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Abstract. The focus of this work is to create benchmark simulations of de-

cay rates to statistical equilibrium in transport plasma models for Coulomb

particle interactions given by a coupled Vlasov-Poisson Fokker-Planck-Landau
equation, as well as with Maxwell type and hard sphere interactions. The

qualitative decay to the equilibrium Maxwell-Boltzmann distribution through

relative entropy is studied in detail for all three types of particle interactions
by means of a conservative hybrid spectral and discontinuous Galerkin scheme

adapted from previous work. More precisely, the Coulomb case shows that
there is a degenerate spectrum, with a decay rate close to the law of two thirds

predicted by upper estimates in a work of Strain and Guo in 2006, while the

Maxwell type and hard sphere examples both exhibit a spectral gap as pre-
dicted by Desvillettes and Villani in 2000. Such decay rate behavior indicates

that the analytical estimates for the Coulomb case is sharp while, still to this

date, there is no analytical proof of sharp degenerate spectral behaviour for
the Fokker-Planck-Landau operator.

Simulations are presented, both for the space-homogeneous case of just

particle potential interactions and the space-inhomogeneous case for the mean
field coupling through the Poisson equation for total charges in periodic do-

mains. New explicit derivations of spectral collisional weights are presented in

the case of Maxwell type and hard sphere interactions and the stability of all
three scenarios, including Coulomb interactions, is investigated.

Kewords: Fokker-Planck-Landau Type Equations, Vlasov-Poisson Equa-
tion, Boltzmann Equation, Mean Field Limit - Numerical Schemes, Conservat-

ive Spectral Methods, Equilibrium Decay Rate, Entropy Decay.

1. Introduction

An important model for plasmas is the Landau equation, which results from
the grazing collision limit of the Boltzmann equation. This limit, first derived by
Landau [21], assumes that colliding particles are travelling almost parallel to each
other due to repulsive Coulomb forces.

A more mathematical description of the limit was detailed by Degond and Lucquin-
Desreux [9], Desvillettes [10, 11], Villani [29] and Desvillettes and Villani [12], even
for extended potential rates higher than Coulomb interactions and up to hard
spheres. When rates different to Coulomb interactions are used, the equation is
referred to as being of Fokker-Planck-Landau type. Computationally, the limit-
ing problem has been studied by Bobylev and Potapenko [7], using Monte Carlo
methods, and in Fourier space by Haack and Gamba [19, 20].

The Landau equation is rather difficult to model, either analytically or numeric-
ally, due to the high dimensionality, non-linearity and non-locality. For numerical
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simulations, a deterministic scheme can be used, such as the conservative spec-
tral method, developed by Zhang and Gamba [30], which is the model of choice
for the current work. The method described in [30] is in fact a solver for the
space-inhomogeneous Landau equation, coupled to Poisson’s equation, where the
advection is modeled by a discontinuous Galerkin scheme. Some results for the
space-homogeneous version of the equation have already been described by the
present authors [25].

The current work improves upon the results of [25] and extends them to the
space-inhomogeneous case. This produces benchmark computations of accurate
dynamics for long time approximations to the Maxwell-Boltzmann equilibrium dis-
tribution determined by moments of the initial state. As in [25], the calculations
are also included for Fokker-Planck-Landau type equations associated to Maxwell
type interactions and hard spheres, expanding upon the previous work of [30].

The version of the spectral method in this work exploits the weak form of the
Landau equation in order to calculate the Fourier transform of the collision operator.
It does so in just O(N3 logN) operations, where the number of Fourier modes N in
each velocity dimension can be small, thanks to the conservation enforcement with
just a further O(N3) operations. For computational purposes, a cut-off domain
in velocity space is used, within which the majority of the solution’s mass should
be supported, based on a result by Gamba et al. [17] for the Boltzmann equation.
This general construction of a spectral method was first applied to the Boltzmann
equation by Gamba and Tharkabhushaman [18] and further details for the derivation
of the Landau equation scheme can be found in Zhang and Gamba [30].

Spectral methods as an approximating model for the space-homogeneous Landau
equation were first considered by Pareschi et al. [23], and later by Filbet and
Pareschi[13] and Crouseilles and Filbet [8], but did not preserve the conservation
properties of the Landau equation. The lack of enforcing a conservation correction
by minimization distance enforcing the collision invariants associate to the Landau
operator limited the ability of these schemes to compute accurate dynamics for long
time approximations to the Maxwell-Boltzmann equilibrium , either in the scalar
setting or in a system of multicomponent plasmas. In fact, the work of [20] have
shown the numerical conservation in the space homogeneous form of Landau equa-
tion as a limit of the grazing collisions, both simulated by a conservative spectral
scheme, for fairly . More recently the work Zhang and Gamba [30, Section 7.1.2],
inspired in the implementation of the conservative spectral methods for a system
of Boltzmann equations in Munafo, Haack, Gamba, and Magin, [3], has shown that
a system of Landau equations whose temperature evolution solution matches the
explicit example of a system for electro-neutral hydrogen plasma [6]. Such numer-
ical verification of matching the approximate and analytical solutions would not
be possible if the spectral scheme does not conserve the system collision invariants
corresponding to the total energy.

A particular attraction to our current method is its ability to yield the correct
decay of entropy up to 400 time units, both in the space homogeneous case and in
the one physical space and three velocity dimensional space inhomogeneous Landau
flow model. The conservation enforcement is essential in the proof of convergence
of the spectral method by rigorous analysis of semi-discrete error estimates for the
conservative spectral scheme applied to the Boltzmann equation [5] and the same is
true for Fokker-Planck-Landau type equations [26]. The entropy decay rate is also
a consequence of this fact. A recent manuscript by Carrillo, Hu, Wang and Wu [4]
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proposes a particle method for the evolution of the homogeneous Landau equation.
However the conservation of energy fails for 500 time steps for five units of time,
while our scheme preserves the conservation of energy passed 40.000 times steps for
400 times units of times, and arrives to the a neighborhood of equilibrium in 20

units of time whose with the time rate of ekt
2/3

as analytically predicted in [28].
To the best of the authors’ knowledge, this is the first time that the relative

entropy convergence rate of two thirds, proven analytically by Strain and Guo [28],
has been seen through a numerical approximation of the relative entropy. It further
shows that the upper bound analytically calculated in [28] is very sharp. This sharp
numerical output can play a role in the validation and verification of a numerical
scheme for the Landau equation.

The computational scheme has been parallelized and the computational efficiency
is fully discussed in Section 6.

Finally, it should also be mentioned that work has been undertaken by the cur-
rent authors to produce L2 error estimates for the approximations produced by this
numerical scheme by the authors in [26]. In particular, a proof has been constructed
to show that the conservative spectral method for Fokker-Planck-Landau type equa-
tions associated to hard potentials has a unique solution with moments, L2-norm
and even L2-norm of its derivatives remaining bounded for all time, under certain
conditions. This then allows the estimate to be produced which shows that the
approximation does indeed converge to the true solution in L2-norm and that, as
time increases, also converges to the correct equilibrium Maxwellian distribution as-
sociated to the initial data. This is the first time that asemi-discrete error estimate
has been produced for any numerical method which approximates Fokker-Planck-
Landau type equations associated to any range of potentials and complements the
numerical evidence produced here.

The layout of this work is as follows. First, the set up of the problem is de-
scribed in Section 2, along with any required definitions. The expressions for the
Fourier transform of the Fokker-Planck-Landau type operators corresponding to
Coulomb, Maxwell type and hard sphere interactions are derived in Section 3 and
the stability results given in Section 5. Finally, Section 6 contains the numerical
results. In that section, the correct decay rate to equilibrium is demonstrated for
the space-homogeneous problem associated to Coulomb, Maxwell type and hard
sphere interactions, as well as the space-inhomogeneous Landau equation. All work
here is part of a PhD thesis by the first author, under advisorship of the second.

2. Description of Problem

2.1. Fokker-Planck-Landau Type Equations. A space-inhomogeneous Fokker-
Planck-Landau type equation for the probability density function (pdf) f(t, x,v),
where (t, x,v) ∈ (R+,Ωx,R3), with Ωx ⊆ R, is of the form

ft(t, x,v) + v · ∇xf(t, x,v)−E(t, x) · ∇vf(t, x,v) =
1

ε
Q(f, f)(t, x,v), (2.1)

where ε is the Knudsen number and Q(f, f) is the collision operator given by

Q(f, f) = ∇v ·
ˆ
R3

S(v − v∗)(f∗∇vf − f∇v∗f∗) dv∗,

for S(u) = |u|λ+2

(
I− uu

T

|u|2

)
,
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with −3 ≤ λ ≤ 1, I ∈ R3×3 the identity matrix and the subscript notation f∗
meaning evaluation at v∗ (the velocity of a colliding particle). In general, λ > 0
corresponds to hard potentials and λ < 0 to soft potentials. More precisely, λ = 1
models hard sphere interactions; λ = 0 is known as a Maxwell type interaction; and
λ = −3 models Coulomb interactions between particles.

