(g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} \tag{5.6}
\end{align*}
$$

Since $\left|T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right| \leq \epsilon$, the right hand side of the above equation can be bounded as follows,

$$
\operatorname{RHS} \leq \varepsilon\left(\left\|x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|x \partial_{x} \tilde{u}_{n}^{2}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}\right)
$$

with the first term uniformly bounded by Proposition 2 the second one uniformly bounded by the energy inequality in Proposition 1, and the last term by maximum principle. Consequently,

$$
\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \partial_{x}\left(T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)\right)_{Q_{T}} \leq C_{1}\left(\varphi_{0}, g_{0}, \Omega, T\right) \varepsilon-\left(\partial_{t} \tilde{u}_{n}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} .
$$

Since u_{ν} is a solution of Equation(5.1), $\partial_{t} u_{\nu}$ can be replaced with $\nu\left(u-u_{\nu}\right)$,

$$
\begin{aligned}
\left(\partial_{t} \tilde{u}_{n}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} & =\left(\partial_{t}\left(u_{n}-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\left(\partial_{t} u_{\nu}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} \\
& =\left(\partial_{t}\left(u_{n}-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} \\
& =\left(1, \partial_{t} J_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}+\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} \\
& =\left(1, J_{\varepsilon}\left(u_{n}(T)-u_{\nu}(T)\right)\right)_{\Omega}-\left(1, J_{\varepsilon}\left(u_{n}(0)-u_{\nu}(0)\right)\right)_{\Omega}+\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}}
\end{aligned}
$$

in which J_{ε} is defined in Equation(5.3) as the anti-derivative of T_{ε}.
Each term on the right hand side is bounded from below.
Indeed, by definition of J_{ε},

$$
\begin{equation*}
\left(1, J_{\varepsilon}\left(u_{n}(T)-u_{\nu}(T)\right)\right)_{\Omega} \geq 0 \tag{5.7}
\end{equation*}
$$

Since u_{n} and u_{ν} share the same initial condition, the second term is actually zero.

$$
\begin{equation*}
\left(1, J_{\varepsilon}\left(u_{n}(0)-u_{\nu}(0)\right)\right)_{\Omega}=\left(1, J_{\varepsilon}\left(\varphi_{0}-\varphi_{0}\right)\right)_{\Omega}=0 \tag{5.8}
\end{equation*}
$$

By the sign-keeping property of T_{ε},

$$
\begin{align*}
\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} & =\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u-u_{\nu}-u+u_{n}\right)\right)_{Q_{T}} \\
& =\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u-u_{\nu}\right)\right)_{Q_{T}}+\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u\right)\right)_{Q_{T}} \tag{5.9}\\
& \geq \nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u\right)\right)_{Q_{T}}
\end{align*}
$$

Therefore, combining inequalities (5.7), (5.8) and (5.9),

$$
\begin{aligned}
\left(x^{2} \tilde{u}_{n} \partial_{x} \tilde{u}_{n}, \partial_{x}\left(T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)\right)_{Q_{T}} & \leq C_{1}\left(\varphi_{0}, g_{0}, \Omega, T\right) \varepsilon-\left(\partial_{t} \tilde{u}_{n}, T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)_{Q_{T}} \\
& \leq C_{1}\left(\varphi_{0}, g_{0}, \Omega, T\right) \varepsilon-\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u\right)\right)_{Q_{T}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
A_{1} & =\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{n}-u\right) \\
& =\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{n}-u_{\nu}\right)+\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{\nu}-u\right) \tag{5.10}\\
& =\int_{Q_{T}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(T_{\varepsilon}\left(u_{n}-u_{\nu}\right)\right)+\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{\nu}-u\right) \\
& \leq C_{1}\left(\varphi_{0}, g_{0}, \Omega, T\right) \varepsilon-\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u\right)\right)_{Q_{T}}+\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{\nu}-u\right)
\end{align*}
$$

