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Abstract. A transient model for one dimensional charge transport in an open
quantum system is proposed. In the semiclassical limit, it red uces
to the inflow boundary value problem for the classical transport
equation. On this basis, the coupling of classical and quantum
transport models through an interface is investigated. Suitable
interface conditions are derived through asymptotic formulae in-
volving the quantum reflection-transmission coefficients and time
delays.

1. INTRODUCTION

In this work, we propose and analyze a method for coupling classical and quantum
transport models in a one-dimensional time-dependent setting. This paper is the follow-
up of a previous work of one of the authors [4] where the one-dimensional stationary case
was investigated. We shall see that the account of the time-dependence increases the
complexity of the coupling methodology to a large extent.

The problem can be formulated as follows. We consider a particle system (such as
certain semiconductor devices e.g. Resonant Tunneling Diodes) which consists of a small
localized portion (denoted by Q) where the dynamics of the particles is quantum and a
large area (denoted by C) where the behavior of the particles can be well approximated
by classical mechanics. For computational efficiency, it is desirable to use a classical
mechanics model for the particles as long as they are in region C' and to shift to a quantum
model only when they cross the border between the C' and () regions. Similarly, when a
particle leaves the () region, one should be able to shift back to a classical model.

The problems posed by this procedure are twofold. First, independently of the con-
sideration of the classical region, the quantum region is an open quantum system, which

may gain or lose particles. Boundary conditions for open quantum systems are not
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easily derived. Such boundary conditions were proposed and analyzed in [7, 8] in the
one-dimensional stationary case and in [16, 3] for the multidimensional stationary case
(numerical studies of such boundary conditions can be found in [21, 22, 12, 13] ...). Ap-
proximate boundary conditions for the time-dependent case can be found in [23, 2, 11].
In the present paper, we shall present an alternative approach to the search for boundary
conditions: the a priori construction of density matrices which are exact solutions of
the quantum Von-Neumann equation, and which are consistent with the statistics of the
particles coming into the quantum region.

However, there is not a unique such construction. This is due to the necessary ’de-
localization’ of the classical particles when they enter the quantum region. Indeed, the
quantum-mechanical picture of a particle is a wave-packet. If there is only one classi-
cal limit of a given quantum wave-packet, the reciprocal is obviously untrue. A given
classical particle may be the classical limit of many different wave-packets. Therefore,
when a classical particle crosses the border of the quantum region, one has to choose
into which wave-packet it will be transformed. Consequently, the construction depends
on this arbitrarily chosen wave-packet.

In this work, the construction is restricted to the case of a time-independent potential.
This is because it makes a large use of the scattering states of the quantum structure,
which are well-defined only for time-independent potentials. This restriction will be
waived in future work.

So far, we have discussed the problem of finding the correct solution of the quantum
Von-Neumann equation, given the statistics of the incoming particles. Now, we have to
examine the reverse question i.e. how the quantum behavior of the particles in the @)
region affects the dynamics in the C region.

For that purpose, we consider the Wigner transform of the density matrix in the )
region and perform a semi-classical limit 7 — 0. We show that the formal limit of the
Wigner distribution function satisfies the usual boundary value problem for the classical
transport equation in () with prescribed incoming data. Furthermore, the outgoing
Wigner distribution function at the ) region boundary can be expressed in terms of
the incoming data by means of quantum reflection-transmission probabilities and time
delays. Since the incoming distribution in the ) region is the outgoing one of the C
region and vice-versa, we can assign similar reflection-transmission conditions to the
classical distribution function at the C' — () interface. These conditions only depend on
the scattering probabilities and time delays of the quantum structure, but not on the
expression of the density matrix in the () region. Therefore, they lead to a self-contained
problem for the classical distribution function, decoupled from that of the quantum
region.

In this paper, we first give a general presentation and justification of the above de-
scribed procedure. Then, we concentrate on the quantum region () and perform the
semiclassical analysis of the the Wigner distribution function. Finally, we shall discuss



questions regarding current continuity through the interface. We shall only develop for-
mal arguments, and will defer rigorous proofs to a forthcoming paper [6]. A summary of
the present approach can be found in [5].

2. THE COUPLING METHODOLOGY: FORMAL APPROACH

2.1. Setting of the problem. We consider a one dimensional system consisting of a
large number of independent particles moving along the whole real line. In the sequel,
we shall consider electrons, since one of the potential application of the present work is
to quantum semiconductor devices. However, the procedure would apply equally well
to any other kind of particles. The electrons are subject to a given time independent
potential V' (z). We suppose that the gradients of the potential are small apart in a
tiny localized region contained in the interval [a, b where they are large. Therefore, we
can consider that the dynamics is classical in the region C' = R\ [a,b] and quantum
in the region @) = [a,b]. What is the precise meaning of small and large in terms of
dimensionless parameters and asymptotic analysis will be the subject of future work. In
the present one, we shall take this for granted. Our aim is to find a procedure which
couples a classical kinetic description of the particle system in the C region to a quantum
statistical model in the @) region.

In C =R\ [a, b, the system is described by the classical particle distribution function
f(x,p,t) which is a function of position € R, momentum p € R and time ¢t > 0. It it
is a solution of the one-dimensional collisionless transport (or Vlasov) equation:

(1) atf+Uamf+€g—‘;8pf:0, z €R\ [a, 0], v:%,

where m and e are respectively the mass and charge, and v, the velocity. At the boundary
0C = {a,b}, inflow boundary conditions must be prescribed. At & = a (resp. = = b),
an inflow velocity for C' is such that v < 0 (resp. v > 0). We therefore prescribe the

boundary conditions

(2) f(aapat):fa(pat)ap<0 ; f(bvpat):fb(pat)7p>07
where f, and f, obviously depend on the dynamics of the () region.

In Q = [a,b], the system is modeled by the density matrix p(x, z',t), which is a solution
of the Von-Neumann equation. However, instead of prescribing boundary conditions for
the Von-Neumann equation at the boundary of the quantum region (), we take another
route. We choose to solve the Von-Neumann equation on the whole real line, but with a
modified potential V' which coincides with V' in () and which is constant in C:

3 Vori=V(a) , z<a,
(3) Viz) =4 Vl(z) , a<z <D,
( Vo:=V(b) , z2>b.
Therefore, the Von-Neumann equation for p reads:
(4) ilip, = (H, —Hy,)p, (z,2',t) eR* xR® xR
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where -
. B .
0= am V)

is the modified particle Hamiltonian in the potential V and H,, Hy are respectively
the actions of H on the z and 2/ variables. Now, which solution of the Von-Neumann
equation we must consider of course depends of the distribution function in the C' region.
Therefore, the coupling problem can be summarized as follows: how f, and f, are linked
with p and reciprocally how p is linked with f 7

We first note that we are not going to consider initial value problems for equations (1)
and (4), but solutions for all times ¢t € R (so-called eternal solutions). The reason is the
following. When entering the @) region, a classical particle must be delocalized into a
wave-packet. However, a wave-packet has a finite extension in space and is in fact very
unlikely to be compactly supported. In other words, even very far from the @) region, a
classical particle interacts with it because of the tiny but non zero tail of its wave-packet
representation. Therefore, the interaction of a classical particle with the ) region is non
local in time and actually extends infinitely in the past and in the future.

