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Abstract

The quasilinear theory has been widely used to describe the resonant particle-wave interaction in

plasmas. The electrostatic case, i.e. the model originating from Vlasov-Poisson system, is the most

fundamental and representative one. In this paper, we prove the existence of global weak solutions for

electrostatic plasmas in one dimension.
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1 Introduction

The quasilinear theory is a model reduction of the Vlasov-Maxwell(or Vlasov-Poisson) system in weak tur-
bulence regime. Since first proposed by Vedenov et al. [8] and Drummond et al. [3], it has found extensive
use in plasma physics to describe the interaction between particles and waves(plasmons). Despite that, not
much work from analysis point of view can be found. A recent paper by Bardos and Besse [2] discussed the
asymptoticity. The well-posedness of quasilinear systems remains an open problem. This paper is devoted
to proving the existence of weak solutions to the one dimensional problem.
Our strategy can be summarized as follows. Firstly, we use the trick in Ivanov et.al.[4] to show that, in one
dimensional case, the system is equivalent to a porous medium equation with nonlinear source terms. This
allows us to use existing techniques from that field. In particular, the proposed proof is inspired by the book
of Vazquez[7]. The basic idea is to analyze a series of approximate problems with parameter n and try to
establish regularity estimates uniform in n. Then it is possible to pass the limit to infinity.
In order to pass the limit, the strong convergence of the gradient term is necessary. And that is the most
challenging part. Similar problems has been tackled by Abdellaoui, Peral and Walias[1], where the nonlinear
source contains a gradient term to some power. A significant difference is that they require positive source,
while in our problem, the gradient square term has a minus sign. Nevertheless, their proof for a.e. convergence
can still be adopted if we can find an alternative way to prove the prerequisites.
The paper is organized as follows. In Section 2, we derive the equivalent porous medium equation and state
the main result. In Section 3, we resort to the book of Ladyzenskaja[5] for the maximum principle and the
well-posedness of the strictly coercive approximate problems with parameter n. Section 4 aims at proving
the regularity estimates uniform in parameter n, which paves the way to convergence results. In Section 5,
the a.e. convergence of gradient term is proved, using the technique from Abdellaoui, Peral and Walias[1].
The proof of main theorem is contained in Section 6. And we will further discuss the nontrivial equilibrium
states in Section 7.

2 From Quasilinear System to Porous Medium Equation with

Source Term

The goal of this section is to transform the system into a single equation for only one unknown function.
The quasilinear system for particle-wave interaction contains two equations, as there are two unknown
functions: the particle probability density function f(p, t) and the wave spectral energy density W (k, t).
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The most important feature of the system lies in the fact that particles and waves interact through the
absorption/emission kernel, which contains a Dirac delta. In physics this is called ”resonance”, since particles
with certain momentum only interact with waves with some particular wave vectors. The one dimensional
plasma is special, because in this case each momentum p corresponds to only one wave vector k, and vice
versa. This is the reason that the following trick is feasible.
In electrostatic case, the equations are as follows,



















∂tf(p, t) = ∇p ·
([
∫

Ωk

W (k)
(

k̂⊗ k̂
)

δ(ω −∇pE(p) · k)dk
]

· ∇pf

)

,

∂tW (k, t) =

[

∫

Ωp

(∇pf) ·
(

k̂⊗ k̂
)

· (∇pE(p)) δ(ω −∇pE(p) · k)dp
]

W,

where E(p) = 1
2p

2 is the kinetic energy of a single particle, and the constant ω is the plasma frequency.

In one dimensional plasma, after normalization, the system can be written as



















∂tf = ∂p

([
∫

Ωk

Wδ(1 − pk)dk

]

∂pf

)

,

∂tW =

[

∫

Ωp

(∂pf) pδ(1− pk)dp

]

W,

with initial condition being
{

f(p, 0) = f0(p),

W (k, 0) =W0(k).

Here p = 1/k is the so-called resonance condition. Consequently, for p > 0 and k > 0, after eliminating the
Dirac delta by performing integration, the system becomes















∂tf(p, t) = ∂p

([

W (
1

p
)
1

p

]

∂pf

)

,

∂tW (k, t) =

[

∂pf(
1

k
)
1

k2

]

W (k, t).

Introducing a new function w(p) = 1
p3W ( 1p ) to obtain

{

∂tf = ∂p
(

p2w∂pf
)

,

∂tw = p2w∂pf.
(2.1)

Compare the right hand side of the above two equations, the second row is identical to the term inside
bracket, therefore ∂tf = ∂p (∂tw), and by fundamental theorem of calculus,

f = ∂p(w − w0) + f0.

Substitute it into the second row of Equation(2.1), we obtain an equation with only one unknown function
w(p, t),

∂tw = p2w∂p (∂pw + f0 − ∂pw0) = p2w∂2pw + g0w,

where g0 = p2∂p (f0 − ∂pw0).
Consider the case where w0(p) = 0 for any p ∈ (−∞, pa] ∪ [pb,+∞), with pa > 0. This is also the case of
interest in physics, for example the ”bump on tail” configuration is included in this scenario. The original
problem is equivalent to











∂tw = p2w∂2pw + g0w, in Ωp = (pa, pb)

w(p, t) = 0, on ∂Ωp

w(p, 0) = w0(p)
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In the rest of the article, to keep it consistent with existing literature in mathematics, we will use u, x instead
of w, p.
Denote the following problem as problem (S).











∂tu = x2u∂2xu+ g0u = ∂x
(

x2u∂xu
)

− x2 (∂xu)
2 − x∂xu

2 + g0u, in Ω = (xa, xb)

u(x) = 0, on ∂Ω

u(x, 0) = ϕ0(x)

(2.2)

This equation belongs to porous medium equations, with nonlinear source terms. We are seeking for a
non-negative solution u because otherwise it does not make sense in physics. However the extra term
−x2 (∂xu)2−x∂xu2+g0u is not necessarily positive, which means existing techniques for regularity estimates
are not applicable anymore. And here lies the main contribution of the proposed work. The details will be
presented in Section 4.