In addition, E is the electric field found by solving Poisson’s equation, namely

E(t, x) = −∇xΦ(t, x),

where Φ is the potential solved from

−∆xΦ(t, x) = 1−
ˆ
R3

f(t, x,v) dv. (2.2)

Note that the right-hand side of (2.2) is the density of positively charged ions
(assumed here to be a constant background density) minus the density of electrons
(due to the negative charge). Also, in this context where v is a vector but x is a
scalar, E(t, x) = (E(t, x), 0, 0) and the gradient in x is treated as ∇x =

(
∂
∂x , 0, 0

)
.

In the current work, boundary conditions for both the Fokker-Planck-Landau
type and Poisson equations are taken as periodic in space. Furthermore, since
the Poisson equation is an ordinary differential equation for any given t ≥ 0 with
periodic boundary conditions, if Ωx = [0, Lx] then it has explicit solution given by

Φ(t, x) =

ˆ x

0

ˆ s

0

ˆ
R3

f(t, z,v) dvdzds− 1

2
x2 − CEx+ Φ(t, 0),

where CE = −1

2
Lx +

1

Lx

ˆ Lx

0

ˆ s

0

ˆ
R3

f(t, z,v) dvdzds.

The potential Φ is never explicitly used, however, and it is in fact the derivative
that is more relevant for the Landau equation. For this reason, the value of Φ(t, 0)
is irrelevant and is chosen as Φ(t, 0) = 0 for convenience.

It should also be noted here that the space-homogeneous version of the Fokker-
Planck-Landau type equation (2.1) is simply to find the pdf f(t,v), where (t,v) ∈
(R+,R3), such that

ft(t,v) =
1

ε
Q(f, f)(t,v). (2.3)

2.2. Properties of Fokker-Planck-Landau Type Equations. Since Fokker-
Planck-Landau type equations are a limit of the Boltzmann equation, they en-
joy the same conservation laws. In particular, for the set of collision invariants
{φk(v)}4k=0 =

{
1, v1, v2, v3, |v|2

}
,

ˆ
R3

Q(f, f)(v)φk(v) dv = 0, for k = 0, 1, . . . , 4. (2.4)

This is important because it leads to the conservation of mass ρ, average velocity
V and total energy T tot, where each of these quantities are found via

ρ =

ˆ
Ωx

ˆ
R3

f(t, x,v) dvdx, V =
1

ρ

ˆ
Ωx

ˆ
R3

f(t, x,v)v dvdx

and T tot(t) =
3

2
ρTK(t) + TE(t), (2.5)
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where TK =
1

3ρ

ˆ
Ωx

ˆ
R3

f(t, x,v)|v|2 dvdx and TE =
1

2

ˆ
Ωx

|Φ′(t, x)|2 dx

(2.6)

are the kinetic energy TK and the electric energy TE .
These moments will always be conserved for the single-species space- inhomo-

geneous Landau equation (2.1) when solved with appropriate boundary conditions
(including the periodic ones considered here). If the initial mass, average velocity
and total energy are denoted by ρ0, V0 and T tot0 , respectively, the equilibrium solu-
tion of the Landau equation is a Gaussian distribution with the same moments.
This is referred to as the equilibrium Maxwellian, denoted Meq, and is the specific
Maxwellian distribution with moments equal to those of the initial condition, given
by

Meq(x,v) =
ρ0

(2πTeq)
3
2

´ Lx
0

e
Φeq(x)

Teq dx
e

Φeq(x)

Teq e
− |v−V0|

2

2Teq , (2.7)

where Φeq is the equilibrium potential and Teq is such that usingMeq in expression
(2.5) returns T tot = T tot0 .

In the space-homogeneous setting there is no integration with respect to x to
evaluate the moments ρ, V and TK ; T tot = TK ; there is no field Φ; and the
equilibrium Maxwellian reduces to

Meq(v) =
ρ0

(2πT0)
3
2

e−
|v−V0|

2

2T0 , (2.8)

where T0 = TK(0).
The H-theorem also holds for Fokker-Planck-Landau type equations, which states

that the entropy decays throughout time. The entropy is defined as

H[f ](t) =

ˆ
Ωx

ˆ
R3

f ln(f) dvdx

and so the H-theorem gives that
d

dt
(H[f ]) ≤ 0.

At this point it is also useful to define the entropy relative to the equilibrium
Maxwellian Meq as

H[f |Meq](t) =

ˆ
Ωx

ˆ
R3

f ln(f) dvdx−
ˆ

Ωx

ˆ
R3

Meq ln(Meq) dvdx

=

ˆ
Ωx

ˆ
R3

f ln

(
f

Meq

)
dvdx. (2.9)

Again, in the space-homogeneous case, there is no integration with respect to x
when considering the entropy.

2.3. Choosing a Computational Domain. Initially f(0, x,v) = f0(x,v) and
it is assumed that suppf b Ωv, for some domain Ωv ⊂ R3, since f should have
sufficient decay in velocity-space [17] and Ωv is chosen depending on the initial
data (see [5], Section 2). In fact, v ∈ R3 but values of f are negligible outside
a sufficiently large ball. The initial data is then extended by zero outside the

computational domain, which means it can be controlled by e−c|v|
2

, for c > 0
depending on the moments of f0. Under such conditions, it is expected that the
computational solution will remain supported on Ωv up to a fixed small error that
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depends on the initial data (more details can be seen in the proof for the conservative
spectral method applied to the Boltzmann equation in [5]).

More precisely, assume that the support of f is in fact contained in BR(0),
for R > 0 large enough, and choose the approximate velocity domain as Ωv =
[−Lv, Lv]3, for Lv > R. Then, to match up with the required reciprocity relation
for the discrete Fourier transform that is used by the FFTW3 package [14] in the
code, there is a corresponding transformed Fourier space Ωξ. This is given by

Ωξ = [−Lξ, Lξ]3, for Lξ = Nπ
2Lv

when N Fourier modes are used in each dimension
of velocity.

2.4. Time Splitting. For computational purposes, the space-inhomogeneous Fokker-
Planck-Landau type equation (2.1) is broken down into two smaller problems in
a process known as time splitting. To describe this, let time be discretised by
tn = t0 + n∆t, for some time-step ∆t, and let fn(x,v) = f(tn, x,v). First, given
the solution fn, a collisionless advection problem is solved for g, namely

gt(t, x,v) + v · ∇xg(t, x,v)−E(t, x) · ∇vg(t, x,v) = 0, (2.10)

along with Poisson’s equation (2.2), with g(0, x,v) = fn(x,v). Then a space-

homogeneous collision problem is solved for f̃ at each x ∈ Ωx, namely

f̃t(t, x,v) =
1

ε
Q(f̃ , f̃)(t, x,v), (2.11)

with f̃(0, x,v) = g(∆t, x,v). Finally, the solution at time t = tn+1 is given by

fn+1(x,v) = f̃(∆t, x,v).

Equation (2.10) is solved by a discontinuous Galerkin (D.G.) method, with piece-
wise linear polynomials in x and piecewise quadratic polynomials in v, and third
order Runge-Kutta in time. Proofs of how the choice of quadratic basis functions
in velocity space ensure moment conservation at this stage are given in [30].

Then, equation (2.11) is solved by the conservative spectral method with fourth
order Runge-Kutta for time-stepping. Conservation is enforced by considering a
constrained minimisation problem, which will be described in Section 4. The spec-
tral method will be described in Section 3 and is extended from the Landau equation
with Coulomb interactions to Fokker-Planck-Landau type equations with Maxwell
type and hard sphere interactions.

3. The Fourier Transform of the Collision Operator

As is shown in [30], when the pdf f is supported in a ball of radius R > 0, the
Fourier transform of the collision operator Q is

Q̂(f̂ , f̂) (ξ) =

ˆ
Ωξ

f̂ (ξ − ω) f̂(ω)
(
ωT Ŝ (ω)ω − (ξ − ω)

T
Ŝ (ω) (ξ − ω)

)
dω,

(3.1)
for ξ ∈ Ωξ, the Fourier space domain described in the previous section, where

Ŝ (ω) = (2π)−
3
2

ˆ
BR(0)

S (u)e−iω·udu,

for S(u) = |u|λ+2

(
I− uu

T

|u|2

)
, with − 3 ≤ λ ≤ 1.
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This means that evaluating Q̂ is performed by a fast Fourier transform (F.F.T.)
of the pdf f and then a weighted convolution with itself. The F.F.T. requires
O(N3 logN) operations and multiplication by the weight and quadrature to cal-
culate the convolution requires O(N3) operations. The weights can also be pre-
computed and stored at the beginning of the code run, where the bulk of the
calculation is in evaluation of Ŝ. This has different forms depending on the value
of λ but the results are found through the same general method.