Now, to understand our coupling methodology, it is illuminating to first consider a
classical dynamics in the @) region and derive a classical-classical coupling methodology.
Of course, this strange question (why not just use the same classical model everywhere)
is investigated just for a clearer exposition of the true classical-quantum coupling.

2.2. Classical-classical coupling. In thissection, we suppose that, in the () region, the
system is described by a classical distribution function g, solution of the Vlasov equation

A% B P
(5) (9tg+1)8mg+ea$8pg—0, z € [a,b], v=

Of course, the boundary 9Q of @) is 0Q = 0C' = {a,b}. However, the incoming velocities
for the domain @) at a (resp. b) are now such that v > 0 (resp. v < 0). Obviously, the
boundary conditions for ¢ at @ and b must be

©6) gla,p.t) =galp,t) = fla,p,t), p>0 ; gb,p,t)= golp,t):= f(b,p,t), p<O,

where f(a,p,t) (for p > 0) and f(b,p,t) (for p < 0) are supposedly known from the
resolution of f in the C region. Reciprocally, the boundary conditions (2) for f must
obviously be completed by the condition that

(7) falp,t) =gla,p,t), p <0 5 fo(p,t) :=g(b,pt), p>0.
Now, we introduce the characteristic equations of (5):

dX  P(1) dP av

—=—; —=e—(X(t

& m @ Ca )
which are supposed to be uniquely solvable for a given set of initial conditions. This is
certainly true, provided that the potential is smooth, which we shall assume from now

on. We consider maximal solutions, which exist until the position X reaches one of the
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boundaries a or b of the domain. We denote by (X, P);s.p), the solution at time ¢ such
that (X, P)(0) = («, p). Now, it is readily seen that

¢(a,po ,to)(xapat) =0 ((.T,p) - (XJP)(tfto;a,po)) )

is the unique measure solution of (5) which satisfies the boundary condition

UQS(G,POJO)(G” b, t) = 5(]9 - p0)5(t — tO) .

Here and in the remainder of the paper, § denotes the Dirac delta measure. Writing g,
as a superposition of such elementary distributions:

ga(p,t) = / / ga(po,to) 6(p — po)o(t — to) dto dpo
toER J pgeR+

= / / (voga(po,to))(val(S(p—po)é(t—to))dto dpo ,
to€R J poeR+

(with vy = pg/m) and similarly for g,:

a0.)= [ [ (laatpo 1) (0l 500 = )51 = ) diody,

we can exactly represent ¢ by the integral formula:

(8) g(Z‘,p,t) = / / (Uoga(p()atO)) d)(a,po,to) (‘/Eapvt) dtO de
toeR JpoeRt

+/ / (|v0196(Pos t0)) Die,po,to) (T, P, 1) dto dpy .
to€R Jpo ER~

The measures ¢(q py 1) (T€SP. @b pozo)) are elementary distributions which describe par-
ticles entering the @) region at time ¢, through point a with momentum py, > 0 (resp.
through point b and momentum p, < 0).

Now, (8) can be used to compute the outgoing traces of ¢ on 9@ as functions of its
incoming traces g, and g, i.e. (by (6)), of the outgoing traces of f (with respect to
C). On the other hand, outgoing traces of g on Q) are also incoming traces of f on 9C
by virtue of (7). Therefore, this operation will ultimately give us an expression of the
incoming traces of f as functions of its outgoing traces, which will lead to a self-contained
problem for f. Then, knowing f and in particular its outgoing traces by the resolution
of this problem, we will find g by means of formula (8). We are now going to detail this
programme.

We start with the computation of the outgoing traces of ¢, 10) and @, py 10). Again,
using the smoothness of the potential which rules out any pathology of the trajectories,
the characteristic (X, P)a,p,) With pg > 0 exits the domain @ after a certain time 7(po)
either by point @ with momentum —pyq (in which case, we say that the particleis reflected)
or by point b with momentum

) Polpo) = s (po) /13 + 2me(Vi— V).
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(then, the particle is transmitted). The expression (9) obviously follows from the energy
conservation, itself a consequence of the time-independence of the potential. If the ex-
pression inside the square root defining p,(py) is negative, then reflection occurs certainly
and the quantity py(po) needs not be defined. We define reflection and transmission
coefficients R(py), T(po) in such a way that

1 , in the case of a reflection,
R(po) =1 —T(m) = { 0 , in the case of a transmission.

Then we can write:

(10) Ud)(a,po,to)(aapa t) = R(pO) 5(p+ pO) 5((t - tO) - T(pO))7 p< 07
(11) U Pa,po,to) (00, 1) = T(po) 6(p — po(po)) O((t —to) — 7(po)), p>0.

Similar definitions can of course be given for characteristics starting from b with momen-
tum py < 0. In particular, we define

Pa(po) = sgn(po) /p3 — 2me(Vs — Vo).

This leads to the following expressions:

(12) V(b posto) (0 D 1) = R(po) 6 (p +po) 6((t — to) —7(po)), p>0,
(13) U¢(b,po,to)(aap; t) = T(po) 6(p — pa(po)) O((t — to) — T(po)), p<0.
Now, from (10)-(13), we deduce, for p < 0:

g(a,p, ) = / } / 00 10) B(po) 8 -+0) 8t — 1) — () s g

/teR/ . |plp;L 96(Po, to) T'(po) 0(p — Pa(po)) 6((t — to) — T (o)) dto dpy -

or, after performing the integrations and noting that gy = p,(po) < po = Ps(py):

g(a,p,t) = R(=p) go(=p, t = 7(=p)) + T (ps(p)) 9(P6(p), t — T(Ps(P))) -
Similarly, for p > 0, we have:

o(b,p,t) = / ) / (0. 1) R(n) S -+-0) (1= t) = p0) i

/t R/ &+ Po(P ga (Po>t0) T(po) 3(p — pe(po)) 6((t — to) — 7(po)) dto dpo,

or

~—
~—
~—

g(b,p,t) = R(=p) go(=p, t = 7(=p)) + T (pa(p)) ga(pa(p),t — 7(palp
We note that, by time reversibility, T'(pa(p)) = T(—p) and 7(pa(p)) =7(—p),

and when p,(p) is defined). Similarly, T'(p, (p)) = T(—p) and 7(py(p)) = 7(—p), (for
p < 0 and when py(p) is defined). This finally leads to:

(14) g(a,p,t) = R(=p)ga(=p,t = 7(=p)) +T(=p) go(ps(p). t = 7(=p)), p <O,

(15) g(b,p,t) = R(=p)gs(=p,t - T(—p))6+T(—p) 9a(pa(p),t=7(=p)), p>0.