Define QT = Ω× [0, T ], the main result of the paper can be stated as follows,

Theorem 1. If g0 ∈ C∞(Ω), ϕ0 ∈ C∞(Ω), and ∂2xϕ0 = 0 on ∂Ω, then for problem (S) there exists a

weak solution u ∈ L2l(0, T ;W 1,2l
0 (Ω)) with l = 1, 2, · · · such that, for any η ∈ C∞(QT ) that vanishes on

∂Ω× [0, T ] ∪ {(x, t) : x ∈ Ω, t = T }, the following identity holds,

− (u, ∂tη)QT
+

(

x2

2
∂xu

2, ∂xη

)

QT

=
(

−x2(∂xu)2, η
)

QT
+
(

−x∂xu2, η
)

QT
+ (g0u, η)QT

+ (ϕ0, η(x, 0))Ω (2.3)

3 The Solvability of Approximate Problems

The problem (2.2) is difficult to tackle due to its degeneracy. Therefore we consider a series of approximate
problems first. They are arbitrarily close to the original problem, but each one of them is strictly coercive,
which ensures the existence of classical solutions. Furthermore, these approximate solutions have enough
regularity, allowing us to test with various functions and to obtain bounds that are uniform in the parameter
n.
In this section the following approximate problem (Sn) is considered,











∂tu = x2Pn(u)∂
2
xu+ g0u, in Ω

u(x) = 0, on ∂Ω

u(x, 0) = ϕ0(x),

where Pn ∈ C∞(R) is a family of functions with the following properties,

(i) Pn(y) ≥ 1
2n , ∀y ∈ R

(ii) Pn(y) = y + 1
n , ∀y ∈ R

+

(iii) P ′
n(y) ≥ 0

The following maximum principle can be found in Theorem 2.1, Chapter I of Ladyzenskaja’s book[5]. Note
that the bounds are independent of the parameter n.

Theorem 2. (maximum principle) If un is a classical solution to the problem (Sn), then un(x, t) satisfies
the maximum principle on QT :

{

un(x, t) ≥ 0

un(x, t) ≤ max(ϕ0) exp(max(|g0|)t)

For the existence of classical solution to the approximate problems (Sn), we refer the readers to Theorem
6.1, Chapter V of Ladyzenskaja’s book[5].
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Theorem 3. (classical solution) For any T > 0, the problem (Sn) admits an unique classical solution
un(x, t) on QT . Moreover, un(x, t) belongs to Hölder space H2+β,(2+β)/2(QT ) ∩ H3+β,(3+β)/2(QT ) when
g0, ϕ0 ∈ C∞(Ω).

Proof. To begin with, write the equation in divergence form.

Lu ≡∂tu− x2Pn(u)∂
2
xu− g0u

=∂tu− ∂x
(

x2Pn(u)∂xu
)

+ x2P ′
n(u) (∂xu)

2
+ 2xPn(u)∂xu− g0u

Define
ϕ(x, t) := ϕ0(x) +

[

x2P ′
n(ϕ0)∂

2
xϕ0 + g0ϕ0

]

t

Recall the assumption that ∂2xϕ0 = 0 on ∂Ω, the initial-boundary condition can be written as

u|ΓT = ϕ|ΓT

where ΓT = ∂Ω× [0, T ] ∪ {(x, t) : x ∈ Ω, t = 0}.
In accordance with the notation of Ladyzenskaja, define

a1(x, t, u, p) := x2Pn(u)p

a(x, t, u, p) := x2P ′
n(u)p

2 + 2xPn(u)p− g0(x)u

A(x, t, u, p) := −g0(x)u

The conditions in Ladyzenskaja’s theorem can be easily verified. See Appendix.

By Theorem 2, un is always non-negative, therefore by the second property of function Pn, the problem (Sn)
in divergence form is as follows,



















∂tun = ∂x

(

x2(un +
1

n
)∂xun

)

− x2 (∂xun)
2 − x∂x(un +

1

n
)2 + g0un, in Ω

un(x) = 0, on ∂Ω

un(x, 0) = ϕ0(x).

(3.1)

Define ũn = un + 1
n , then ũn is strictly positive, and it solves the following problem,






























∂tũn = ∂x
(

x2ũn∂xũn
)

− x2 (∂xũn)
2 − x∂xũ

2
n + g0

(

ũn − 1

n

)

, in Ω

ũn(x, t) =
1

n
, on ∂Ω

ũn(x, 0) = ϕ0(x) +
1

n
,

(3.2)

4 The Regularity Estimates on Approximate Solutions

As have been mentioned, in order to prove a.e. convergence of the gradient term in the next section, several
regularity estimates are of necessity. In the work of Abdellaoui, Peral and Walias[1], the authors used existing
results for an elliptic-parabolic problem with measure data. However for the problem we are dealing with,
the nonlinear source term is not ”measure data”, thus it calls for a different approach. And that is the aim
of this section.
To begin with, we introduce the following energy estimate.

Proposition 1. If ũn is a classical solution to problem(3.2) t ∈ [0, T ], then the energy inequality holds,

‖x∂xũ2n‖L2(QT ) =

(

∫ T

0

∫

Ω

|x∂xũ2n|2dxdt
)

1
2

≤ C(ϕ0, g0, T,Ω),
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where the constant C is independent of n.