Putting together the inequalities (5.10), (5.4) and (5.5),

$$
\begin{align*}
& \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right] \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\} \\
= & A_{1}+A_{2}+A_{3} \\
\leq & C_{1}\left(\varphi_{0}, g_{0}, \Omega, T\right) \varepsilon-\nu\left(\left(u-u_{\nu}\right), T_{\varepsilon}\left(u_{n}-u\right)\right)_{Q_{T}}+\int_{\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}} x^{2} \tilde{u}_{n}\left(\partial_{x} \tilde{u}_{n}\right) \partial_{x}\left(u_{\nu}-u\right) \tag{5.11}\\
& +C_{2}\left(\varphi_{0}, g_{0}, \Omega, T\right)\left\|\tilde{u}_{n} \chi\left\{\left|u_{n}-u_{\nu}\right| \leq \varepsilon\right\}-u \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\}\right\|_{L^{2}\left(Q_{T}\right)} \\
& -\int_{Q_{T}} x^{2} u\left(\partial_{x} u\right)\left(\partial_{x} \tilde{u}_{n}-\partial_{x} u\right) \chi\left\{\left|u-u_{\nu}\right| \leq \varepsilon\right\} \\
= & B_{1}(n, \nu, \varepsilon)
\end{align*}
$$

Since $\partial_{x} \tilde{u}_{n}$ converge to $\partial_{x} u$ weakly in $L^{2}\left(Q_{T}\right)$, the last term of B_{1} converges to zero as n goes to infinity, therefore,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \limsup _{\nu \rightarrow \infty} \limsup _{n \rightarrow \infty} B_{1}(n, \nu, \varepsilon)=0
$$

For the second step, consider $\int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s} \chi\left\{\left|u_{n}-u_{\nu}\right|>\varepsilon\right\}$, using Hölder's inequality,

$$
\begin{align*}
& \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s} \chi\left\{\left|u_{n}-u_{\nu}\right|>\varepsilon\right\} \\
\leq & C_{1}(\Omega, T)\left\|\left(\partial_{x} u_{n}-\partial_{x} u\right)^{2 s}\right\|_{L^{\rho^{\prime}}\left(Q_{T}\right)} \cdot\left(\left\|\chi\left\{\left|u_{n}-u_{\nu}\right|>\varepsilon\right\}-\chi\left\{\left|u-u_{\nu}\right|>\varepsilon\right\}\right\|_{L^{\rho}\left(Q_{T}\right)}+\left\|\chi\left\{\left|u-u_{\nu}\right|>\varepsilon\right\}\right\|_{L^{\rho}\left(Q_{T}\right)}\right) \\
= & B_{2}(n, \nu, \varepsilon) \tag{5.12}
\end{align*}
$$

Taking the limit,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \limsup _{\nu \rightarrow \infty} \limsup _{n \rightarrow \infty} B_{2}(n, \nu, \varepsilon)=0
$$

To summarize,

$$
0 \leq \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s} \leq B_{1}(n, \nu, \varepsilon)+B_{2}(n, \nu, \varepsilon)
$$

where B_{1} and B_{2} are on the right hand side of Equation (5.11) and (5.12). Consequently,

$$
\lim _{n \rightarrow \infty} \int_{Q_{T}}\left[x^{2} \tilde{u}_{n}\left(\partial_{x}\left(\tilde{u}_{n}-u\right)\right)^{2}\right]^{s}=0
$$

Theorem 4. The sequence $\partial_{x} \tilde{u}_{n}^{2}=\partial_{x}\left(u_{n}+\frac{1}{n}\right)^{2}$ converge to $\partial_{x} u^{2}$ strongly in $L^{\sigma}\left(Q_{T}\right)$ for all $\sigma \in(0,2)$.

Proof. Note that

$$
\begin{aligned}
& \int_{Q_{T}}\left|\partial_{x} \tilde{u}_{n}^{2}-\partial_{x} u^{2}\right|^{2 s} \\
= & 2^{2 s} \int_{Q_{T}}\left|\tilde{u}_{n} \partial_{x} \tilde{u}_{n}-u \partial_{x} u\right|^{2 s} \\
= & 2^{2 s} \int_{Q_{T}}\left|\tilde{u}_{n} \partial_{x} \tilde{u}_{n}-\tilde{u}_{n} \partial_{x} u+\tilde{u}_{n} \partial_{x} u-u \partial_{x} u\right|^{2 s} \\
= & 2^{2 s} \int_{Q_{T}}\left|\left(\tilde{u}_{n} \partial_{x} \tilde{u}_{n}-\tilde{u}_{n} \partial_{x} u\right)+\partial_{x} u\left(\tilde{u}_{n}-u\right)\right|^{2 s} \\
\leq & C \int_{Q_{T}}\left(\left|\tilde{u}_{n} \partial_{x} \tilde{u}_{n}-\tilde{u}_{n} \partial_{x} u\right|^{2 s}+\left|\partial_{x} u\left(\tilde{u}_{n}-u\right)\right|^{2 s}\right)
\end{aligned}
$$