Now, eliminating g by (6) and (7), we use (14) and (15) to set up a self-contained
reflection-transmission problem for f:

(16) f(a,p,t) = R(-p) f(a,—p,t —7(=p)) +T(=p) fO,ps(p), t—7(—=p)), p»<O,
(17) f(b,p,t) = R(=p) f(b, —p,t —7(=p)) + T(=p) f(a,pa(p), t—T(=p)), p>0,

These boundary conditions express the incoming traces of f as functions of its outgoing
traces. They are very likely to lead to a well-posed problem for f in C' (existence of
solutions for similar kinds of boundary conditions can be found in [9], [10]). With these
boundary conditions, the Vlasov equation (1) can be solved in C' without any reference
to the distribution function in ). Of course, via the reflection-transmission coefficients
R, T and time delays 7, f depends on the potential in ). Then, once f is found in C,
formula (8) allows us to represent the solution in @) as an integral involving the boundary
values of f at @ and b.

We are going to duplicate the same methodology for the classical-quantum coupling
in the next section.

2.3. Classical-quantum coupling. The first and non obvious point is to define the
analogues of the elementary distributions ¢ p,t,) and @@p,,t,) which characterize parti-
cles entering the @) region at time tp and point ¢ with momentum po > 0 (resp. at point
b and momentum po < 0). We start by recalling the definition of the scattering states of
the potential V. These are solutions 1) of the stationary Schrodinger equation:

(18) Hi = &4,

(where £ is the energy) which are bounded on the real line but not square-integrable.
Elementary analysis [20] shows that for a given energy £, the space of such solutions is of
dimension zero, one or two according to the relative position of £ with respect to V, and
V4. A convenient basis of the solution space is provided by wave-functions describing the

diffusion of a plane wave coming from infinity by the potential inhomogeneity. These are
given by the solutions of the following boundary value problem in the interval [a, b] [7]:

( _%@/}p" — eV = (% - €Va) Uy,
(19) forp>0, < B, (a) + ipp,(a) = 2ip,
\ hwp,(b) = ipb(p) wp(b)a

2m

(20) forp <0, 3 ny,'(a) = —ipa(p) ¥y(a),

L R, (b) +ip, (b) = 2ip .
Let us suppose, to fix the ideas that V; > V,. Then p,(p) is always well-defined.

On the other hand, p,(p) is well-defined only if |p| > \/2em(V, —V,). For p > 0,

the two solutions 1, and v_j, ) form a basis of the solution space of (18) associated
7
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with the energy & = %Zn —€eV, = p"Q(:z)Z — €V}, which is therefore of dimension 2. 1,
describes the scattering of a plane wave coming from —oo by the potential inhomogeneity,
while ¢_,, ) describes the scattering of a plane wave coming from +oo. For p < 0 and
Ip| < \/2em(Vy — V), then p,(p) in formula (20) has to be defined as a complex square
root: p,(p) = +iy/2me(V, —V,) — p2. Which sign must be chosen in this definition is
unimportant because the solution space is of dimension 1 and the two solutions are then
proportional. In this case, the solution (20) represents the pure quantum reflection of a
plane-wave by a potential barrier.

The boundary conditions appearing in (19), (20) are consequences of the following
explicit formula for ¢, outside [a,d] (this is because the potential V' is assumed constant
in R\ [a,b]):

(21) for p > 0, { ng; - Zip;eip:;pﬁw(?, zz: h>>b r<a

where

(22) Alp) =tp(a) =1 ;5 B(p) =ty(b), p>0,

and

(23) for p < 0, { Vp(e) = Blp) R0, s
o(2)=€e"7 P+ Alp)e? ", x>0b

where

(24) A(p)=p(b) =1 5 B(p) =tp(a), p<O.

In the above formuleae, A(p) is the coefficient of the reflected wave (reflection amplitude)
whereas B(p) is that of the transmitted wave (transmission amplitude) and the factor
in front of the incoming wave ensures that it has amplitude 1. If p < 0 and |p| <
2em(V, —V,) (again assuming that V, > V, to fix the idea), it must be noted that
Po(p) in formula (23) is purely imaginary, so that the wave is evanescent in the region
z <a.
We recall that the corresponding reflection and transmission coefficients

(25 Rp) = Wo)F . T) = T

(where p, ,(p) stands for p, (resp. p,) when p < 0 (resp. p > 0) and R, I for the real
and imaginary parts) satisfy

(26) R(p)+T(p) =1,
and the reciprocity identity

(27) T(p)=T(—pap(p)), forall p e R such that p,,(p) € R.
8



To any scattering state 1), (x) corresponds a time-dependent wave-function

E®)
\ij(xa t) = %(95)6 Ry

where we denote by £(p) the energy associated with ;,:

2 2
5(p):p——eVa, for p>0 and S(p):p——eVb, for p < 0.
2m 2m
However, the probability density |¥,|? associated with U, is time-independent (which
is the definition of a stationary solution of the Schrodinger equation). Therefore, such
a wave-function is unable to represent a dynamical process such as the motion of an
isolated particle.

To do so, one has to call for the concept of wave-packet. Let ®;(pg,p;1) be a 'localizing
function” which can be viewed as the typical shape of the wave-packet. This function is
arbitrary, provided it satisfies a certain number of constraints which will be listed below.
Let us think of ®; as a non-negative real valued function, which “gets peaked” about
po = p1 as h tends to zero. We shall make this definition more precise later on. We
represent an electron coming into the domain () at time ¢, with momentum py by the

following wave-packet:

29 aled) = [ @) ) e (<) g

An important example of wave-packet profile is the Gaussian wave-packet

(29) Op(po, p1) = v/Chexp (—M> ,

4Uh
where Cj is a normalization constant about which we shall come back below and oy is
the momentum variance of the wave-packet. Throughout the paper, ®; will be assumed
real-valued.