Proof. Test Equation(3.2) with ũ2n − 1
n2 , since ũ

2
n − 1

n2 = 0 on ∂Ω, after integration by parts, the equation
becomes

(

∂tũn, ũ
2
n − 1

n2

)

Ω

+

(

x2ũn∂xũn, ∂x

(

ũ2n − 1

n2

))

Ω

=

(

−x2 (∂xũn)2 , ũ2n − 1

n2

)

Ω

+

(

−x∂xũ2n, ũ2n − 1

n2

)

Ω

+

(

g0

(

ũn − 1

n

)

, ũ2n − 1

n2

)

Ω

Collecting the terms with 1
n to obtain

(

∂tũn, ũ
2
n

)

Ω
+
(

∂xũn, x
2∂x

(

ũ3n
))

Ω
+
(

∂xũn, 2xũ
3
n

)

Ω

=

(

∂tũn,
1

n2

)

Ω

+
1

n2

(

∂xũn, x
2∂xũn

)

Ω
+

1

n2
(∂xũn, 2xũn)Ω +

(

g0, (ũn − 1

n
)(ũ2n − 1

n2
)

)

Ω

By maximum principle for un, the shifted solution ũn(x, t) ≥ 1
n , therefore the second term on the right hand

side is bounded as follows,

(

1

n
x∂xũn,

1

n
x∂xũn

)

Ω

≤ (ũnx∂xũn, ũnx∂xũn)Ω =
1

4

(

x∂xũ
2
n, x∂xũ

2
n

)

Ω
,

Perform integration by parts on all the terms with integrand xi∂xũ
j
n, the following inequality holds,

1

2

(

x∂xũ
2
n, x∂xũ

2
n

)

Ω
≤ −

(

∂tũn, ũ
2
n

)

Ω
+

(

∂tũn,
1

n2

)

Ω

+
1

2n4
(xb−xa)+

1

2

(

ũ4n, 1
)

Ω
− 1

n2

(

ũ2n, 1
)

Ω
+

(

g0, (ũn − 1

n
)(ũ2n − 1

n2
)

)

Ω

.

Every integral of ũjn is bounded as a result of the maximum principle, therefore

∫ T

0

∫

Ω

|x∂xũ2n|2dxdt ≤ C(ϕ0, g0, T,Ω).

According to Ladyzenskaja[5], thanks to the smoothness of data, the solutions are smoother than usual, even
the third order derivative is Hölder continuous. And that allows us to study a parabolic equation for the
first derivative ∂xun, which renders the following regularity estimates.

Proposition 2. If un are classical solutions to the problem(3.1) for t ∈ [0, T ], then their gradient in space
are uniformly bounded in L2l(Ω),

sup
t∈[0,T ]

‖∂xun‖L2l(Ω) ≤ C1(ϕ0, g0, T,Ω, l), l = 1, 2, · · ·

Consequently,
‖∂xun‖L2l(QT ) ≤ C2(ϕ0, g0, T,Ω, l), l = 1, 2, · · ·

and
‖un‖L2l(0,T ;W 1,2l

0 (Ω)) ≤ C3(ϕ0, g0, T,Ω, l), l = 1, 2, · · · (4.1)

Proof. To begin with, rewrite Equation(3.1) in non-divergence form,

∂tun − x2
(

un +
1

n

)

∂2xun − g0un = 0, (4.2)
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Let zn = ∂xun, then by Theorem 3, zn ∈ H1+β,(1+β)/2(QT ) ∩ H2+β,(2+β)/2(QT ). Taking first derivative
on both sides of Equation(4.2), every term is still continuous. Therefore zn satisfies the following linear
parabolic equation, if we regard un as data.

∂tzn − ∂x

(

x2
(

un +
1

n

)

∂xzn

)

− g0zn − un∂xg0 = 0

In addition, from Equation(4.2) and the boundary condition for un, it can be derived that

∂xzn = ∂2xun =
∂tun − g0un

x2
(

un + 1
n

) = 0 on ∂Ω.

To summarize, zn satisfies the following equations,



















∂tzn − ∂x

(

x2
(

un +
1

n

)

∂xzn

)

− g0zn − un∂xg0 = 0, in Ω

∂xzn = 0, on ∂Ω

zn(x, 0) = ∂xϕ0(x)

Test the equation with z2l+1
n and perform integration by parts to obtain

(

∂tzn, z
2l+1
n

)

Ω
+

(

x2
(

un +
1

n

)

∂xzn, (2l+ 1)z2ln ∂xzn

)

Ω

=
(

g0zn, z
2l+1
n

)

Ω
+
(

un∂xg0, z
2l+1
n

)

Ω
.

Since the second term on the left hand side is non-negative, the following inequality holds,

1

2l+ 2

d

dt

(
∫

Ω

z2l+2
n

)

≤
∫

Ω

g0z
2l+2
n +

∫

Ω

un∂xg0z
2l+1
n .

Again, use the maximum principle for un in Theorem 2, and by the assumption on the data g0,

d

dt

(
∫

Ω

z2l+2
n

)

≤ C1(g0, T,Ω)

∫

Ω

z2l+2
n + C2(ϕ0, g0, T,Ω)

∫

Ω

|zn|2l+1

Let I =
∫

Ω z
2l+2
n , by Hölder’s inequality, the above is equivalent to,

d

dt
I ≤ C1I + C3I

2l+1
2l+2

Apply Young’s inequality on the second term to obtain

d

dt
(I + C5) ≤ C4 (I + C5) .

Therefore by Grönwall’s lemma we have

I ≤ (I0 + C5) exp (C4t)− C5 ≤ (I0 + C5) exp (C4T )− C5.

Consequently,
sup

t∈[0,T ]

‖∂xun‖L2l(Ω) ≤ C(ϕ0, g0, T,Ω, l), l = 1, 2, · · ·

Corollary 1. For any given l ∈ N
+, up to a subsequence, un converge to u weakly in L2l(0, T ;W 1,2l

0 (Ω)).