By Lemma 2 and Corollary 2, both terms converge to zero if $s \in(0,1)$. Let $\sigma=2 s$, then $\sigma \in(0,2)$.
Theorem 5. The sequence $\partial_{x} u_{n}$ converge to $\partial_{x} u$ a.e. in Q_{T}
Proof. Let $\psi \in C_{0}^{\infty}\left(Q_{T}\right)$ be s.t. $\psi \geq 0$ in Q_{T}. To prove convergence a.e., it is sufficient to show that for some $\alpha \in(0,1)$,

$$
\lim _{n \rightarrow \infty} \int_{Q_{T}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{\alpha} \psi=0
$$

Decompose the domain Q_{T},

$$
\begin{align*}
\int_{Q_{T}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{\alpha} \psi & =\int_{\{u=0\}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{\alpha} \psi+\int_{\{u>0\}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{\alpha} \psi \\
& =\int_{\{u=0\}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi+\int_{\left\{0<u \leq \frac{1}{m}\right\}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{s} \psi+\int_{\left\{u>\frac{1}{m}\right\}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{s} \psi \tag{5.13}\\
& =A_{1}+A_{2}+A_{3}
\end{align*}
$$

Using Hölder's inequality to get the bound of A_{2},

$$
\begin{aligned}
A_{2} & =\int_{\left\{0<u \leq \frac{1}{m}\right\}}\left|\partial_{x} u_{n}-\partial_{x} u\right|^{s} \psi \\
& \leq\left\|\left|\partial_{x} u_{n}-\partial_{x} u\right|^{s} \psi\right\|_{L^{2 / s}\left(Q_{T}\right)}\left\|\chi_{\left\{0<u \leq \frac{1}{m}\right\}}\right\|_{L^{\frac{2}{2-s}}\left(Q_{T}\right)} \\
& \leq C\left\|\chi_{\left\{0<u \leq \frac{1}{m}\right\}}\right\|_{L^{\frac{2}{2-s}}\left(Q_{T}\right)}
\end{aligned}
$$

Note that $\left\|\chi_{\left\{0<u \leq \frac{1}{m}\right\}}\right\|_{L^{\frac{2}{2-s}}\left(Q_{T}\right)}$ can be arbitrarily small.
Next, by Theorem [4 it is known that $\partial_{x} \tilde{u}_{n}^{2} \rightarrow \partial_{x} u^{2}$ strongly in $L^{\sigma}\left(Q_{T}\right)$ for all $\sigma<2$, therefore A_{3} converges to zero, in fact,

$$
\begin{aligned}
A_{3} & =\int_{\left\{u>\frac{1}{m}\right\}} \frac{1}{|u|^{s}}\left|u \partial_{x} u_{n}-u \partial_{x} u\right|^{s} \psi \\
& =\int_{\left\{u>\frac{1}{m}\right\}} \frac{1}{|u|^{s}}\left|\left(u-\tilde{u}_{n}\right) \partial_{x} \tilde{u}_{n}+\frac{1}{2}\left(\partial_{x} \tilde{u}_{n}^{2}-\partial_{x} u^{2}\right)\right|^{s} \psi \\
& \leq m^{s} \int_{Q_{T}}\left|\left(u-\tilde{u}_{n}\right) \partial_{x} \tilde{u}_{n}+\frac{1}{2}\left(\partial_{x} \tilde{u}_{n}^{2}-\partial_{x} u^{2}\right)\right|^{s} \psi
\end{aligned}
$$

and the limit follows from

$$
\limsup _{n \rightarrow \infty} A_{3}(n) \leq m^{s} \limsup _{n \rightarrow \infty} \int_{Q_{T}}\left|\left(u-\tilde{u}_{n}\right) \partial_{x} \tilde{u}_{n}+\frac{1}{2}\left(\partial_{x} \tilde{u}_{n}^{2}-\partial_{x} u^{2}\right)\right|^{s} \psi=0
$$