Although the above formula mixes states corresponding to incoming plane waves from
either the left (p; > 0) or the right (p; < 0), a semi-classical analysis shows that ¥,
corresponds to a particle entering @) at time ty through a and moving to the right if
po > 0 and entering () through b and moving to the left if p, < 0. More specifically,
applying the stationary phase theorem, a formal analysis [20] yields, for py > 0:

I R
\If ~ \Ilg,(,):to + \IJPO:tO ? r<a
vatO b
po,to y T >

where the incident W) . reflected ¥ “and transmitted ¥] , wave-packets respectively

represent classical particles moving according to equations
zr(t) =a+ v (t — to), x <a, (incident wave),
zr(t) =a—uv((t —ty) — Tr(pe)), = <a, (reflected wave),
L zr(t) = a+v((t—t) — m0(po)), x>0, (transmitted wave).

Therefore, up to a limit & — 0, the incident wave-packet hits the boundary a at time ¢

coming from the left with momentum py. It gives rise to a reflected wave-packet which
9



departs from a at time to+ 7r(p) where 7x(pg) is a quantum reflection time-delay, and
to a transmitted wave-packet which departs from b at time ¢, + 77 (py) with 7p(pg) is the
transmission time-delay. These delays are given by the following formula (see also [20])

(30) ralp) = 295R@) oy 1dSr(p)

v dp v dp
where Sr(p) and St(p) are smooth realizations of the complex phases of the scattering
amplitudes:

)

Alp) = 1t3(17)€iSRT(m , B(p) = \/m

In this paper, we shall give a more rigorous meaning to these statements.

The wave-packet W, ; is obviously a solution of the time-dependent Schrodinger equa-
tion

.S (p)
P T(p)ez Thp

o
31 ih— = HU .
JFrom these wave-packets, we construct a density matrix which is the quantum analogue

of the elementary distributions ¢apo.4) OT @(bpeto)- It is defined by
(32) p%:to(xv T ’t) = Uy, (Ivt)\lj%ato(x ) t)

[ BB 00.02) (DT e (0= 0)E1) — ) i

and represents a particle entering @) at time ¢, through point a if gy > 0 (resp. through
point bif gy < 0). pgys is a truly time-dependent solution of the Von-Neumann equation
(4).

Of course, for py, 4 to represent a physically admissible density matrix, it has to be of
trace unity. We recall that the trace of a density matrix p(z,z’) is given by

Trp = / p(z, z) dx |
R

while p(z,z) dx represents the probability density associated with p. In order to compute
the trace of (32), it is convenient to highlight its relation with the scattering transform.
First, we recall that the definition of the Fourier transform of a function g(p) is defined

by:
1 inp
(33) Fg) = o [ ¢"gp)dp,
while the inverse Fourier transform of a function G (z) is given by:
31) FIG W) = [ e i,

The Plancherel identity states that:

(35) [ FawFi =—/gfdp



The scattering transform can be viewed as a Fourier transform in which the scattering
states 1,(z) are used instead of the exponentials e?®. In particular, it reduces to the
Fourier transform (up to a change of variables) in the case of a constant potential. More
precisely, we define the scattering transform G(g) according to:

1

Gg(x) = 57

g(p) Up() dp,

and the inverse scattering transform:

GG (p) = / G(2) V@) da

It is immediately seen that, in the case of a constant potential, the scattering and Fourier
transforms are related by:

Go(a) = 779 (%) = Flo(h)] ().
GG ) = FG(5) =hFT G0 0).

In the general case, G~ is an isomorphism of Hilbert spaces between L2. onto L*(R), and
G is the inverse isomorphism, where LZ. denotes the absolutely continuous subspace of
L?*(R) associated with the operator H. Therefore, we have the analogue of Plancherel’s
formula:

(36) /gg 19/ de = [T,

The definition and properties of the scattering transform can be found in [1].
Now, in view of the scattering transform, ¥, , can be written:

B Ualnt) =200 Gy (@ np) e () )

where G, indicates that we take the scattering transform with respect to p;. Then, using
(36), we compute:

Trpg(f) = / Wy (2, 1) 2
R

2

= (27rh)2/Rgp1 {‘I’h(pojpl)exp <—w>]@) dx
= QWﬁ/R P, (g0, 1) exp (—W) del

— 2k / (o, p1) | dpr -
R
11



Therefore, the density matrix pg, 4, (-, -, t) is of trace unity if and only if the wave-packet
function ®; satisfies the normalization condition

(38) 27rﬁ/ |®u(p,q)|” dg =1,
R

which we shall assume satisfied from now on. We note that this normalization condition
allows to define the probability density Py(p,q) dq according to

(39) Py(p, q) dg = 2th | ®4(p, q)|” dg .

We also complete the definition of the Gaussian wave-packet (29) by giving the ex-
pression of the normalizing constant, which, according to (38) must be equal to C; =
((2m ) 2 )

Now, we recall that () is an open quantum system where the statistics of incoming
particles is described by two distribution functions g,(p,t) (p > 0) and g,(p,t) (p < 0).
For simplicity, we define the boundary data g according to:

(40) g(p,t) = go(p,t) forp>0 and g(p,t) = g(p,t) for p <0;

We postulate that the state of the quantum region () is formed by the superposition of
the elementary density matrices pg, 4, weighted by the statistics of incoming particles
9(qo, to). We therefore reproduce formula (8) and define the density matrix in @ by the

formula:

(41) p(l’,l‘l, t) - / @9(%;%) pqo,to(xax,at) dtO qu
Rz M =
= [0 g0, 10) @, 0) (a0 v 0) T )

cexp (=t = )(El0) — £(a) ) dodandas das

This defines how the state of the quantum region () is computed as a function of the
inflow statistics g, and ¢,. Now, we turn to the classical distribution function f in the
region C. Of course, it is understood that the inflow statistics for the quantum region @)
coincides with the outgoing trace of f ie. relation (6) is still valid:

(42) 9o(p,t) = fla,p,t), p>0 ;5 gyp,t)=f(b,pt), p<O,

The problem is now to find the analogue of relation (7). Again, we take our inspiration
from the classical case and more precisely, from the reflection-transmission boundary
condition for f as given by (16) and (17). To use this relation in the quantum-classical
coupling case, it is tempting to just replace the classical reflection-transmission coeffi-
cients and time delays by the quantum ones. However, this procedure is not current-
conservative (see section 5). Furthermore, it does not take into account the fact that the
quantum delocalization of a particle into a wave-packet mixes states of different momenta

(or different energies).
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In the remainder of this section, we make the following simplifying hypothesis:
(43) ®n(p,q) =0, if p and ¢ have opposite signs.