First, the entries of Ŝ can be decomposed as Ŝi,j(ω) = Ŝ1
i,j(ω) − Ŝ2

i,j(ω), for
i, j = 1, 2, 3, with

Ŝ1
i,j(ω) = (2π)−

3
2

ˆ
BR(0)

|u|λ+2δi,je
−iω·u du

and Ŝ2
i,j(ω) = (2π)−

3
2

ˆ
BR(0)

|u|λuiuje−iω·u du.

Then, for a given ω = (ω1, ω2, ω3), it should be noted that when j = i, there is only

one value of Ŝ1
i,i(ω), for each i = 1, 2, 3, and that Ŝ1

i,j(ω) = 0 when i 6= j (thanks
to the Kronecker delta). Also note that, for i = j,

Ŝ2
1,1(ω1, ω2, ω3) = Ŝ2

3,3(ω2, ω3, ω1) and Ŝ2
2,2(ω1, ω2, ω3) = Ŝ2

3,3(ω1, ω3, ω2)

and, for i 6= j,

Ŝ2
1,2(ω1, ω2, ω3) = Ŝ2

1,3(ω1, ω3, ω2) and Ŝ2
2,3(ω1, ω2, ω3) = Ŝ2

1,3(ω2, ω1, ω3).

The sub-diagonal entries are then also known since Ŝ is a symmetric matrix because
S is too. This means that only Ŝ1

1,1, Ŝ2
3,3 and Ŝ2

1,3 need to be calculated, the explicit
formulae for which are found to be, evaluated at ω such that |ω| 6= 0,

Ŝ1
1,1(ω) =



√
2

π

1

|ω|2
(

1− cos(R|ω|)
)
, when λ = −3,√

2

π

1

|ω|5
(
−(R|ω|)3 cos(R|ω|) + 3(R|ω|)2 sin(R|ω|)

+ 6(R|ω|) cos(R|ω|)− 6 sin(R|ω|)
)
, when λ = 0,√

2

π

1

|ω|6
(
−(R|ω|)4 cos(R|ω|) + 4(R|ω|)3 sin(R|ω|)

+ 12(R|ω|)2 cos(R|ω|)− 24(R|ω|) sin(R|ω|)

− 24 cos(R|ω|) + 24
)
, when λ = 1,
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Ŝ2
3,3(ω) =



√
2

π

1

|ω|4

((
ω2

1 + ω2
2

)R|ω| − sin(R|ω|)
R|ω|

− ω2
3

R|ω|+ (R|ω|) cos(R|ω|)− 2 sin(R|ω|)
R|ω|

)
,

when λ = −3,√
2

π

1

|ω|7

((
ω2

1 + ω2
2

)(
−(R|ω|)2 sin(R|ω|)− 3(R|ω|) cos(R|ω|)

+ 3 sin(R|ω|)
)

+ ω2
3

(
−(R|ω|)3 cos(R|ω|) + 5(R|ω|)2 sin(R|ω|)

+ 12(R|ω|) cos(R|ω|)− 12 sin(R|ω|)
))

,

when λ = 0,√
2

π

1

|ω|8

((
ω2

1 + ω2
2

)(
−(R|ω|)3 sin(R|ω|)− 4(R|ω|)2 cos(R|ω|)

+ 8(R|ω|) sin(R|ω|) + 8 cos(R|ω|)− 8
)

+ ω2
3

(
−(R|ω|)4 cos(R|ω|) + 6(R|ω|)3 sin(R|ω|)

+ 20(R|ω|)2 cos(R|ω|)− 40(R|ω|) sin(R|ω|)

− 40 cos(R|ω|) + 40
))

, when λ = 1

and

Ŝ2
1,3(ω) =



−
√

2

π

ω1ω3

|ω|4
2R|ω|+R|ω| cos(R|ω|)− 3 sin(R|ω|)

R|ω|
, when λ = −3,√

2

π

ω1ω3

|ω|7
(
−(R|ω|)3 cos(R|ω|) + 6(R|ω|)2 sin(R|ω|)

+ 15(R|ω|) cos(R|ω|)− 15 sin(R|ω|)
)
, when λ = 0,√

2

π

ω1ω3

|ω|8
(
−(R|ω|)4 cos(R|ω|) + 7(R|ω|)3 sin(R|ω|)

+ 24(R|ω|)2 cos(R|ω|)− 48(R|ω|) sin(R|ω|)

− 48 cos(R|ω|) + 48
)
, when λ = 1.

The details leading to these expressions can be found in appendix A. In addition, by
substituting ω = 0 into the integrands found in Ŝ1

1,1, Ŝ2
3,3 and Ŝ2

1,3 and evaluating
directly (noting that the exponential evaluated at ω = 0 is equal to one),

Ŝ1
1,1(0) =



√
1

2π
R2, when λ = −3,

2

5

√
1

2π
R5, when λ = 0,

1

3

√
1

2π
R6, when λ = 1,
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Ŝ2
3,3(0) =



1

3
√

2π
R2, when λ = −3,

2

15
√

2π
R5, when λ = 0,

1

9
√

2π
R6, when λ = 1

and Ŝ2
1,3(0) = 0, for all λ.

4. The Conservation Routine

Even though the approximated pdf f is assumed to have support inside BR(0),
the true solution does still take values outside this ball, albeit negligible. In general,
a larger choice of BR(0) and Ωξ will give a more accurate approximation to Q̂L,
and therefore Q, but some amount of error is unavoidable whenever truncating the
velocity domain and its associated Fourier domain. This is because any collision
operator defined on a truncated domain cannot hope to conserve moments of the
solution, since the property satisfied by the collision invariants is defined by integrals
over all of R3, as in expression (2.4). Conservation can be enforced, however, by
considering a constrained minimisation problem.

4.1. Conserving in Velocity Space. Given a collection of discrete values of the

collision operator Q resulting from the spectral method, say {Q̃n}N
3

n=1, a new set of

values {Qn}N
3

n=1 must be found which are as close as possible to the original values
in `2-norm but satisfy the discrete form of (2.4). This discrete form replaces the
integrals in (2.4) with quadrature sums and can be written as

N3∑
n=1

Qn(φk)nωn = 0, for k = 0, 1, . . . , 4,

where {(φk)n}4k=0 are evaluations of the collision invariants at the same discrete
point where Qn is evaluated and ωn is the corresponding quadrature weight for
that point. If the discrete values of Q are stored in the vector Q of length N3, this
discrete conservation can be written as

AQ = 0, where Ak,n = (φk−1)nωn, for k = 1, 2 . . . , 5, n = 1, 2, . . . N3. (4.1)

Then, given Q̃ = (Q̃1, Q̃2, . . . , Q̃N3), the least squares problem is to find the vector
Q = (Q1, Q2, . . . , QN3) of conserved evaluations of the collision operator which
solves

min
Q∈RN3

∣∣∣∣Q̃−Q∣∣∣∣2
`2

such that AQ = 0. (4.2)

This can then be solved as a 5-dimensional Lagrange multiplier problem by defining
the operator

L(Q,γ) =

N3∑
n=1

(
Q̃n −Qn

)2 − γTAQ.
By solving ∇Q = 0 for the Lagrange multiplier γ, the discrete values of the con-
served collision operator are found to be

Q = Λ(A)Q̃ where Λ(A) = I −AT (AAT )−1A. (4.3)

This means that the conservation is simply matrix-vector multiplication. The
details of the derivation of Λ(A) can be found in [18] and [30] for the Boltzmann
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and Landau equations, respectively, but it should be noted that Λ(A) is identical
for both equations. The full algorithm of the conservative spectral method for
solving the space-homogeneous Fokker-Planck-Landau type equation (2.11) when
conserving in velocity space is then given in Algorithm 1.

Algorithm 1 The conservative spectral method for solving the space-homogeneous
Fokker-Planck-Landau type equation (2.11) when conserving in velocity space

Precondition: F contains evaluations of f on the uniform velocity grid at a given
time-step tn

1: for each step in Runge-Kutta do
2: Calculate the F.F.T. of F and store the values in F̂ . O(N3 logN)

3: Calculate Q̂(F̂ ) at each point in the uniform Fourier space grid using identity

(3.1) and store the values in Q̂ . O(N3)

4: Calculate the I.F.F.T. of Q̂ and store the values in Q̃ . O(N3 logN)

5: Set Q = Λ(A)Q̂ as in (4.3), with A given in (4.1) . O(N3)
6: Perform the iteration of Runge-Kutta to update F . O(N3)

4.2. Conserving in Fourier Space. The method of conservation just described
is the one which is used in deriving error estimates for the spectral method for the
Boltzmann equation, as in [5], and in work currently undergo for Fokker-Planck-
Landau equations as well. In practice, however, for all simulations in Section 6,
conservation is actually enforced in Fourier space.