Considering A_{1} of Equation 5.13, since $u_{n} \rightarrow u$ strongly in $L^{2 l}\left(Q_{T}\right)$, by Egorov's Lemma, for every $\epsilon>0$, there exists a measurable set E_{ϵ} such that $\left|E_{\epsilon}\right| \leq \epsilon$ and $u_{n} \rightarrow u$ uniformly in $Q_{T} \backslash E_{\epsilon}$.

$$
\int_{\{u=0\}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi=\int_{\{u=0\} \cap E_{\epsilon}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi+\int_{\{u=0\} \cap Q_{T} \backslash E_{\epsilon}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi
$$

The first term is bounded through Hölder's inequality,
$\int_{\{u=0\} \cap E_{\epsilon}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi=\int_{Q_{T}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi \chi_{\{u=0\} \cap E_{\epsilon}} \leq \int_{Q_{T}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi \chi_{E_{\epsilon}} \leq C\left\|\left|\partial_{x} u_{n}\right|^{\alpha}\right\|_{L^{1 / \alpha}\left(Q_{T}\right)}\left\|\chi_{E_{\epsilon}}\right\|_{L^{1 /(1-\alpha)}\left(Q_{T}\right)} \leq C \epsilon^{1-\alpha}$
The second one uses the fact that for any $\mu>0$, there exists N such that $\left|u_{n}-u\right|=\left|u_{n}\right|<\mu$ for all $n>N$ and for all $x \in\{u=0\} \cap Q_{T} \backslash E_{\epsilon}$. In other words, for $n>N,\{u=0\} \cap Q_{T} \backslash E_{\epsilon}$ is a subset of $\left\{u_{n} \leq \mu\right\} \cap Q_{T} \backslash E_{\epsilon}$, hence the integral

$$
\begin{aligned}
& \int_{\{u=0\} \cap Q_{T} \backslash E_{\epsilon}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi \\
\leq & \int_{\left\{u_{n} \leq \mu\right\} \cap Q_{T} \backslash E_{\epsilon}}\left|\partial_{x} u_{n}\right|^{\alpha} \psi \\
\leq & \left(\mu+\frac{1}{n}\right)^{\theta \alpha} \int_{\left\{u_{n} \leq \mu\right\} \cap Q_{T} \backslash E_{\epsilon}}\left(\frac{\left|\partial_{x} u_{n}\right|}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}\right)^{\alpha} \psi \\
\leq & \left(\mu+\frac{1}{n}\right)^{\theta \alpha} \int_{Q_{T}}\left(\frac{\left|\partial_{x} u_{n}\right|}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}\right)^{\alpha} \psi
\end{aligned}
$$

The boundedness of $\int_{Q_{T}}\left(\frac{\left|\partial_{x} u_{n}\right|}{\left(u_{n}+\frac{1}{n}\right)^{\theta}}\right)^{\alpha} \psi$ is secured by Proposition 4. The result follows from taking $\mu \rightarrow 0$.

6 Existence of Global Weak Solution

We are now ready to prove the main result of the paper, i.e. Theorem 1 ,
Proof. Note that
$-\left(\tilde{u}_{n}, \partial_{t} \eta\right)_{Q_{T}}+\left(\frac{x^{2}}{2} \partial_{x} \tilde{u}_{n}^{2}, \partial_{x} \eta\right)_{Q_{T}}=\left(-x^{2}\left(\partial_{x} \tilde{u}_{n}\right)^{2}, \eta\right)_{Q_{T}}+\left(-x \partial_{x} \tilde{u}_{n}^{2}, \eta\right)_{Q_{T}}+\left(g_{0}\left(\tilde{u}_{n}-\frac{1}{n}\right), \eta\right)_{Q_{T}}+\left(\varphi_{0}+\frac{1}{n}, \eta(x, 0)\right)_{\Omega}$
It is sufficient to prove that the first term on the right hand side converges to $\left(-x^{2}\left(\partial_{x} u\right)^{2}, \eta\right)_{Q_{T}}$. Take the difference and use Hölder's inequality,

$$
\left(x^{2}\left[\left(\partial_{x} \tilde{u}_{n}\right)^{2}-\left(\partial_{x} u\right)^{2}\right], \eta\right)_{Q_{T}} \leq C\left\|\partial_{x} \tilde{u}_{n}-\partial_{x} u\right\|_{L^{2}\left(Q_{T}\right)} \cdot\left\|\partial_{x} \tilde{u}_{n}+\partial_{x} u\right\|_{L^{2}\left(Q_{T}\right)}
$$