Under this hypothesis, we specify the following reflection-transmission condition for f at
the interface between C and ):

49 lfapt) = / Pa(q,—p) Ra(~p) f(arq.t — 7h(—p)) |q]dg

q>0

+ / e o) Tullp)) s 1.t = 7 u(p)) lalda, p <0,

(45)  [plf (bupt) = / (0. —p) Bal=) £t~ () ol dy

+ /  Puapu(0) Talpulp) %L(mf(a,q,t — Apa))) lgldg, p>0,

In these formulae, P;(q,p) is the probability density defined by (39) and (Rp,T3),
(th, 7h) are the quantum reflection-transmission coefficients and time delays. Note that
Hypothesis (43) implies that P;(¢q,p) = 0 if p and ¢ have opposite signs. We also remark
that the quantum time delays for reflection and transmission are not equal. In the
classical formulae (16) and (17), only one of these times is relevant since, for a given value
of p, reflection and transmission never occur simultaneously. The probabilistic nature of
quantum mechanics however makes reflection and transmission occur simultaneously and
the associated time delays are different.

We now explain the physics behind these conditions. For instance, let us examine
(44), the discussion being obviously identical for (45). It expresses that the particles
going out of the quantum zone @) through a (i.e. with momentum p < 0) originate from
particles having entered ) at an earlier time, either through a (i.e. with momentum
—p > 0) or through b (i.e. with momentum py(p) < 0). However, the entering particles
are transformed into wave-packets as they cross the border of the ) region, by means
of 5. Each entering particle through say ¢ with momentum ¢ > 0 ’excites’ a quantum
wave of momentum —p > 0 according to the probability density Pi(q,—p). Therefore
the intensity of the wave entering at time £ with momentum —p > 0 per unit time is
proportional to

/OPh<q,—p>f<a,q,t> lg] dg.

Only the fraction R(—p) will be reflected back to a, theremaining part will be transmitted
to b. Furthermore, for the wave to ’arrive’ at a at time ¢, it needs to have entered ()
at time ¢ — 74(—p). Collecting all these remarks leads to the flux of particles exiting @
through a at time ¢, originating from particles having entered @) through the same point,
hence the first integral. The same analysis is valid for the second integral considering

waves entering into () through b and transmitted to a. Simply, the change of p to p,(p) (if
13



Vi, # V4) has to be taken into account. The ratio p/p,(p) takes into account the change
of volume in momentum space in the map p — py(p).

Conditions (44), (45) maintain the positivity (i.e. if the outgoing distribution is pos-
itive, the incoming one is also positive). Note however that the Gaussian wave-packet
(29) does not satisfy Hypothesis (43). It is worth mentioning that quantum time delays
may be non positive. Analytical computations for specially unsmooth potentials like
delta potentials indicate that time delays may become negative [24]. Nevertheless, for
smooth enough potentials, we shall assume that time delays are positive, otherwise the
well-posedness of the kinetic problem in C' would not be guaranteed.

To summarize our coupling methodology, we first solve the self-contained problem (1)
with the reflection-transmission boundary conditions (44) and (45) for f in the classical
region C' (provided that the quantum time delays are positive). Then, once f and its
boundary values f(a,p,t) (for p > 0), f(b,p,t) (for p < 0) are known, we construct the
density matrix in the quantum region ) according to (41) where g is given by (40) and
(42).

2.4. Classical-quantum coupling: summary of results. We now outline how we
can give a rigorous foundation to the above described coupling methodology. The main
tool we will use is the Wigner transform [25]. The Wigner transform of the density matrix
(41) is defined according to:

1
Wh(Lp,t) = %/

R

- h h
e p (:E — 57 + 57],75) dn .

Since the wave-packets W, , are solutions of the Schrédinger equation (31), W' is a
solution of the Wigner equation

@wm+%@wﬂ+%Wwwzo,

where the pseudo-differential operator 65 is given by
VaRt el ie i v —11yh
OnVIW? (@,p) = =5 | "Pop[V](w, ) 7, Wz, )
R
with
- V(e +5n) = V(e —3n)
6h[V](x7 77) = 2 7 : )
and ! denotes the inverse Fourier transform (34).
In the remainder of the paper, our goal is to prove that, in the semiclassical limit
h— 0, W" converges to a solution g = g(z,p,t) of the Vlasov equation (5) in @ with the
inflow boundary conditions (6) at a and b, namely:

(46) g(aapa t) :ga( 7t)7 p >0 ) g(bapat) = gb(pat)a p< 0.

More precisely, we shall prove:

14



Formal Theorem. Assuming that @5 is real, we introduce Ay according to:

B B
(47) Aﬂn%qﬁz2ﬂm%<nq+§d>¢n0%q—§d>-

We note that
(48) Ah(p>QJ0) :27Th|(1)h (pJQ)|2:Ph( 7Q)7 /Aﬁ(paqao) dq:]-
R
We assume additionally that Aj, satisfies:
(49) lim Ay(p.q,q') = 6(p— q).
h—0
Then W formally converges as h — 0 towards g, the solution of
0,9+ 20,9+ e%apg =0,
gla,p,t) = gu(p;t),  p>0,
Ug(b.p.t) = a(p.t),  p<0.
Moreover we have asymptotically
(50) Wh(aa _pat) = Rﬁ(p)Wh(aa b, t— 7_}’%1 (p)) +Th(_p)Wh(b7 b, t— T?’(_p))a
p>0,
(51) Wh(ba _pat) = Rﬁ(p)Wh(b,p,t - Tlg(p)) —{—Th(—p)Wh(a, b, t— T?‘(_p))a
p<0,

where Ry(p), Th(p) are the reflection-transmission coefficients (25) and T(p), T(p) are
the time delays (30).

Condition (49) guarantees that, in the semi-classical limit, the wave-packet gets more
and more localized in both position and momentum. For instance, in the case of the
Gaussian wave-packet (29), we have

1 (r— 9’ e
A " = Vil VPN
n(p,¢,q") omor P g, eP
Therefore, condition (49) is fulfilled as soon as we simultaneously have:
2

orn— 0 and h——)O as h—0.
Onh

For instance, 0, = O (h) as i — 0 is convenient.