To describe the conservation in Fourier space, first consider the partial Fourier
series reconstruction of Q. If the velocity domain is Ωv = [−Lv, Lv]3, for large
enough Lv > 0 and the Fourier modes at which the F.F.T. is evaluated are denoted
by {ξn}n=1,2,...,N3

Q(f, f) ≈ (2π)
3
2

2Lv

N3∑
n=1

Q̂L(ξn)eiξn·v.

Then, using this approximation to Q in the integrals (2.4) which enforce conserva-
tion gives

ˆ
Ωv

(2π)
3
2

2Lv

 N3∑
n=1

Q̂L(ξn)

 eiξn·vφk(v) dv = 0, for k = 0, 1, . . . , d,

which is equivalent to

N3∑
n=1

(ˆ
Ωv

eiξn·vφk(v) dv

)
Q̂L(ξn) = 0, for k = 0, 1, . . . , d,

The left-hand side here is another matrix vector multiplication. So, if
˜̂
Q = (

˜̂
Q1,

˜̂
Q2, . . . ,

˜̂
QN3),

where
˜̂
Qn = Q̂L(ξ)n for n = 1, 2, . . . , N3, the least squares problem in Fourier space

is to find the vector Q̂ = (Q̂1, Q̂2, . . . , Q̂N3) which solves

min
Q̂∈RN3

∣∣∣∣ ˜̂Q− Q̂∣∣∣∣2
`2

such that CQ̂ = 0, (4.4)
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where C is the matrix with entries

Ck,n =

ˆ
Ωv

eiξn·vφk(v) dv, for k = 1, 2 . . . , d+ 2, n = 1, 2, . . . N3. (4.5)

This least squares problem (4.4) in Fourier space is the exact same form as the
least squares problem (4.2) in velocity space, but with the matrix C instead of A.

This means that it has the same solution Q̂ = Λ(C)
˜̂
Q, for the same operator Λ in

(4.1), but evaluated with the matrix C.
A couple of things should be mentioned here. First, since the conservation is

enforced in Fourier space, the I.F.F.T. must then be taken of the conserved vector
Q̂ to obtain Q. This means that there may be a tiny amount of conservation lost in
during the inverse Fourier transform. On the other hand, the least squares problem
for conserving in velocity space involved the quadrature matrix A. This means that
conservation in velocity space will always have some error as well, resulting from
the choice of quadrature. The values of the integrals in the matrix C actually have
explicit values which can be calculated by hand, as shown in [30]. In practice, there
seems to be less of an error resulting from I.F.F.T. after conserving in Fourier space
than there would be from conserving in velocity space using the quadrature matrix
A.

The full algorithm of the conservative spectral method for solving the space-
homogeneous Fokker-Planck-Landau type equation (2.11) when conserving in Four-
ier space is then given in Algorithm 2. Note that this is the algorithm which is used
in all simulations in Section 6.

Algorithm 2 The conservative spectral method for solving the space-homogeneous
Fokker-Planck-Landau type equation (2.11) when conserving in Fourier space

Precondition: F contains evaluations of f on the uniform velocity grid at a given
time-step tn

1: for each step in Runge-Kutta do
2: Calculate the F.F.T. of F and store the values in F̂ . O(N3 logN)

3: Calculate Q̂(F̂ ) at each point in the uniform Fourier space grid using identity

(3.1) and store the values in
˜̂
Q . O(N3)

4: Set Q̂ = Λ(C)
˜̂
Q for Λ as in (4.1) and C given in (4.5) . O(N3)

5: Calculate the I.F.F.T. of Q̂ and store the values in Q̃ . O(N3 logN)
6: Perform the iteration of Runge-Kutta to update F . O(N3)

5. Stability of the Space-homogeneous Spectral Method

In order to consider the stability of the spectral method, first note that the in-
tegral (3.1) to calculate Q̂ is approximated using quadrature. The current code
uses the composite trapezoidal rule but, in general, for M equally spaced quadrat-
ure nodes {ξm}Mm=1 ⊂ ΩLξ in Fourier space, corresponding weights {wm}Mm=1 and
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Fourier space stepsize hξ =
2Lξ
N = π

Lv
,

Q̂ (ξk) = h3
ξ

M∑
m=1

wmf̂ (ξk − ξm) f̂(ξm)
(
ξm

T Ŝ (ξm) ξm

− (ξk − ξm)
T
Ŝ (ξm) (ξk − ξm)

)
. (5.1)

Now, according to Lebedev [22], the criterion for stability of a numerical method
of the form

d

dt

(
f̂(ξk)

)
= F (f̂(ξk))

is that the time-step ∆t must satisfy

∆t ≤ 1

Lip(F )
,

for the Lipschitz norm of F , Lip(F ). If an upper bound can be found on Lip(F ),
this will in turn give a lower bound on (Lip(F ))−1, which ∆t must be below for the
numerical method to remain stable. To find the upper bound, note that

Lip(F ) ≤ max
k,l=1,...M

|Jk,l|,

for the Jacobian J of F (f̂(ξk)), with entries

Jk,l =
∂

∂f̂(ξl)

(
F (f̂(ξk))

)
, for k, l = 1, 2, . . . ,M.

Here, F (f̂(ξk)) = 1
ε Q̂(f̂ , f̂) (ξk) and, to calculate the derivative of Q̂(f̂ , f̂) (ξk)

with respect to f̂(ξl), it should be noted that there are two chances for f̂(ξl) to ap-
pear in the quadrature sum (5.1). These are when m = l and in general (depending
on the choice of quadrature nodes) at another index, say m = n, where ξk−ξn = ξl.
Assuming that there are indeed two indices which give rise to non-zero derivatives
in the sum, and considering that ξk − ξn = ξl is equivalent to ξn = ξk − ξl, the
derivative is given by

∂

∂f̂(ξl)

(
Q̂(f̂ , f̂) (ξk)

)
= h3

ξwlf̂ (ξk − ξl)
(
ξl
T Ŝ (ξl) ξl − (ξk − ξl)T Ŝ (ξl) (ξk − ξl)

)
+ h3

ξwnf̂ (ξn)
(
ξn
T Ŝ (ξn) ξn − (ξk − ξn)

T
Ŝ (ξn) (ξk − ξn)

)
= h3

ξwlf̂ (ξk − ξl)
(
ξl
T Ŝ (ξl) ξl − (ξk − ξl)T Ŝ (ξl) (ξk − ξl)

)
+ h3

ξwnf̂ (ξk − ξl)
(

(ξk − ξl)T Ŝ (ξk − ξl) (ξk − ξl)− ξTl Ŝ (ξk − ξl) ξl
)
.

(5.2)
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Then, since hξ = π
Lv

and |wl| ≤ 1 for any l, by the triangle inequality,∣∣∣∣∣ ∂

∂f̂(ξl)

(
Q̂(f̂ , f̂) (ξk)

)∣∣∣∣∣
≤ π3

L3
v

|f̂ (ξk − ξl) |
(
|ξlT Ŝ (ξl) ξl|+ |(ξk − ξl)T Ŝ (ξl) (ξk − ξl) |

+ |(ξk − ξl)T Ŝ (ξk − ξl) (ξk − ξl)|+ |ξTl Ŝ (ξk − ξl) ξl|
)
.

Note that if there had been no such ξn then the final two terms would be omitted
here and the bound would only be smaller. This means the assumption that there

are two appearances of f̂(ξl) in the quadrature sum (5.1) is more general.
Also, by definition of the Fourier transform,

|f̂ (ξk − ξl) | ≤ (2π)−
3
2

ˆ
BR(0)

|f (u) ||e−i(ξk−ξl)·u|du = (2π)−
3
2 ||f ||L1(BR(0)),

since |e−i(ξk−ξl)·u| = 1, and so∣∣∣∣∣ ∂

∂f̂(ξl)

(
Q̂(f̂ , f̂) (ξk)

)∣∣∣∣∣
≤ π

3
2

2
√

2L3
v

||f ||L1(BR(0))

(
|ξlT Ŝ (ξl) ξl|+ |(ξk − ξl)T Ŝ (ξl) (ξk − ξl) |

+ |(ξk − ξl)T Ŝ (ξk − ξl) (ξk − ξl)|+ |ξTl Ŝ (ξk − ξl) ξl|
)
. (5.3)

Now, for the terms involving Ŝ, note that for a general matrix A ∈ R3×3 and
vectors y, z ∈ R3,

yTAz =

3∑
i,j=1

Ai,jyizj and so |yTAz| ≤ (3)2 max
i,j=1,2,3

|Ai,j |( max
i=1,2,3

yi)( max
i=1,2,3

zi).