Proof. With inequality(4.1), use Banach-Alaoglu Theorem.

Proposition 3. The sequence ũ2n is uniformly bounded in W 1,2(QT ).
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Proof. Firstly, test Equation(3.2) with ∂tũ
2
n. Integrate by parts in x, and the trace integral vanishes because

∂tũ
2
n = 0 on ∂Ω, hence

(

∂tũn, ∂tũ
2
n

)

QT
= −

(

x2

2
∂xũ

2
n, ∂t∂xũ

2
n

)

QT

+

(

−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)

, ∂tũ
2
n

)

QT

.

Applying the fundamental theorem of calculus with respect to t ∈ (0, T ) on the first term of the right hand
side,

(

∂tũn, ∂tũ
2
n

)

QT
= −

(

x2

4
,
(

∂xũ
2
n(T )

)2
)

Ω

+

(

x2

4
,
(

∂xũ
2
n(0)

)2
)

Ω

+

(

−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)

, ∂tũ
2
n

)

QT

The goal is to bound
(

∂tũ
2
n, ∂tũ

2
n

)

QT
, however the left hand side is

(

∂tũn, ∂tũ
2
n

)

QT
.

Note that by maximum principle, there exists some constant C1 such that ũn ∈ ( 1
2n ,

C1

2 ), therefore,

(

∂tũ
2
n

)2
= 4ũ2n (∂tũn)

2 ≤ C1 · 2ũn (∂tũn)2 = C1 (∂tũn)
(

∂tũ
2
n

)

.

Integrate both sides on QT ,

‖∂tũ2n‖2L2(QT ) ≤C1

(

∂tũn, ∂tũ
2
n

)

QT

=C1

(

−
(

x2

4
,
(

∂xũ
2
n(T )

)2
)

Ω

+

(

x2

4
,
(

∂xũ
2
n(0)

)2
)

Ω

)

+ C1

(

−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)

, ∂tũ
2
n

)

QT

≤C1

(

−
(

x2

4
,
(

∂xũ
2
n(T )

)2
)

Ω

+

(

x2

4
,
(

∂xũ
2
n(0)

)2
)

Ω

)

+ C1‖−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)

‖L2(QT ) · ‖∂tũ2n‖L2(QT ),

in which we used Hölder’s inequality. Then use Young’s inequality to bound the last term in the inequality
above,

‖−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)

‖L2(QT ) · ‖∂tũ2n‖L2(QT )

≤C1

2
‖−x2 (∂xũn)2 − x∂xũ

2
n + g0

(

ũn − 1

n

)

‖2L2(QT ) +
1

2C1
‖∂tũ2n‖2L2(QT ).

It follows that

‖∂tũ2n‖2L2(QT ) ≤ 2C1

(

−
(

x2

4
,
(

∂xũ
2
n(T )

)2
)

Ω

+

(

x2

4
,
(

∂xũ
2
n(0)

)2
)

Ω

)

+ C2
1

∥

∥

∥

∥

−x2 (∂xũn)2 − x∂xũ
2
n + g0

(

ũn − 1

n

)∥

∥

∥

∥

2

L2(QT )

By Theorem 2, Proposition 1 and Proposition 2, the right hand side is uniformly bounded, hence ‖∂tũ2n‖L2(QT )

is uniformly bounded. Meanwhile, ‖∂xũ2n‖L2(QT ) is also uniformly bounded, thus the result follows.

The following lemma shows that convergence a.e. combined with uniform boundedness implies strong con-
vergence.

Lemma 1. For a sequence vn that is uniformly bounded in L4(QT ), if vn converges to v ∈ L4(QT ) almost
everywhere in QT , then vn converges to v strongly in L2(QT ).
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Proof. By Egorov’s theorem, for any ǫ > 0, there exists a measurable set Sǫ ⊂ QT such that |Sǫ| ≤ ǫ and
vn → v uniformly in QT \Sǫ. Therefore,

∫

QT

|vn − v|2 =

∫

Sǫ

|vn − v|2 +
∫

QT \Sǫ

|vn − v|2

=

∫

QT

|vn − v|2χSǫ +

∫

QT

|vn − v|2χ2
QT \Sǫ

Apply Hölder’s inequality on both terms,

∫

QT

|vn − v|2 ≤‖|vn − v|2‖L2(QT ) · ‖χSǫ‖L2(QT ) +

(

sup
(x,t)∈QT \Sǫ

|vn − v|2
)

· ‖χQT \Sǫ
‖L1(QT )

≤‖vn − v‖2L4(QT ) · ǫ+ C1

(

sup
(x,t)∈QT \Sǫ

|vn − v|2
)

Since vn → v uniformly in QT\Sǫ, taking the limit on both sides,

lim sup
n→∞

∫

QT

|vn − v|2 ≤ ‖vn − v‖2L4(QT ) · ǫ

As ǫ is arbitrary and ‖vn − v‖L4(QT ) is uniformly bounded, we conclude that vn converges to v strongly in
L2(QT ).

Corollary 2. Up to a subsequence, un converge to u strongly in Lq(QT ), for any q <∞.

Proof. By compactness, Proposition 3 implies that, for any q < ∞, up to a subsequence, ũ2n converge to
some function z strongly in Lq(QT ). Therefore by Lemma 1, ũn converge to u =

√
z strongly in Lq(QT ), for

any q <∞.

Combining Corollary 1 and Corollary 2, by taking subsequence of a subsequence, we obtain a limit u ∈
L2l(0, T ;W 1,2l

0 (Ω)) such that un converge to u weakly in L2l(0, T ;W 1,2l
0 (Ω)) and strongly in Lq(QT ). It

remains to show that such a function is indeed a weak solution to the problem. That requires several
convergence results, which will be elaborated in the next section.