This formal’ theorem justifies our methodology in that the Wigner transformed density
matrix (41) converges in the semi-classical limit towards the solution of the inflow bound-
ary value problem for the Vlasov equation in the region (). In particular, as A — 0, the
trace of the Wigner function at the boundary 0@ satisfies the dual reflection-transmission
problem to that imposed to the classical distribution function f. Indeed, substituting

fla,p,t) to Wh(a,—p,t) and similarly at point b transforms (50), (51) into (16), (17).
15



Therefore, our definition of the density matrix seems established on a solid basis, in spite
of the arbitrariness of the wave-packet function @,

The remainder of the paper is organized as follows. Section 3 develops the proof of
theorem 2.4 in the case V, = V}. Then, in section 4, the extension of the result to the
case V, # V, will be outlined. In section 5, we prove that the reflection-transmission
conditions (44), (45) satisfy the time-integrated current conservation principle. Finally,
in section 6, we specialize to the stationary state in order to bridge the gap with earlier
work of one of the authors [4].

3. PROOF OF THEOREM 2.4 IN THE CASE V, =1}

3.1. Preliminaries. First, we introduce some notations. We shall need to distinguish
between the density matrices p(® and p®) of electrons injected at the boundaries a and
b respectively:

a qo _
0 o) = [ da [ it gt W 1) T,
R R
q e —
5 ) = [ dn [ ) W o) T ()
so that p = p@ + p®. We also decompose W =W + W} with
1 : h h

4 h t)=— [ emp@d (5 = —n,t) dn.
(5 ) Wa,b(xvl)? ) QW/RG p T 27]7$+ 2777 Ui

The major part of the computation concerns boundary conditions. Indeed, let 6(z,p,t)
be a test function in D(R, x R, x R;). We have the following identity obtained by a
simple integration by parts.

dV
/ 0 {&W"HL ﬂaIWh +e—apwﬁ] dzdp dt = ]gl — jg _ ]glﬁ
(zp:t)Elab]x R2 m dz
where

Iy = W |00 + — 0.0 + e——0p0 | dadpdt,
(z,p,t)E [a,b]x R2 m dx

= Lowptywhs p.t) dpdt,

R M

I =/ L g(a, p. yW"(a,p,t) dp dt .
RrR2 M

Standard results on semi-classical limits (see e.g. [17, 15, 14, 18 19] etc.) allow to
perform the i — 0 limit in the interior of the interval [a,b], so that:
(55) %%f@+ﬁ—¢:m

In particular, we have:
16



Lemma 3.1.

h—0

(56) nmﬁfi/ gkﬂ+£@ﬁ+;y@0dmmﬁ
(z,p,t) €[ab]xR? m dxr

Next we need to calculate the i — 0 limit of the left boundary term I”. The right
boundary term IZ can be treated analogously. To this aim, we introduce

(57) Ulp.1) = 1-0(a.p,1).

and we remark that U(0,t) =0 for all £ € R. We compute:

I = /U(p,t)Wh(a,p,t)dpdt
R2

— [ Ub.oWiap )y dpdt+ [ UOWap ) dod,
R2 R2

where W and W/ are defined at (54). Let us denote by J" the first integral and K" the
second one. We have:

HZ/anW@nw@m

1 i _ h
(58) =5 dp dndtodt/ dqoel"”U(p,t)@ga(qm t0)Wqo.to(@ + =1, 1) X
T Jpa R+ m 2
h
X Wyt (@ — En,t).
On the other hand we have
- h h
\Ilqo,to(a + 57],15) \IIQO,to (a - 5777 t)
h h
(59) = [ Pu(q, ¢1)Pnr(g0,q2)0,, | a+ 37 e, | @ — 31 %
R2
2 9
X exp {iq;mgg (t — to)] dq1 dqa.

Before analyzing (58), we claim that the behavior of the right hand side of (59) as i
tends to zero is left unchanged if we replace the integration set by R? .

h h
\IJCIO,to(a + 5777 t) Wgo,to (a - 5777 t)

(60) =~ /R ®1(go, q1)®n(qo, g2)ban <a + §n> Ve (a — gn> x

2
+

2 2
)

X e 1
P [ 2mh

(t — to):| dql dQQ
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This is a consequence of the fact that the wave packet “is peaked” around ¢, and ¢ is
positive. This claim can be rigorously proven by applying the dominated convergence
theorem and will be developed in [6].

3.2. First approximation: using the asymptotics of 1), in the neighborhood of
the boundary. A simple rescaling of the Schrédinger equation (19) leads to:

h - q - q
(61) lim ( + 577) — - A(q)e =0 forg >0,

uniformly with respect to n €] — oo, M| (Vv M > 0). In what follows, we shall forget
the subscripts i in the reflection-transmission coefficients and time-delays for clarity.
Replacing 1, (a + 2n) by €57 + A(g)e" in (59) leads to the following approximate
formula.

(62) Uooto <a+ gn, t> U i <a — %n,t> ~ 1y + L + 110, + IV,
where
(63) I = / P5(q0,01) Pr(qo, g2) €™ [qmﬂnezqim?@ ) dgy dgs,
R2
(64) Il = /]1@2 (g0, q1) Prlqo, ¢2) Alqr) Alge) e i3t ¢ e’ q2 (t to) dq dgo,

(a1—-99)
2

(65)  TII,— / (o, ) (g0, ) A(qr) 272 B 1) g g,
R

2_ 2
-92—41 .91 —9

(66) IV, = / Dn(q0,q1) Pn(qo, g2) A(g2) e 2 e’ Smh (1t0) dq1 dgo,
R2

The first two terms correspond to the contributions of the two plane waves (corre-
sponding to ¢; and ¢») traveling in the same direction, while the last two ones correspond
to contributions of opposite traveling waves. We shall see later on that, because of the
assumption (49) on the wave-packet function @, the last two integrals have vanishing
h — 0 limits.

In order to compute these limits, we perform the change of variables

(ot e g-¢ B h h ¢ -4 yz
(67) (zay) - < 92 ) i > ) (Q1;Q2) - (Z+ 2y7 < 2y)7 IYmh - m )

18



n (63)-(66). Introducing Ay, according to (47), this leads to:

(68) h=5- / An(go, 2 ) € =7 010) 4z dy,
h h izn 1¥E(t—to)
h = 5= r\qo, 5 m )
(69) I An(qo, 2, y) Az + 2y)A( 2y) e“"e ) dz dy
1 7 B iyhm i (o)
h = n\do, %, z = € € m z )
(70) 111 5 Ag( y) A(z+ 2y) i ) dz dy
i
1 B ighn v (tt0)
h— r\q0; % Z— = € € m VA .
(71) W= o [ Aalgo 2 y) Alz—Zy) e °Vdz dy
T

We deduce from (58) that

1 i q
Jh~ o / e"U(p,t) EO 9a(qos to) [(Tn +1n + 11, +IV4) (qo, to,m, )] dp dn dty dt dgq.