Since $\partial_{x} \tilde{u}_{n}$ converge to $\partial_{x} u$ a.e. in Q_{T} and $\partial_{x} \tilde{u}_{n}$ is uniformly bounded in $L^{4}\left(Q_{T}\right)$, by Lemma 1

$$
\lim _{n \rightarrow \infty}\left\|\partial_{x} \tilde{u}_{n}-\partial_{x} u\right\|_{L^{2}\left(Q_{T}\right)}=0
$$

7 Nontrivial Equilibrium State

If $u_{\infty}(x)$ is an equilibrium state for $\operatorname{Problem}(\mathcal{S})$, then we have

$$
\left\{\begin{array}{lr}
0=x^{2} u_{\infty} \partial_{x}^{2} u_{\infty}+g_{0} u_{\infty}, & \forall x \in \Omega=\left[x_{a}, x_{b}\right] \\
u_{\infty}(x)=0, & \forall x \in \partial \Omega
\end{array}\right.
$$

Solve the equation

$$
x^{2} \partial_{x}^{2} \mathcal{M}+g_{0}=x^{2} \partial_{x}^{2} \mathcal{M}+x^{2} \partial_{x}\left(f_{0}-\partial_{x} u_{0}\right)=0
$$

We obtain that

$$
\mathcal{M}(x)=u_{0}(x)+\frac{1}{\int_{x_{a}}^{x_{b}} d s}\left(\left(\int_{x_{a}}^{x_{b}} f_{0}(s) d s\right) \cdot\left(\int_{x_{a}}^{x} d s\right)-\left(\int_{x_{a}}^{x} f_{0}(s) d s\right) \cdot\left(\int_{x_{a}}^{x_{b}} d s\right)\right)
$$

If $\mathcal{M}(x)>0$ for any $x \in \Omega$, then it is the unique nontrivial equilibrium state. Otherwise $u_{\infty}(x)=\mathcal{M}^{+}(x)$ is one of the possible nontrivial equilibrium states in weak sense.

References

[1] Boumediene Abdellaoui, Ireneo Peral, and Magdalena Walias. Some existence and regularity results for porous media and fast diffusion equations with a gradient term. Transactions of the American Mathematical Society, 367(7):4757-4791, 2015.
[2] Claude Bardos and Nicolas Besse. Diffusion limit of the vlasov equation in the weak turbulent regime. Journal of Mathematical Physics, 62(10):101505, 2021.
[3] WE Drummond and D Pines. Non-linear stability of plasma oscillations. 1962.
[4] AA Ivanov and LI Rudakov. Quasilinear relaxations dynamics of a collisionless plasma. Sov. Phys.-JETP, 24:1027, 1967.
[5] OA Ladyzhenskaya, VA Solonnikov, and NN Ural'tseva. Linear and quasilinear equations of parabolic type, transl. math. Monographs, Amer. Math. Soc, 23, 1968.
[6] Rüdiger Landes and Vesa Mustonen. On parabolic initial-boundary value problems with critical growth for the gradient. In Annales de l'IHP Analyse non linéaire, volume 11, pages 135-158, 1994.
[7] Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford University Press on Demand, 2007.
[8] AA Vedenov, EP Velikhov, and RZ Sagdeev. Nonlinear oscillations of rarified plasma. Nuclear Fusion, 1(2):82, 1961.

Appendix

According to Theorem 6.1 in Chapter V of Ladyzenskaja et. al.'s book [5], the following conditions (a) to (f) are sufficient for Theorem 3 .
Recall that

$$
\begin{aligned}
a_{1}(x, t, u, p) & :=x^{2} \mathcal{P}_{n}(u) p \\
a(x, t, u, p) & :=x^{2} \mathcal{P}_{n}^{\prime}(u) p^{2}+2 x \mathcal{P}_{n}(u) p-g_{0}(x) u \\
A(x, t, u, p) & :=-g_{0}(x) u
\end{aligned}
$$

and

$$
\begin{equation*}
\varphi(x, t):=\varphi_{0}(x)+\left[x^{2} \mathcal{P}_{n}^{\prime}\left(\varphi_{0}\right) \partial_{x}^{2} \varphi_{0}+g_{0} \varphi_{0}\right] t \tag{7.1}
\end{equation*}
$$