Before proceeding to the convergence results, we introduce the following estimate, which is a prerequisite for
the proof of Theorem 5. The equation of interest calls for an alternative argument to the one proposed by
Abdellaoui, Peral and Walias[1].

Proposition 4. Let ψ ∈ C∞
0 (QT ) be s.t. ψ ≥ 0 in QT , then the sequence x2ψũ−θ

n |∂xũn| is uniformly
bounded in L1(QT ) for any θ ∈ (0, 1/2).

Proof. Let ψ ∈ C∞
0 (QT ) be s.t. ψ ≥ 0 in QT . Test Equation(3.2) with ψũ

−δ
n , where δ ∈ (0, 1). Since ψ = 0

on ∂QT , integrating by parts on x, the trace integral vanishes, it follows that,
(

∂tũn, ψũ
−δ
n

)

QT
+
(

x2ũn∂xũn, ∂x
(

ψũ−δ
n

))

QT

=
(

∂tũn, ψũ
−δ
n

)

QT
+
(

x2ũn∂xũn, ũ
−δ
n (∂xψ)

)

QT
+
(

x2ũn∂xũn, ψ
(

∂xũ
−δ
n

))

QT

=
(

−x2 (∂xũn)2 , ψũ−δ
n

)

QT

+
(

−x∂xũ2n, ψũ−δ
n

)

QT
+

(

g0

(

ũn − 1

n

)

, ψũ−δ
n

)

QT

.

Thus, simplifying and rearranging each inner product term in the equation above to obtain

(

ũ−δ
n ∂tũn, ψ

)

QT
+
(

ũ1−δ
n ∂xũn, x

2 (∂xψ)
)

QT
+ (−δ)

(

ũ−δ
n (∂xũn)

2
, x2ψ

)

QT

= −
(

ũ−δ
n (∂xũn)

2
, x2ψ

)

QT

−
(

ũ1−δ
n ∂xũn, ψ∂x(x

2)
)

QT
+

(

ũ−δ
n

(

ũn − 1

n

)

, ψg0

)

QT

.
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Next, collecting the third term on the left hand side and the first term on the right hand side, we have

(1− δ)
(

x2ψ, ũ−δ
n (∂xũn)

2
)

QT

= − 1

1− δ

(

∂tũ
1−δ
n , ψ

)

QT
(4.3)

− 1

2− δ

(

∂x
(

x2ψ
)

, ∂xũ
2−δ
n

)

QT
+
(

ψg0, ũ
1−δ
n

)

QT
−
(

ψg0,
1

n
ũ−δ
n

)

QT

.

The first three terms on the right hand side are apparently bounded. Indeed ũn satisfies maximum principle
and,

(

∂tũ
1−δ
n , ψ

)

QT
= −

(

ũ1−δ
n , ∂tψ

)

QT
(

∂x
(

x2ψ
)

, ∂xũ
2−δ
n

)

QT
= −

(

∂2x
(

x2ψ
)

, ũ2−δ
n

)

QT
.

In addition, since ũn = un + 1
n ≥ 1

n , the fourth term (4.3) to be estimated

1

n
ũ−δ
n ≤ nδ−1 =

1

n1−δ
≤ 1

Therefore, the left hand side of (4.3) becomes uniformly bounded in x-space

(

x2ψ, ũ−δ
n (∂xũn)

2
)

QT

≤ C(n, f0, g0) (4.4)

Finally, the L1 norm of the sequence x2ψũ−θ
n |∂xũn| implies, by Hölder’s inequality, that

‖x2ψũ−δ/2
n |∂xũn|‖L1(QT ) =

(

x2ψũ−δ/2
n |∂xũn|, 1

)

QT

=

(

(

x2ψ
)1/2

,
(

x2ψũ−δ
n (∂xũn)

2
)1/2

)

QT

≤‖
(

x2ψ
)1/2‖L2(QT ) · ‖

(

x2ψũ−δ
n (∂xũn)

2
)1/2

‖L2(QT )

=‖
(

x2ψ
)1/2‖L2(QT ) ·

(

(

x2ψũ−δ
n (∂xũn)

2
)1/2

,
(

x2ψũ−δ
n (∂xũn)

2
)1/2

)

QT

=‖
(

x2ψ
)1/2‖L2(QT ) ·

(

x2ψ, ũ−δ
n (∂xũn)

2
)

QT

.

And so, by inequality (4.4), the sequence x2ψũ−θ
n |∂xũn| is uniformly bounded in L1(QT ) for any θ = δ

2 ∈
(0, 12 ).

5 Convergence Results

The aim of this section is to prove that the sequence ∂xun converge to ∂xu a.e. in QT , where we have
adopted the techniques in the work of Abdellaoui, Peral and Walias[1]. The roadmap is as follows:

1. Using Proposition 1, Proposition 2 and Proposition 3 to prove Lemma 2.

2. Theorem 4 is a simple corollary of Lemma 2.

3. Combining Theorem 4 and Proposition 4 to prove Theorem 5.

Lemma 2. If ũn is the solution to Equation(3.2), then for any s ∈ (0, 1)

lim
n→∞

∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

= 0

9



Proof. Recall that u ∈ L2
(

0, T ;W 1,2
0 (Ω)

)

, introduce the time–regularization of u(x, t) by Landes et. al.[6],

uν(x, t) = exp(−νt)ϕ0(x) + ν

∫ t

0

exp(−ν(t− s))u(x, s)ds

It is known that

1. uν(x, t) converge to u(x, t) strongly in L2
(

0, T ;W 1,2
0 (Ω)

)

.