We first integrate with respect to p. This gives
(72)  J'= /fp (m, ) L Ga(qo, to) [(In + n + Ix+ IVs)(qo, to, n,t)] dgo dto dndt .

3.3. Second approximation: using the asymptotics of the reflection amplitude.
Let us now work on II;. We first recall that the reflection coefficient R and the phase S

of the reflection amplitude are given by:
Z-SR(/:)

A(z) =/ R(z) e n .

We suppose that S is a smooth (at least differentiable) determination of the phase and
that it converges smoothly when i — 0. We then have:

A (z + gy> A (z — gy> = R(2)e =W 1 O(R),

where
, d
Sr(z) = ——Sr(2) .
dz
This finally leads to
1 . o -
I, ~ Q—/Ah(qo,z,y)R(z)emzeZSR(Z)yezyﬁ(ttO) dy dz.
7r

Now, going back to (72), we notice that ¢ appears in I, I1;, ITI;, IV, only through
complex exponentials. Therefore, by integrating first with respect to ¢, we obtain Fourier
transforms of U with respect to the time variable. We finally end up with the following
formulae:

JI =T, + 11, + 11T}, + 1V},
19



where

N

]:;7, = /f}),tU (na %) qaog (QO7t0)Ah(q07Z y) tO dy dz dtO qu dT],

N

IT}, = /7,tU (U;%) %Oga(qo,to)Ah(qo,z,y)R(z)ei"ze_islf%(z)ye_ifn_zto dy dz dtq dgo dn,
11, = /fp,tU (n,y—

z R\ ighy —is
Iv, = /f ,tU (7],%) q%ga(QO7t0)Ah(q07zay)A <Z_ 57’/) € yhne m t0 dde dto dqo d77,

™
)

i h . Lyz
) _Oga(qmtﬂ)Ah(qo, Z, y)A <Z + 5”) ezyﬁnefz m 0 dyd'ZdtO dQO d77;

3
3

where the integration domain is R except for the variable go where it is Ry.

3.4. Third approximation: using the assumption (49) on the wave-packets.
Formally, using (49) I}, converges in the sense of measures to:

b= [ A (1) 2 Fg (= L) e Lo dy e,

and the other terms are approx1mated by:

11, ~ —/Tth (B zftga (z ?jn—z) e R(z) e SR o dydzdn,

2 — h .
111}, ~ _ﬂ/}- U (7]7 %) 2F19q (z, %) A <Z+ —y) eV 1o dydz dn,
m ’ m m 2

where 1,., denotes the characteristic function of the set {z > 0}. The estimate for IV},
is similar as for III} .

Next, letting z fixed and integrating with respect to y leads, in view of the Parseval
identity, to:

I, :/ F,UM, 1) gu(z,t)e "Pdz dndt :/ U(z,t)gq(2,t) dtdz.
(z,mt)ERT X R2 (

z,t)ER+ xR

For II}, using the same computations, we get:
11}, ~ / U(—=2z,t) g, (z,t — Tr(2)) R(2) dt d=
(zt) Rt xR

where the reflection time delay 7x(2) is given by (30).
Next, we claim that III} tends to zero when i — 0. Indeed, integrating first with
respect to 7 in the formula for IIT}, gives

2 —z~ ([ h\
I, = % FU (—hy,%) 2 FiGa (Z, %) A <z—i— §y> dydz .
(z,y)eRt xR
20



m

m h—0
since U(0,t) = 0. Since FU, F,g, are smooth and sufficiently decaying at oo, the
dominated convergence theorem implies limy o III}, = 0. Therefore it follows that

si= [ UoWiap) doat
R2

~ / U, £)ga(p, 1) dp di + / U (=p, 1)ga(ps t —7(p)) R(p) dp i .
(pt)ERT xR

(p,t)ERT xR

Proceeding analogously for KZL‘, we find:

K;Z:/ Ulp, YW/ (a,p,t)dpdt
R2

~ / T, )a(p,t — 7(p)) dp .
(p,t)eER~ xR

where the transmission time delay 77(z) is given by (30). This leads to the following
asymptotic formulee, restoring the dependence with respect to h:

Whia,p.t) = ga(p,t) 5 Wia, —p.t) = Ru(p) du(pst — TH(D)),

(73)  Wl(a,p.t) =0 ;. Wia, =p,t) = Tu(=p) ga(=p,t — 7(-D)),
for p > 0.

Analogously, we have the following asymptotic formulae
th(bapat) = gb( 7t) ) Wl?(ba _pat) :Rh(p)gb(pat_Tlg(p))a

Wf(bapat) =0 ) Wah(b7 _pat) = Th(_p) ga(_p; t— TT’}(_p))a
for p < 0.

Summing the asymptotic formulae for W» and W}, we obtain relations (50) and (51),
which concludes the proof of theorem 2.4 in the case V, = V. ]

4. THE CASE Vi # Vb

In this section, we briefly describe how the proof should be adapted to the case V,, # V}.
The asymptotic analysis of J? is unchanged while that of K needs to be adapted. We
recall that

K = / Up, )W) (a,p.t) dp dt,
R2

and is given by (58) in which g, is replaced by g, and the integration domain of the
variable ¢ is R_. Besides, we can use (60) in which the integration domain is R? for

exactly the same reasons as those developed in the case V, = V}. Note that the phase
21



factor z‘“ e +(t — to) is left unchanged since the energy £(q;) and £(gz) are shifted by the
same amount ¢1 and ¢, having the same sign.

Next, we claim that the contribution of terms for which p,(q1) (or p,(g2)) are imaginary
is exponentially small as stated in Lemma B.3 of [4] (again a rigorous proof developed in
[6] relies on the dominated convergence theorem). Now, using the asymptotic expansion

Pa (9)
2

Yylat T) = Blg)e™

leads to the asymptotic approximation (an analogue of (72)):

T+ O(h)

/fp (n,t gv(qo, to) In(qo, to,n,t) dgodto dndt,
where the integration domain is R for all variables except for ¢o where it is R_. The term
I, is given by
1 — h
Ih :2_ Ah(QOazay) B(Z+_y)B(Z_

-Pa (Z+%y)+Pa(Z— 51'9)

ye " 2 et (1) 7 dy,

h
2

where

h h
R, ={(2y) €R st (£ 59)<0, pulz £
Using the asymptotics of the transmission amplitude in the same way as in section 3.3,

we find the asymptotic expression for Ij

Ip ~ / / An(qo, 2, y)T(2) L i@y i T b)) dy .
€R <0, s.t. pa pa(z)

y) € R}

This leads to

K 2/ / FU(,t) gy (2,6 — 7r(2))T'(2) 2 _emimale) g, dndt.
<0, s.t. pq (2)ER J (t,n)ER2 pa( )