(5.4)

This means that a bound must be found on |Ŝi,j(ξ)|, which is achieved by using the

expressions in Section 3 for Ŝ1
1,1, Ŝ2

3,3 and Ŝ2
1,3, for λ = −3, 0 and 1. As is shown in

Appendix B, for any k = 1, 2, . . . ,M ,

|Ŝi,j(ξk)| ≤



(√
1

2π
+

3

π3

(
π + 1

)√ 2

π

)
L2
v, when λ = −3,√

2

π

1

π5

(
2π3 + 9π2 + 21π + 21

)
L5
v, when λ = 0,√

2

π

1

π6

(
2π6 + 11π3 + 36π2 + 72π + 144

)
L6
v, when λ = 1

.


L2
v, when λ = −3,

L5
v, when λ = 0,

L6
v, when λ = 1.
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Then, by using the identity (5.4) and noting that |(ξk)i| ≤ Lξ = π
hv

, for any
k, l, n = 1, 2, . . . ,M ,

|ξTk Ŝ(ξl)ξn| . 9
π2

h2
v

×


L2
v, when λ = −3,

L5
v, when λ = 0,

L6
v, when λ = 1.

Also, since ξk − ξl = ξn, each mixed ξk − ξl and ξl term in inequality (5.3) has the
same upper bound. This gives

∣∣∣∣∣ ∂

∂f̂(ξl)

(
Q̂(f̂ , f̂) (ξk)

)∣∣∣∣∣ . 4

(
9

π
7
2

2
√

2h2
vL

3
v

||f ||L1(BR(0))

)
×


L2
v, when λ = −3,

L5
v, when λ = 0,

L6
v, when λ = 1,

and so

|Jk,l| ≤
1

ε

∣∣∣∣∣ ∂

∂f̂(ξl)

(
Q̂(f̂ , f̂) (ξk)

)∣∣∣∣∣ . 18π
7
2

√
2εh2

v

||f ||L1(BR(0)) ×


1

Lv
, when λ = −3,

L2
v, when λ = 0,

L3
v, when λ = 1,

which means

1

|Jk,l|
&



√
2εLvh

2
v

18π
7
2 ||f ||L1(BR(0))

, when λ = −3,

√
2εh2

v

18π
7
2L2

v||f ||L1(BR(0))

, when λ = 0,

√
2εh2

v

18π
7
2L3

v||f ||L1(BR(0))

, when λ = 1.

Therefore, to ensure that ∆t ≤ 1
|Jk,l| , choose ∆t such that

∆t ≤



√
2εLvh

2
v

18π
7
2 ||f ||L1(BR(0))

, when λ = −3,

√
2εh2

v

18π
7
2L2

v||f ||L1(BR(0))

, when λ = 0,

√
2εh2

v

18π
7
2L3

v||f ||L1(BR(0))

, when λ = 1

=



2
√

2εL3
v

9π
7
2N2||f ||L1(BR(0))

, when λ = −3,

2
√

2ε

9π
7
2N2||f ||L1(BR(0))

, when λ = 0,

2
√

2ε

9π
7
2N2Lv||f ||L1(BR(0))

, when λ = 1.
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6. Numerical Results and Entropy Decay

6.1. Space Homogeneous Results. In the previous work by the current authors
[25], simulations were already run to demonstrate the entropy decay rates for both
Coulomb and hard sphere interactions using only N = 16 Fourier modes in each
velocity direction. The results were satisfactory but it has since been discovered
that the decay rates are even more convincing when increasing to N = 32. In
addition, simulations have now been run for Maxwell type interactions, which had
caused some difficulty to produce at first.

The Coulomb Case (λ = −3). When −3 ≤ λ < 0, there is no spectral gap for
Fokker-Planck-Landau type equations. This was proven analytically by Strain and

Guo [28] where they showed that, if the initial condition is bounded by e−c|v|
2

, for
some c > 0, the rate of convergence to a Maxwellian close to equilibrium is given
by

e−kt
p
, with p = − 2

λ
and some k > 0. (6.1)

For Coulomb interactions, with λ = −3, this gives the law of two thirds. In [25],
the current authors showed this rate of convergence to equilibrium numerically by
plotting the natural log of the relative entropy on a ln-ln scale against time. In
particular, as the solution approaches equilibrium, it should be that

ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) ∼ 2

3
ln(t).

The rate was captured by choosing an initial condition far from equilibrium,
which is a sum of four Maxwellians with shifted centers, namely

f0(v) =
1

4

3∑
l=0

Mv

(
v +

(
(−1)b

l
2 c, (−1)l, (−1)l

))
, (6.2)

for the Maxwellian Mv(v) = (2πT )−
3
2 e−

|v|2
2T . The temperature used was T = 0.4;

the Knudsen number was ε = 20; the velocity domain had Lv = 5.25; N = 16
Fourier modes were chosen; and the time-stepsize used was ∆t = 0.01. With these
parameters, the rate was seen to be 0.634. This result is improved in the current
simulation, however, where the number of Fourier modes has been increased to
N = 32 (so that ∆t = 0.01 is still below the new upper bound of approximately
0.0162 calculated for stability with these parameters for λ = −3 in Section 5).

The marginal in (v1, v2)-space of the initial condition (6.2) is plotted in Fig. 1(a),
where it can be seen that this has the form of four humps. Subsequent marginals
of the approximation to the Landau equation starting at this initial condition are
plotted at mean-free times t = 2.8, 20 and 100 in Fig. 1(b)-(d). This shows that the
four humps merge together into one, before eventually taking shape as the space-
homogeneous equilibrium Maxwellian (2.8) (see Fig. 1(d)) which, in this case with
T = 0.4 in (6.2), has equilibrium temperature Teq = 1.4 and is given by

Meq(v) =
1

(2.8π)
3
2

e−
|v|2
2.8 . (6.3)

In Fig. 2, the relative entropy has been plotted. When natural logarithms have
been taken, the curve does indeed become a straight line when close to equilibrium.
It can be seen that, when t = 2.8 (corresponding to Fig. 1(b)), the curve is not yet
straight but that is because the solution is still far from a Maxwellian. At around
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(a) t = 0 (b) t = 2.8

(c) t = 20 (d) t = 100

Figure 1. Marginals of f in the variables v1 and v2 at various
times during the simulation of the space-homogeneous Landau equa-
tion starting with the initial condition (6.2), with T = 0.4, ε = 20,
Lv = 5.25, N = 32 and ∆t = 0.01, showing cells in the domain
where the solution is negative (in red, near the boundary) and pos-
itive (in blue, in the interior).

t = 20 (corresponding to Fig. 1(c)), however, the four humps have disappeared and
the solution is becoming close to that of a Maxwellian. This is part of the entropy
plot which is a straight line, with a slope of approximately 0.664. It should be
noted that this is much closer to two thirds than the value of 0.634 attained with
the parameters in [25].

Lack of Positivity Preservation. At this point, it should be mentioned that the
numerical scheme does not preserve positivity. There is potential for negativity to
occur when conservation is enforced. The good news, however, is that the negative
parts of the solution only appear as a result of tiny oscillations near the tails. The
negative regions are shown underneath the marginal plots in Fig. 1, on the (v1, v2)-
axes, as red cells which are indeed next to the boundary near the tails. In these
regions, the solution is negligible anyway and so the effects of the negative values
are not noticed. On the other hand, calculating the natural log in expression (2.9)
for the relative entropy requires only positive values. Since the negative values
are so tiny though (and the parts of the solution so close to zero give negligible
influence on any bulk quantities anyway), these are just discarded when calculating
the entropy. More precisely, the entropy is calculated through a quadrature method
and any point for which f has a negative value is considered a zero contribution to
the overall sum.

Parallel Computing Discussion. The simulations are carried out with C++ code
run on the Texas Advanced Computing Center’s Stampede2 supercomputer [2],
utilising all sixty eight cores on 24 of the Intel Xeon Phi 7250 1.4GHz Knights
Landing processors using hybrid OpenMP [1] and MPI [15]. Any procedure that
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Figure 2. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-homogeneous Landau equa-
tion, given initial condition (6.2), with T = 0.4, ε = 20, Lv = 5.25,
N = 32 and ∆t = 0.01, which has equilibrium solution Meq given
by (6.3). A straight line has been added to show that the slope near
equilibrium is close to two thirds, exhibiting the lack of spectral gap,
but a degenerate spectrum corresponding to a stretch-time exponen-

tial decay given by e−kt
p

, with p = 2
3 and some k > 0. The labels

correspond to the marginal plots in Fig. 1.

requires a loop over the grid-cells in velocity space distributes the cells amongst the
OpenMP threads then recombines the individual values calculated at the end of
the loop. In addition, when calculating the Fourier transform of Q, the evaluations
at the N3 many Fourier modes are evenly distributed across the MPI nodes. This
means that only the values of Q̂ are calculated on the modes associated to the
current MPI node and so time is saved by evaluating at multiple Fourier modes
concurrently across MPI nodes.