We will verify the conditions one by one.
(a) For $(x, t) \in \overline{Q_{T}}$ and arbitrary u, the diffusion term is strictly coercive,

$$
\frac{\partial a_{1}}{\partial p}(x, t, u, p)=x^{2} \mathcal{P}_{n}(u) \geq \frac{x_{a}^{2}}{2 n}>0
$$

and the reaction term has the following lower bound,

$$
A(x, t, u, 0) u=-g_{0}(x) u^{2} \geq-\max \left(\left|g_{0}\right|\right) u^{2}
$$

(b) For $(x, t) \in \overline{Q_{T}}$, when $|u| \leq M$, for arbitrary p, the operators are bounded in the following sense.

$$
\frac{\partial a_{1}}{\partial p}(x, t, u, p)=x^{2} \mathcal{P}_{n}(u) \leq x_{b}^{2}(M+1)
$$

and

$$
\begin{aligned}
& \left(\left|a_{1}\right|+\left|\frac{\partial a_{1}}{\partial u}\right|\right)(1+|p|)+\left|\frac{\partial a_{1}}{\partial x}\right|+|a| \\
= & \left(x^{2} \mathcal{P}_{n}(u)|p|+x^{2} \mathcal{P}_{n}^{\prime}(u)|p|\right)(1+|p|)+2 x \mathcal{P}_{n}(u)|p|+\left|x^{2} \mathcal{P}_{n}^{\prime}(u) p^{2}+2 x \mathcal{P}_{n}(u) p-g_{0}(x) u\right| \\
\leq & \left(x^{2} \mathcal{P}_{n}(u)|p|+x^{2} \mathcal{P}_{n}^{\prime}(u)|p|\right)(1+|p|)+2 x \mathcal{P}_{n}(u)|p|+x^{2} \mathcal{P}_{n}^{\prime}(u) p^{2}+2 x \mathcal{P}_{n}(u)|p|+\left|g_{0}(x) u\right| \\
\leq & \mu\left(M, x_{b}, \max \left(\left|g_{0}\right|\right)\right)(1+|p|)^{2} .
\end{aligned}
$$

(c) For $(x, t) \in \overline{Q_{T}},|u| \leq M$ and $|p| \leq M_{1}$, the functions $a_{1}, a, \frac{\partial a_{1}}{\partial p}, \frac{\partial a_{1}}{\partial u}$, and $\frac{\partial a_{1}}{\partial x}$ are arbitrarily smooth in x, t, u and p, therefore they satisfy any Hölder continuity condition.
(d) Note that

$$
\begin{aligned}
\frac{\partial a_{1}}{\partial u} & =x^{2} \mathcal{P}_{n}^{\prime}(u) p \\
\frac{\partial a}{\partial p} & =2 x^{2} \mathcal{P}_{n}^{\prime}(u) p+2 x \mathcal{P}_{n}(u), \\
\frac{\partial a}{\partial u} & =x^{2} \mathcal{P}_{n}^{\prime \prime}(u) p^{2}+2 x \mathcal{P}_{n}^{\prime}(u) p-g_{0}(x)
\end{aligned}
$$

For $(x, t) \in \overline{Q_{T}},|u| \leq M$ and $|p| \leq M_{1}$, all the above terms are bounded by a constant $C\left(M, M_{1}, \mathcal{P}_{n}, g_{0}, \Omega\right)$. In addition, neither a nor a_{1} depend on t, therefore condition (d) is satisfied.
(e) By definition of ψ in Equation (7.1), ψ is arbitrarily smooth in $\overline{Q_{T}}$. In addition, for $x \in \partial \Omega$ and $t=0$, the following identity holds,

$$
\partial_{t} \varphi(x, t)=x^{2} \mathcal{P}_{n}^{\prime}\left(\varphi_{0}\right) \partial_{x}^{2} \varphi_{0}+g_{0} \varphi_{0}=x^{2} \mathcal{P}_{n}^{\prime}(\varphi) \partial_{x}^{2} \varphi+g_{0} \varphi
$$

(f) It is trivial that the boundary $\partial \Omega$ satisfies any Hölder continuity condition.