Letting 2z’ = p,(z) which yields z = p,(2') and zdz = z'dZ, we obtain:

Kﬁz/m FoU(n, go(po("), t = Tr(po(2))T (po(2))e ¥ dz" dndt.
(2 t,mER-_xR2

The integration domain in 2’ is R_ because

o if V, <V, the set {z < 0, pq(2) € R} is nothing but (—oo, —\/2me(V, —V3)),
which leads to R after the change of variable 2’ = p,(z)

e if V, > Vj, then {2 <0, p,(2) € R} =R_ and the integration interval in 2’ should
be (—oo, —v/2me(V, — V;)). Integrating on the whole half line R does not change
the result since T'(py(2')) = 0 whenever 2 € (—/2me(V, — V;),0).

Finally, making use of the reciprocity identities

T(py(p)) = T(—p), 227T (m(p)) = 7 (=p)



as well as the Parseval identity, we obtain

Ko~ [ TR OTCR) aplp) = () dp

which is the desired asymptotic result.

5. TIME-INTEGRATED CURRENT CONSERVATION

In this section, we go back to the coupling methodology defined by equations (41)-
(45). An important criterion for the validity of the coupling methodology is that it
is current conservative, i.e. that there is no net creation or destruction of particles.
Here, we show that our coupling approach is current conservative, in a time-integrated
form. Instantaneous current conservation cannot be obtained because it would violate
the time-energy uncertainty principle. Indeed, the quantum wave-packet description of
a particle implies a certain time delocalization (which is at least equal to % over the
energy delocalization). Therefore, it is not possible to a priori know how much of a given
wave-packet has crossed the border between the C' and @ region (or vice-versa) at a given
time. However, we must be certain that, once an infinite time has elapsed, the whole
wave-packet has crossed the border, hence a current conservation in time-integrated form.

Let us denote by Jo(a,t) and Jg(a,t) the classical and quantum currents flowing
through point a at time ¢. They are respectively defined by:

h ap
_ _ Cx -
(74) Jo(a,t) = m\s <8x (a, a,t))
=P 0l ) S [T (0, )W (0, )] dgodte
rR2 T —
(75) Jo(a,t) = / (a,p,t)dp,
R

with g defined by (40) and (42). Then:

Lemma 5.1. Under Hypothesis (43), we have:

(76) [RJQ(a,t)dt:/RJc(a, t)dt , 4JQ(b7t)dt:/RJC(bjt)dt.

Proof : We prove the first relation (76). The proof of the second one obviously follows

the same method. We start with the computation of Jg(a, t). Inserting formula (28) in
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(74) and performing the change of variables ¢; = z + 2y, ¢o = z — Ly, we get:

J (a,t)dt =

%{ /|qo|ftg qo, )Ah(qo z y)¢z+§y(a)¢;,gy(a) eimt dtdzddeO}

I
&

{2;Tn—h/|q—,;||th(quO)Ah(QO,z,o) Z(a)l/)lz(a)dqodz}

Since,

(@) = 7 (1= R(z) = 3T() (>0 ;S @a)l(@) = T(z) (= <0),
we deduce, with (48):

/ Jo (a,t)dt = q—OTﬁ(QO) Ftﬂ(%a 0) dqo
R m

L T(p) g, ) dp t,

2

S—

where

(77) Tu(p) = / Pup,2) To(2)dz, Ra(p) = / Po(p, ) Bul2) d
Now, we turn to the computation of Jo(a,t). Introducing

(78) F(z,p) / f(z,p.t)dt,

We have, with (44), (45), and dropping the indices i for simplicity:

(79) léh@ﬁﬁ=/NMHmm—ﬂmﬂM@

:/p>opF(a’p) ap - {/p>0/q>op(q=19) R(p) F(a,q) lq|dgdp

'%Z;médf”%‘p*m>TVm4p»Efawwaqnﬂdmm}

By exchanging the p and ¢ variables in the integrals inside the curly brackets, we are led
to:

0 [ e[ prens- [ renl([ oo rea)a
_/p<0 F(b, p) ol (/MP(p, _pb(Q))T(—pb(q))Z%dq> dp.
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Now, we have, using the normalization condition (38) together with relation (26):

1—/>0P( ,q)R(q)dqz/ P(p,q) T(q)dq=T(p), p>0,

g>0

/ OP(p, —py(0)) T(—py(q)) — )dq =/ OP(p, —q)T(—q) dg=T(p), p <0,
and therefore, (80) leads to:
[ etatyde = [ piTw) Flapydo = [ 19T ) F(bp)db.

p<0

But, with (78) and the fact that the outgoing trace of f coincides with the incoming
trace of g (see equ. (42)), we deduce that

/RJC(a,t)dt:/ T(p)g(p,t)pdp:/RJQ(a, Pt

R2

which completes the proof. ]

6. CLASSICAL-QUANTUM COUPLING IN THE STATIONARY CASE

In the present section, we specialize our method for the stationary case in order to
bridge the gap with previous work [4]. We first state the:

Lemma 6.1. Assume that the function g does not depend on time and that Hypothesis
(43) holds true. Then the density matriz p defined by (41) does not depend on time and
s giwen by

(81) plase’) = [ Gl d
with
(82) 9(p) = 2Wﬁ/ﬂ§%l@h(q,p)l2g@ dq = /RP(q,p) %g(q)dq-

In a previous work, one of the authors [4] proposed a method for the stationary case
based on (81) with ¢ instead of §. We have seen that, given the conditions (49) on
®p(q, p), ¢ is close to g in the limit & — 0. Therefore, these two constructions are
consistent. B
Proof : Performing the changes of variables ¢, =ty — t and (¢, ¢) — (z,y) (defined by
(67)) in the expression (41) (in which g is now independent of ¢), we obtain

p(l‘,l‘l,t) = 21_7_‘_/|,(r]n—0|g(QO) Aﬁ(qo, Z,y) ¢z+%y($) wz_gy(wl) X

X exp (itl y_z> dt, dqy dy dz ,
m
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which ensures that p does not depend on time. The integrations with respect to ¢; and
y are respectively performed and lead to:

o) = [ % o(0) Plao, 2) - (&) D (@) dao d=

- /ﬁ(Z) Ya(@) ¥ (a")dz,

which leads to the result. I
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