2. uν is the solution of the following problem,







1

ν
∂tuν + uν = u

uν(x, 0) = ϕ0(x)
(5.1)

Define a cut-off function Tε as

Tε(y) =

{

y, y ∈ (−ε, ε)
sign(y)ε, otherwise

(5.2)

And define a non-negative function Jε(y), such that J ′
ε(y) = Tε(y),

Jε(y) =



























− εy − 1

2
ε2, y ∈ (−∞,−ε)

1

2
y2, y ∈ (−ε, ε)

εy − 1

2
ε2, y ∈ (ε,∞)

(5.3)

It takes two steps to prove that
∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

converge to zero,

1. prove that
∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

χ{|un − uν | ≤ ε} converge to zero

2. prove that
∫

QT

[

x2ũn (∂x (ũn − u))2
]s

χ{|un − uν | > ε} converge to zero

For the first step, do the following decomposition

∫

QT

[

x2ũn (∂x (ũn − u))
2
]

χ{|un − uν| ≤ ε}

=

∫

{|un−uν |≤ε}

x2ũn (∂x (ũn − u))2

=

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (ũn − u)−
∫

{|un−uν |≤ε}

x2ũn (∂xu)∂x (ũn − u)

=

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (ũn − u)

−
∫

QT

[

x2 (ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}) (∂xu) ∂x (ũn − u)
]

−
∫

QT

[

x2uχ{|u− uν | ≤ ε} (∂xu) ∂x (ũn − u)
]

=A1 +A2 +A3

Start first from A2 and A3, as their estimates are relatively simple and straightforward.

10



Indeed, by Hölder’s inequality and Corollary 2, it follows that,

A2 =−
∫

QT

[

x2 (ũnχ{|un − uν | ≤ ε} − uχ{|u− uν| ≤ ε}) (∂xu)∂x (ũn − u)
]

≤C1(Ω, T )‖ũnχ{|un − uν| ≤ ε} − uχ{|u− uν | ≤ ε}‖L2(QT )‖(∂xu) ∂x (ũn − u)‖L2(QT )

≤C2(ϕ0, g0,Ω, T )‖ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}‖L2(QT ),

(5.4)

also, the following term will converge to zero,

A3 = −
∫

QT

x2u (∂xu) (∂xũn − ∂xu)χ{|u− uν | ≤ ε}. (5.5)

It remains to bound A1 =
∫

{|un−uν |≤ε} x
2ũn (∂xũn) ∂x (ũn − u).

This estimate is performed by first testing Equation(3.2) with Tε(un − uν), where Tε is defined in Equa-
tion(5.2), to obtain,

(∂tũn, Tε(un − uν))QT
+
(

x2ũn∂xũn, ∂x (Tε(un − uν))
)

QT

=
(

−x2 (∂xũn)2 , Tε(un − uν)
)

QT

+
(

−x∂xũ2n, Tε(un − uν)
)

QT
+

(

g0

(

ũn − 1

n

)

, Tε(un − uν)

)

QT

(5.6)

Since |Tε(un − uν)| ≤ ǫ, the right hand side of the above equation can be bounded as follows,

RHS ≤ ε

(

‖x2 (∂xũn)2‖L1(QT ) + ‖x∂xũ2n‖L1(QT ) + ‖g0
(

ũn − 1

n

)

‖L1(QT )

)

,

with the first term uniformly bounded by Proposition 2, the second one uniformly bounded by the energy
inequality in Proposition 1, and the last term by maximum principle. Consequently,

(

x2ũn∂xũn, ∂x (Tε(un − uν))
)

QT
≤ C1(ϕ0, g0,Ω, T )ε− (∂tũn, Tε(un − uν))QT

.

Since uν is a solution of Equation(5.1), ∂tuν can be replaced with ν(u− uν),

(∂tũn, Tε(un − uν))QT
=(∂t (un − uν) , Tε(un − uν))QT

+ (∂tuν , Tε(un − uν))QT

=(∂t (un − uν) , Tε(un − uν))QT
+ ν ((u− uν) , Tε(un − uν))QT

=(1, ∂tJε(un − uν))QT
+ ν ((u− uν) , Tε(un − uν))QT

=(1, Jε(un(T )− uν(T )))Ω − (1, Jε(un(0)− uν(0)))Ω + ν ((u− uν) , Tε(un − uν))QT
,

in which Jε is defined in Equation(5.3) as the anti-derivative of Tε.
Each term on the right hand side is bounded from below.
Indeed, by definition of Jε,

(1, Jε(un(T )− uν(T )))Ω ≥ 0. (5.7)

Since un and uν share the same initial condition, the second term is actually zero.

(1, Jε(un(0)− uν(0)))Ω = (1, Jε(ϕ0 − ϕ0))Ω = 0 (5.8)

By the sign-keeping property of Tε,

ν ((u− uν) , Tε(un − uν))QT
=ν ((u− uν) , Tε(u− uν − u+ un))QT

=ν ((u− uν) , Tε(u− uν))QT
+ ν ((u− uν) , Tε(un − u))QT

≥ν ((u− uν) , Tε(un − u))QT

(5.9)

Therefore, combining inequalities (5.7), (5.8) and (5.9),
(

x2ũn∂xũn, ∂x (Tε(un − uν))
)

QT
≤C1(ϕ0, g0,Ω, T )ε− (∂tũn, Tε(un − uν))QT

≤C1(ϕ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT

11



Therefore,

A1 =

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (un − u)

=

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (un − uν) +

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (uν − u)

=

∫

QT

x2ũn (∂xũn) ∂x (Tε (un − uν)) +

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (uν − u)

≤ C1(ϕ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT
+

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (uν − u)

(5.10)

Putting together the inequalities (5.10), (5.4) and (5.5),

∫

QT

[

x2ũn (∂x (ũn − u))2
]