In [25], there was a table to show the performance increase when using more
OpenMP threads was almost linear. In this work, where MPI has also been added
to the space-homogeneous code, the performance increase with more MPI processes
is recorded and it also appears to be close to linear. Table 1 records the times taken
for 100 time-steps of the current simulation with various number of MPI processes,
each with 68 OpenMP threads (averaged over three runs).

The Hard Sphere Case (λ = 1). Unlike when λ < 0, there is a spectral gap when λ =
1. This means the rate of convergence to a Maxwellian close to equilibrium is in fact
exponential, of the form e−kt, for some k > 0. Similar to the previous example, when

close to equilibrium, the relative entropy should behave like ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) ∼
ln(t).

Trying to simulate hard spheres introduced a fair amount of difficulty, which
shed light on an issue that should be considered for modeling hard potentials with
the current spectral method. In particular, when choosing an initial condition for
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No. of MPI processes 1 2 4 8 16 24

Average time for 100 time-steps (s) 18,643 9,391 4,757 2,439 1,276 890

Table 1. Average times after three runs of 100 time-steps with
various number Intel Xeon Phi 7250 1.4GHz Knights Landing pro-
cessors, each running one MPI task with 68 OpenMP threads in
TACC’s Stampede2 supercomputer

which the bulk of the mass is supported in too small a region near the center of the
domain, the tails of the solution start to ripple after a small number of time-steps,
causing an instability which leads to a blow-up. It is believed that this problem
stems from the fact that collisions are more significant for hard potentials than
soft ones, with more weight being given to larger relative velocities. The relative
velocity becomes larger when closer to the tails in velocity-space.

At first, it may seem like a more compactly supported initial solution could
help. The problem, however, is that collisions are computed in Fourier space. The
Fourier transform will take a solution with small support in the original space and
spread it out in the Fourier domain (consider, for example, that a Gaussian with
large peak and small variance has a Gaussian with small peak and large variance
as its Fourier transform). This means that the Fourier transform of such an initial
condition actually has tails with rather large magnitude near the boundaries. When
multiplied by the hard sphere weights calculated in Section 3, this causes a problem
computationally. This issue did not exist for λ = −3 as the weights near the tails for
Coulomb interactions are smaller in magnitude. As a result, any part of the solution
that turns negative is emphasized, which introduces the ripples as the conservation
routine attempts to compensate.

This logic was followed for the simulations in [25] and a larger variance relative
to the computational domain was chosen to fix the problem. This worked to combat
the instabilities but as mass started to spread out of the domain, any bulk quantities
calculated were affected. A better approach to this problem, which has been used
in the current work, is to simply reduce the mass of the initial condition. This has
the same result of reducing the magnitude of the tails but allows the variance to be
reduced in the process.

For the hard sphere simulation, a very similar initial condition is chosen to (6.2),
namely

f0(v) =
ρ0

4

3∑
l=0

Mv

(
v + 0.016

(
(−1)b

l
2 c, (−1)l, (−1)l

))
, for v ∈ Ωv, (6.4)

for the Maxwellian Mv(v) = (2πT )−
3
2 e−

|v|2
2T , with a smaller temperature of T =

0.00015 than for the Coulomb interactions example. Also, in the initial condition
(6.2), there was no ρ0 factor but here ρ0 = 0.01, which reduces the mass. Again,
the Knudsen number is ε = 20 and N = 32 Fourier modes are used, but a much
smaller velocity domain is chosen here, with boundary Lv = 0.1. This allows the
time-stepsize to be increased slightly, as the stability results from Section 5 show
that a smaller value of Lv and smaller mass is less restrictive. In particular, the
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time-stepsize chosen is ∆t = 0.1 (below the upper bound of approximately 0.1117
calculated for stability with these parameters for λ = 1 in Section 5).

The increased time-stepsize helps because when the mass is reduced there are
fewer collisions and so simulations are slower on this time-scale. In order for the
results to be comparable to those from the Coulomb interaction simulations in Sub-
section 6.1, the time-scale should be adjusted to match that used for solutions with
larger mass. An explanation of how the timescales differ for two simulations with
different masses is given in Appendix C. In particular, in those calculations, let ta

= tC be the time-scale from the Coulomb interaction simulations; tb = tH the time-
scale from the current hard sphere simulations; and τ = ρ0 = 0.01 the mass ratio.
Then, the entropy results in this section are plotted on the scales t = tC = ρ0t

H

and H[f ](t) = HC [f ] = 1
ρ0
HH [f ]. As implied here, the superscripts are dropped in

any plots.
A plot of the relative entropy for hard sphere interactions on these scaled variables

is shown in Fig. 3. When natural logarithms are taken, the curve is close to a
straight line with slope 0.92103 which is less than the slope of one that is expected
for a spectral gap. Nevertheless, this is still larger than the slope of two thirds
for Coulomb interactions and the slope of one is merely an upper bound, so this
result is still satisfactory. Once again, by considering the marginals, when t = 9
(corresponding to position (b), or tH = 900 in the original scaling), the curve is
not yet straight but that is because the solution has too flat a peak and so is still
relatively far from a Maxwellian. At around t = 30 (corresponding to position (c),
or tH = 3000 in the original scaling), however, the shape of the marginal is closer
to that of a Maxwellian and this is much more near to the part of the entropy plot
which is a straight line.

The Maxwell Molecule Case (λ = 0). When λ = 0, there is still a spectral gap for
the Focker-Planck-Landau type equation but this can be seen as a borderline case
before λ drops below zero and starts to obey Strain and Guo’s law of stretch-time
exponential decay with exponent given by formula (6.1). This means that a straight
line in the relative entropy plot may be a little harder to detect.

For the Maxwell type simulation, the same initial condition (6.4) is used as for
hard sphere interactions, with the same parameters T = 0.00015, ρ0 = 0.01, ε = 20,
N = 32, Lv = 0.1 and ∆t = 0.1. Due to the mass being smaller again, the same
scaled variables for time and entropy are used, as in the discussion from the hard
sphere results. The relative entropy for this case is plotted in these scaled variables
on a ln-ln scale in Fig. 4 where there is still a straight line forming near the end of
the simulation. The slope of this line is approximately 0.92142, which is close to
the value calculated for the hard sphere simulations.

Finally, all three of the plots have been included on the same set of axes in Fig. 5.
Here it can be seen that simulations associated to the Coulomb interactions (i.e. the
Landau equation) give the strongest result. Not only does the straight line persist
for the longest time but the slope is closest to the predicted value. This is perhaps
indicative of the fact that the Focker-Planck-Landau type equation with Coulomb
interactions is the most physically realisable case. On the other hand, the fact that
the slopes captured by both the hard sphere and Maxwell type simulations are so
similar demonstrates that they are both capturing the same phenomenon, namely,
the existence of the spectral gap.
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Results with Fewer Fourier Modes (N = 24). The results so far in this subsection
have all used N = 32 Fourier modes. This choice was used to push the method to
greater accuracy and give more convincing results than the previous work by the
current authors [25]. If the computational power is not available to allow such a
high choice of Fourier modes to be used in a reasonable amount of time, however,
the method can still give impressive results without losing too much accuracy. In
particular, the most physically relevant case of Coulomb interactions still gives an
accurate representation of the decay rate to equilibrium to two decimal places. On
the other hand, the value calculated for hard sphere and Maxwell type interactions
does suffer more dramatically but it still remains larger than the rate of two thirds
when there is no spectral gap.