χ{|un − uν | ≤ ε}

=A1 +A2 +A3

≤C1(ϕ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT
+

∫

{|un−uν |≤ε}

x2ũn (∂xũn) ∂x (uν − u)

+ C2(ϕ0, g0,Ω, T )‖ũnχ{|un − uν | ≤ ε} − uχ{|u− uν| ≤ ε}‖L2(QT )

−
∫

QT

x2u (∂xu) (∂xũn − ∂xu)χ{|u− uν| ≤ ε}

=B1(n, ν, ε)

(5.11)

Since ∂xũn converge to ∂xu weakly in L2(QT ), the last term of B1 converges to zero as n goes to infinity,
therefore,

lim
ε→0+

lim sup
ν→∞

lim sup
n→∞

B1(n, ν, ε) = 0

For the second step, consider
∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

χ{|un − uν | > ε}, using Hölder’s inequality,

∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

χ{|un − uν | > ε}

≤C1(Ω, T )‖(∂xun − ∂xu)
2s‖Lρ′(QT ) ·

(

‖χ{|un − uν | > ε} − χ{|u− uν | > ε}‖Lρ(QT ) + ‖χ{|u− uν | > ε}‖Lρ(QT )

)

=B2(n, ν, ε)

(5.12)

Taking the limit,
lim

ε→0+
lim sup
ν→∞

lim sup
n→∞

B2(n, ν, ε) = 0

To summarize,

0 ≤
∫

QT

[

x2ũn (∂x (ũn − u))
2
]s

≤ B1(n, ν, ε) +B2(n, ν, ε),

where B1 and B2 are on the right hand side of Equation (5.11) and (5.12). Consequently,

lim
n→∞

∫

QT

[

x2ũn (∂x (ũn − u))2
]s

= 0.

Theorem 4. The sequence ∂xũ
2
n = ∂x(un + 1

n )
2 converge to ∂xu

2 strongly in Lσ(QT ) for all σ ∈ (0, 2).
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Proof. Note that

∫

QT

|∂xũ2n − ∂xu
2|2s

=22s
∫

QT

|ũn∂xũn − u∂xu|2s

=22s
∫

QT

|ũn∂xũn − ũn∂xu+ ũn∂xu− u∂xu|2s

=22s
∫

QT

|(ũn∂xũn − ũn∂xu) + ∂xu (ũn − u)|2s

≤C
∫

QT

(

|ũn∂xũn − ũn∂xu|2s + |∂xu (ũn − u)|2s
)

By Lemma 2 and Corollary 2, both terms converge to zero if s ∈ (0, 1). Let σ = 2s, then σ ∈ (0, 2).

Theorem 5. The sequence ∂xun converge to ∂xu a.e. in QT

Proof. Let ψ ∈ C∞
0 (QT ) be s.t. ψ ≥ 0 in QT . To prove convergence a.e., it is sufficient to show that for

some α ∈ (0, 1),

lim
n→∞

∫

QT

|∂xun − ∂xu|αψ = 0

Decompose the domain QT ,

∫

QT

|∂xun − ∂xu|αψ =

∫

{u=0}

|∂xun − ∂xu|αψ +

∫

{u>0}

|∂xun − ∂xu|αψ

=

∫

{u=0}

|∂xun|αψ +

∫

{0<u≤ 1
m}

|∂xun − ∂xu|sψ +

∫

{u> 1
m}

|∂xun − ∂xu|sψ

=A1 +A2 +A3.

(5.13)

Using Hölder’s inequality to get the bound of A2,

A2 =

∫

{0<u≤ 1
m}

|∂xun − ∂xu|sψ

≤ ‖|∂xun − ∂xu|sψ‖L2/s(QT )‖χ{0<u≤ 1
m}‖L 2

2−s (QT )

≤ C‖χ{0<u≤ 1
m}‖L 2

2−s (QT )
.

Note that ‖χ{0<u≤ 1
m}‖L 2

2−s (QT )
can be arbitrarily small.

Next, by Theorem 4, it is known that ∂xũ
2
n → ∂xu

2 strongly in Lσ(QT ) for all σ < 2, therefore A3 converges
to zero, in fact,

A3 =

∫

{u> 1
m}

1

|u|s |u∂xun − u∂xu|sψ

=

∫

{u> 1
m}

1

|u|s |(u− ũn) ∂xũn +
1

2

(

∂xũ
2
n − ∂xu

2
)

|sψ

≤ ms

∫

QT

|(u− ũn) ∂xũn +
1

2

(

∂xũ
2
n − ∂xu

2
)

|sψ,

and the limit follows from

lim sup
n→∞

A3(n) ≤ ms lim sup
n→∞

∫

QT

|(u− ũn) ∂xũn +
1

2

(

∂xũ
2
n − ∂xu

2
)

|sψ = 0
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Considering A1 of Equation 5.13, since un → u strongly in L2l(QT ), by Egorov’s Lemma, for every ǫ > 0,
there exists a measurable set Eǫ such that |Eǫ| ≤ ǫ and un → u uniformly in QT \Eǫ.

∫

{u=0}

|∂xun|αψ =

∫

{u=0}∩Eǫ

|∂xun|αψ +

∫

{u=0}∩QT \Eǫ

|∂xun|αψ

The first term is bounded through Hölder’s inequality,
∫

{u=0}∩Eǫ

|∂xun|αψ =

∫

QT

|∂xun|αψχ{u=0}∩Eǫ
≤
∫

QT

|∂xun|αψχEǫ ≤ C‖|∂xun|α‖L1/α(QT )‖χEǫ‖L1/(1−α)(QT ) ≤ Cǫ1−α

The second one uses the fact that for any µ > 0, there exists N such that |un − u| = |un| < µ for all
n > N and for all x ∈ {u = 0} ∩ QT \Eǫ. In other words, for n > N , {u = 0} ∩ QT \Eǫ is a subset of
{un ≤ µ} ∩QT \Eǫ, hence the integral

∫

{u=0}∩QT \Eǫ

|∂xun|αψ

≤
∫

{un≤µ}∩QT \Eǫ

|∂xun|αψ

≤
(

µ+
1

n

)θα ∫

{un≤µ}∩QT \Eǫ

( |∂xun|
(un + 1

n )
θ

)α

ψ

≤
(

µ+
1

n

)θα ∫

QT

( |∂xun|
(un + 1

n )
θ

)α

ψ

The boundedness of
∫

QT

(

|∂xun|

(un+
1
n )θ

)α

ψ is secured by Proposition 4. The result follows from taking µ→ 0.

6 Existence of Global Weak Solution

We are now ready to prove the main result of the paper, i.e. Theorem 1.

Proof. Note that

− (ũn, ∂tη)QT
+

(

x2

2
∂xũ

2
n, ∂xη

)

QT

=
(

−x2 (∂xũn)2 , η
)

QT

+
(

−x∂xũ2n, η
)

QT
+

(

g0

(

ũn − 1

n

)

, η

)

QT

+

(

ϕ0 +
1

n
, η(x, 0)

)

Ω

It is sufficient to prove that the first term on the right hand side converges to
(

−x2(∂xu)2, η
)

QT
. Take the

difference and use Hölder’s inequality,

(

x2
[

(∂xũn)
2 − (∂xu)

2
]

, η
)

QT

≤ C‖∂xũn − ∂xu‖L2(QT ) · ‖∂xũn + ∂xu‖L2(QT )

Since ∂xũn converge to ∂xu a.e. in QT and ∂xũn is uniformly bounded in L4(QT ), by Lemma 1,

lim
n→∞

‖∂xũn − ∂xu‖L2(QT ) = 0

7 Nontrivial Equilibrium State

If u∞(x) is an equilibrium state for Problem (S), then we have

{

0 = x2u∞∂
2
xu∞ + g0u∞, ∀x ∈ Ω = [xa, xb]

u∞(x) = 0, ∀x ∈ ∂Ω
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Solve the equation
x2∂2xM + g0 = x2∂2xM+ x2∂x (f0 − ∂xu0) = 0

We obtain that

M(x) = u0(x) +
1

∫ xb

xa
ds

((
∫ xb

xa

f0(s)ds

)

·
(
∫ x

xa

ds

)

−
(
∫ x

xa

f0(s)ds

)

·
(
∫ xb

xa

ds

))

If M(x) > 0 for any x ∈ Ω, then it is the unique nontrivial equilibrium state. Otherwise u∞(x) = M+(x)
is one of the possible nontrivial equilibrium states in weak sense.
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Appendix

According to Theorem 6.1 in Chapter V of Ladyzenskaja et. al.’s book[5], the following conditions (a) to (f)
are sufficient for Theorem 3.
Recall that

a1(x, t, u, p) := x2Pn(u)p

a(x, t, u, p) := x2P ′
n(u)p

2 + 2xPn(u)p− g0(x)u

A(x, t, u, p) := −g0(x)u

and
ϕ(x, t) := ϕ0(x) +

[

x2P ′
n(ϕ0)∂

2
xϕ0 + g0ϕ0

]

t (7.1)

We will verify the conditions one by one.

(a) For (x, t) ∈ QT and arbitrary u, the diffusion term is strictly coercive,

∂a1
∂p

(x, t, u, p) = x2Pn(u) ≥
x2a
2n

> 0,

and the reaction term has the following lower bound,

A(x, t, u, 0)u = −g0(x)u2 ≥ −max(|g0|)u2.

(b) For (x, t) ∈ QT , when |u| ≤M , for arbitrary p, the operators are bounded in the following sense.

∂a1
∂p

(x, t, u, p) = x2Pn(u) ≤ x2b (M + 1) ,
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and
(

|a1|+ |∂a1
∂u

|
)

(1 + |p|) + |∂a1
∂x

|+ |a|

=
(

x2Pn(u)|p|+ x2P ′
n(u)|p|

)

(1 + |p|) + 2xPn(u)|p|+ |x2P ′
n(u)p

2 + 2xPn(u)p− g0(x)u|
≤
(

x2Pn(u)|p|+ x2P ′
n(u)|p|

)

(1 + |p|) + 2xPn(u)|p|+ x2P ′
n(u)p

2 + 2xPn(u)|p|+ |g0(x)u|
≤µ(M,xb,max(|g0|)) (1 + |p|)2 .

(c) For (x, t) ∈ QT , |u| ≤ M and |p| ≤ M1, the functions a1, a,
∂a1

∂p , ∂a1

∂u , and ∂a1

∂x are arbitrarily smooth
in x, t, u and p, therefore they satisfy any Hölder continuity condition.

(d) Note that

∂a1
∂u

= x2P ′
n(u)p,

∂a

∂p
= 2x2P ′

n(u)p+ 2xPn(u),

∂a

∂u
= x2P ′′

n(u)p
2 + 2xP ′

n(u)p− g0(x).

For (x, t) ∈ QT , |u| ≤M and |p| ≤M1, all the above terms are bounded by a constant C(M,M1,Pn, g0,Ω).

In addition, neither a nor a1 depend on t, therefore condition (d) is satisfied.

(e) By definition of ψ in Equation(7.1), ψ is arbitrarily smooth in QT . In addition, for x ∈ ∂Ω and t = 0,
the following identity holds,

∂tϕ(x, t) = x2P ′
n(ϕ0)∂

2
xϕ0 + g0ϕ0 = x2P ′

n(ϕ)∂
2
xϕ+ g0ϕ

(f) It is trivial that the boundary ∂Ω satisfies any Hölder continuity condition.
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