As an example, the same simulations are run from Fig. 5 but with less Fourier
modes. The original hope was to use N = 24 Fourier modes (halfway between
the choice of N = 16 in the previous work [25] and N = 32 used above) but, for
some currently unknown reason, the simulation will not run Coulomb interaction
simulations with N = 24 Fourier modes as the solution blows up after just one
time-step. There is known to be an issue with certain Fourier modes in the FFTW
package, as discussed in the original work on this algorithm when applied to the
Boltzmann equation by Gamba and Tharkabhushaman [18], but this may not be
the same problem here because this choice still runs for hard sphere and Maxwell
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Figure 3. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-homogeneous Fokker-Planck-
Landau type equation with λ = 1 and weights calculated by the
exact formulae in Section 3, given initial condition (6.4), with
T = 0.00015, ε = 20, Lv = 0.1, N = 32 and ∆t = 0.1, which
has equilibrium solution given by a Maxwellian with temperature
Teq = 0.000406. A straight line has been added to show that the
slope near equilibrium is now approximately 0.92103, slightly below
the value of one expected for the existence of a spectral gap. The
(v1, v2)-marginals are included at times (a) t = 0, (b) t = 9, (c)
t = 30 and (d) t = 48.
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Figure 4. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-homogeneous Fokker-Planck-
Landau type equation with λ = 0 and weights calculated by the
exact formulae in Section 3, given initial condition (6.4), with
T = 0.00015, ε = 20, Lv = 0.1, N = 32 and ∆t = 0.1, which
has equilibrium solution given by a Maxwellian with temperature
Teq = 0.000406. A straight line has been added to show that the
slope near equilibrium is now approximately 0.92142, slightly below
the value of one expected for the existence of a spectral gap. The
(v1, v2)-marginals are included at times (a) t = 0, (b) t = 0.52, (c)
t = 2.2 and t = 4.

type interactions. For this reason, the Coulomb interactions are run with N = 22
Fourier modes and the others with N = 24. A similar plot to Fig. 5, on the same
axis ranges, is shown in Fig. 6 with these choices.

6.2. Space-inhomogeneous Results for the Coulomb Case (λ = −3).

Results from N = 32 Fourier Modes. Trying to recover Strain and Guo’s entropy
decay rate of two thirds is a little more complicated in the space-inhomogeneous
case, which appears to be a result of accumulating numerical error. First of all, to
alleviate these difficulties, a different form of initial condition is used from the four
humps used in the space-homogeneous case. In particular, a small perturbation
of a Maxwellian by a cosine wave in space is chosen, which is the same used to
demonstrate the phenomenon of Landau damping, namely

f0(x,v) = (1 +A cos(kx))Mv(v), for (x,v) ∈ Ωx × Ωv, (6.5)

again for the Maxwellian Mv(v) = (2πT )−
3
2 e−

|v|2
2T . Here, T = 1.2, k = 0.5 and

A = 0.05 are used. Additionally, the space domain is chosen as Ωx = [0, Lx]
with length Lx = 4π, so that there is exactly one period of the cosine wave and´ Lx

0
f0(x,v) dx = Mv(v). This means the solution converges to the Maxwellian

Mv(v), uniformly in space, as t→∞.
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Figure 5. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-homogeneous Fokker-Planck-
Landau type equations with potentials λ = −3, 0 and 1, with weights
calculated by the exact formulae in Section 3. The initial conditions
and parameters used are the same as in Fig. 2-4. Straight lines are
also added to show the decay rates approached by each simulation.
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Figure 6. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-homogeneous Fokker-Planck-
Landau type equations with potentials λ = −3, 0 and 1, with weights
calculated by the exact formulae in Section 3. The initial conditions
and parameters used are all the same as in Fig. 2-4, except for the
choice of Fourier modes N . For the Coulomb interactions plot,
N = 22 but the other two use N = 24. Straight lines are also
added to show the decay rates approached by each simulation.
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When the simulations were first run, it became clear that the choice of N = 16
Fourier modes and Nv = 24 velocity grid cells in each dimension used originally
in the space-homogeneous case in [25] were not enough to accurately calculate the
space-inhomogeneous entropy. This problem can easily be fixed, however, by in-
creasing the number of D.G. grid-cells in velocity spaces to Nv = 48 and the number
of Fourier modes to N = 32, as in the space-homogeneous results in Sub-section
6.1. These parameters are used along with the Knudsen number ε = 20; velocity
domain width Lv = 5.25; Nx = 24 D.G. cells in space; and time-stepsize ∆t = 0.01.
Note that increasing the number of D.G. cells in space has little effect on accuracy
because the initial condition (6.5) leads to simulations with very small variations in
space. This is why it is no problem to use as low a choice as Nx = 24 to speed up
computations.

When the natural log of the relative entropy is then plotted on a ln-ln scale as
a result of using these parameters, as in Fig. 7, it once again approaches a straight
line. This time the slope of that line is approximately 0.6537 which is again close to
the slope of two thirds that is expected. Some marginal plots are also included on
this plot to show how the behaviour here is similar to that in the space-homogeneous
case. First, at t = 4.6 mean-free times, the ln-ln plot of relative entropy is not quite
yet a straight line and it can be seen in the marginal plot at position (b) that the
pdf is still taking a similar form to the initial condition in position (a). As soon as
the plot approaches the straight line, however, like at t = 9.4 mean-free times, the
p.d.f. is starting to look more like the equilibrium solution (2.7), which is shown at
positions (c) and (d).

Results from N = 16 Fourier Modes. To illustrate the issues when only N = 16
Fourier modes are used, first note that, for the current perturbation initial condition
(6.5), Φeq(x) = 0 for all x and ρ0 = Lx in the equilibrium Maxwellian (2.7) so that

Meq(x,v) =
1

(2πTeq)
3
2

e
− |v|

2

2Teq . (6.6)

As is shown in appendix D, for T = 1.2 and A = 0.05, Teq = T + 2
3A

2 =

1.2 + 2
3 (0.05)2 = 1.201666 . . . and the equilibrium entropy evaluates to

H[Meq] = −6π (ln(2π(1.201666 . . .)) + 1) = −56.955565 (to 6 d.p.). (6.7)

When N = 16 Fourier modes, Nv = 24 velocity and Nx = 24 space D.G. grid
cells are used in each dimension, however, the decreasing values of entropy pass the
equilibrium value as early as the 342nd time-step, where it jumps from

H[f ](3.41) = −56.955547 to H[f ](3.42) = −56.955658.

Initially, as a workaround for this issue, the idea was to run the simulation for long
enough that the solution should reach a numerical approximation to equilibrium
and then use the value of the entropy calculated from this long-time solution as
the equilibrium entropy. When running the simulations for so long, however, the
numerical error begins to accumulate and an instability appears to be introduced.
Figure 8(a) shows that the entropy does seem to exhibit a type of exponential decay
up until around t = 200 but then, instead of converging to some steady state value,
decreases further and starts to oscillate. A similar trend can be seen in the total
energy. This should be held constant throughout, but it is common for a slight
deviation to occur in the energy of the space-inhomogeneous simulations of the
order of roughly 10−4. This can be seen up to about t = 200 in Fig. 8(b) and is
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Figure 7. Plot of ln
(∣∣∣ln(∣∣H[f |Meq]

∣∣)∣∣∣) against ln(t) for the nu-

merical approximation f to the space-inhomogeneous Landau equa-
tion, given initial condition (6.5), with T = 1.2, k = 0.5, A = 0.05,
ε = 20, Lv = 5.25, N = 32, Nv = 48, Nx = 24 and ∆t = 0.01,
which has equilibrium solution Meq given by (6.6). A straight line
has been added to show that the slope near equilibrium is close to
two thirds, exhibiting the lack of spectral gap, but a degenerate spec-
trum corresponding to a stretch-time exponential decay given by

e−kt
p

, with p = 2
3 and some k > 0. Marginals in (x, v1)-space

are also shown at times (a) t = 0 (b) t = 4.6, (c) t = 9.4 and (d)
t = 12, to demonstrate that solution is only near equilibrium when
close to the stretch-time exponential decay.

expected to result from the time-splitting used. What should not happen, however,
is the faster increased deviation and oscillations that occur around the same time
that the entropy is also oscillating.

It should also be noted that the instabilities here are different to those that arise in
the Boltzmann and Landau equations associated with the issues discussed in Section
5, as the source of those errors are near the tails. Here, the issue is close to the
center of the Maxwellian, around |v| = 0. Figure 9(a) shows a marginal in (x, v1)-
space of the initial condition and then in Fig. 9(b) the marginal is shown at time
t = 200 (the time up to which the entropy and total energy are behaving themselves
in Fig. 8), where the approximation seems to be near the equilibrium. Finally, Fig.
9(c) shows an example of how the Maxwellian is contorting around |v| = 0, with
spikes appearing there at the x-boundaries and a kink in the middle of space. This
indicates some sort of instability interfering with the expected behaviour.

When using the values N = 32 and Nv = 48, however, the simulation does
not reach the theoretical equilibrium entropy (6.7) until after the 1525-th time-
step, at which point the approximation appears to have reached the equilibrium
solution. This suggests that the solution to the Landau equation, starting with
initial condition (6.5), reaches equilibrium much faster than initially suspected and
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Figure 8. Results from a simulation of the space-inhomogeneous
Landau equation, starting with the initial condition (6.5), with T =
1.2, k = 0.5, A = 0.05, ε = 20, Lv = 5.25, N = 16, Nv = 24,
Nx = 24 and ∆t = 0.01. (a) Plot of H[f |Meq] for the numerical
approximation f , which has equilibrium solution taken from the
final time-step, namely Meq = f(800). (b) Plot of the error in the
total energy from the initial value T tot(0) = 1.201666....

(a) (b) (c)

Figure 9. Marginals in (x, v1)-space during a simulation of the
space-inhomogeneous Landau equation, starting with the initial
condition (6.5), with T = 1.2, k = 0.5, A = 0.05, ε = 20,
Lv = 5.25, N = 16, Nv = 24, Nx = 24 and ∆t = 0.01 at times
(a) t = 0 (the initial condition) (b) t = 200 (seemingly near equi-
librium) and (c) t = 700 (unstable behaviour).

it was never necessary to push it to the point where the numerical error accumulates
enough to cause an influence.

7. Conclusion

In this work, the conservative spectral method for solving Fokker-Planck-Landau
type equations was expanded upon by extending the calculations to hard sphere
and Maxwell type potentials. Conditions for stability were then derived for each of
the three cases. Finally, examples of the numerical method for all three of these
potentials were given in the space-homogeneous case, in addition to results for
Coulomb interactions in the space-inhomogeneous setting, to show the power of the
scheme. In particular, the relative entropy during a simulation was shown to decay
close to the correct rate for Coulomb interactions, in accordance with the rate of
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two thirds predicted by Strain and Guo. This indicates that the current numerical
scheme is an excellent model for the Landau equation. When the model is applied
to the Fokker-Planck-Landau type equation with hard sphere and Maxwell type
interactions, the existence of the spectral gap is evident but the decay rate seen
is slightly below the expected value of one. Nevertheless, the decay rate captured
was almost the same for both potentials and the effect responsible for this was the
spectral gap.

The importance of the conservation routine was also emphasised by showing that
the decay rate without it is less accurate. Indeed, enforcing conservation does not
preserve positivity but the regions in which the solution falls below zero are always
near the tails and the solution is negligible at those locations anyway. Clearly this
is true as dropping those values in calculation of the entropy did not detract from
the result, and so priority is given to conservation over positivity.

In addition to the numerical evidence provided here for the power of the con-
servative spectral method for Fokker-Planck-Landau equations, the current authors
have proven analytically that the approximations from this scheme do indeed con-
verge to the true solutions of the equation associated to hard potentials [27]. It is
hoped that this can then be extended to soft potentials. Work is also underway to
implement the present method in a multi-species setting, based on the calculations
by Gamba et al. [16] to develop an asymptotic preserving explicit-implicit numerical
scheme for species with disparate masses.

Appendix Appendix A Evaluating Integrals for Ŝ

In general, to calculate an integral of the form (2π)−
3
2

´
BR(0)

f (u)e−iω·u du,

first a substitution is made in order to reduce the scalar product in the exponential
to a single multiplication. To do this, note that the rotation matrix A given by

A =


ω1ω3√
ω2

1+ω2
2

− ω2|ω|√
ω2

1+ω2
2

ω1

ω2ω3√
ω2

1+ω2
2

ω1|ω|√
ω2

1+ω2
2

ω2

−
√
ω2

1 + ω2
2

0
ω3


has the property that Aω = (0, 0, |ω|). Also, since A is a rotation matrix, it is
orthogonal and so A−1 = AT and detA = 1.

Then, changing variables via u = ATv and noting that ω · u = ωTATv =
(Aω)Tv = |ω|v3,

(2π)−
3
2

ˆ
BR(0)

f (u)e−iω·u du = (2π)−
3
2

ˆ
BR(0)

f
(
ATv

)
e−i|ω|v3 dv.

Finally, by changing to spherical coordinates via

v = rσ = r(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)),

where 0 ≤ r ≤ R, −π ≤ φ ≤ π and 0 ≤ θ ≤ π,

(2π)−
3
2

ˆ
BR(0)

f (u)e−iω·u du

=(2π)−
3
2

ˆ R

0

ˆ π

−π

ˆ π

0

f
(
rATσ

)
e−ir|ω| cos(θ)r2 sin(θ) dθdφdr. (A.1)

Now, for Ŝ1
1,1(ω), f(u) = |u|λ+2 and so f

(
rATσ

)
= rλ+2. By inserting this

expression in the general integral formula (A.1) and evaluating integrals with respect
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to φ, this gives

Ŝ1
1,1(ω) = (2π)−

1
2

ˆ R

0

rλ+4

ˆ π

0

e−ir|ω| cos(θ) sin(θ) dθdr.

It can be checked thatˆ π

0

e−ir|ω| cos(θ) sin(θ) dθ =
2

r|ω|
sin(r|ω|)

and so

Ŝ1
1,1(ω) =

√
2

π

1

|ω|

ˆ R

0

rλ+3 sin(r|ω|) dr.

Then, by evaluating this integral in each of the Coulomb, Maxwell type and hard
sphere cases, if |ω| 6= 0,

Ŝ1
1,1(ω) =



√
2

π

1

|ω|2
(

1− cos(R|ω|)
)
, when λ = −3,√

2

π

1

|ω|5
(
−(R|ω|)3 cos(R|ω|) + 3(R|ω|)2 sin(R|ω|)

+ 6(R|ω|) cos(R|ω|)− 6 sin(R|ω|)
)
, when λ = 0,√

2

π

1

|ω|6
(
−(R|ω|)4 cos(R|ω|) + 4(R|ω|)3 sin(R|ω|)

+ 12(R|ω|)2 cos(R|ω|)− 24(R|ω|) sin(R|ω|)

− 24 cos(R|ω|) + 24
)
, when λ = 1.

Next, for Ŝ2
3,3(ω), f(u) = |u|λu2

3 and so

f
(
rATσ

)
= rλ+2 1

|ω|2
(

(ω2
1 + ω2

2) sin2(θ) cos2(φ)

− 2ω3

√
ω2

1 + ω2
2 sin(θ) cos(θ) cos(φ) + ω2

3 cos2(θ)
)
.

By inserting this expression in the general integral formula (A.1) and evaluating
integrals with respect to φ (noting that an integral of cos(φ) over −π ≤ φ ≤ π
returns zero), this gives

Ŝ2
3,3(ω)

=(2π)−
3
2

ˆ R

0

rλ+4 1

|ω|2
(

(ω2
1 + ω2

2)π

ˆ π

0

(1− cos2(θ))e−ir|ω| cos(θ) sin(θ) dθ

+ ω2
3(2π)

ˆ π

0

cos2(θ)e−ir|ω| cos(θ) sin(θ) dθ
)

dr.

It can be checked thatˆ π

0

cos2(θ)e−ir|ω| cos(θ) sin(θ) dθ

=
2

(r|ω|)3

(
(r|ω|)2 sin(r|ω|) + 2(r|ω|) cos(r|ω|)− 2 sin(r|ω|)

)
andˆ π

0

(1− cos2(θ))e−ir|ω| cos(θ) sin(θ) dθ =
4

(r|ω|)3

(
sin(r|ω|)− (r|ω|) cos(r|ω|)

)
.
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So,

Ŝ2
3,3(ω) = (2π)−

3
2

ˆ R

0

rλ+4 1

|ω|2

(
(ω2

1 + ω2
2)

4π

(r|ω|)3

(
sin(r|ω|)− (r|ω|) cos(r|ω|)

)
+ ω2

3

4π

(r|ω|)3

(
(r|ω|)2 sin(r|ω|) + 2(r|ω|) cos(r|ω|)− 2 sin(r|ω|)

))
dr.

The easiest way to calculate these integrals is to use a substitution of u = r|ω|,
allowing Ŝ2

3,3(ω) to be written as

Ŝ2
3,3(ω) = (2π)−

3
2

4π

(|ω|)λ+7

(
(ω2

1 + ω2
2)

(ˆ R|ω|

0

uλ+1 sin(u) du

−
ˆ R|ω|

0

uλ+2 cos(u) du

)
+ ω3

(ˆ R|ω|

0

uλ+3 sin(u) du− 2

ˆ R|ω|

0

uλ+1 sin(u) du

+ 2

ˆ R|ω|

0

uλ+2 cos(u) du

))
.

Then, by evaluating these integrals in each of the Coulomb, Maxwell type and
hardsphere cases, if |ω| 6= 0,

Ŝ2
3,3(ω) =



√
2

π

1

|ω|4

((
ω2

1 + ω2
2

)R|ω| − sin(R|ω|)
R|ω|

− ω2
3

R|ω|+ (R|ω|) cos(R|ω|)− 2 sin(R|ω|)
R|ω|

)
,

when λ = −3,√
2

π

1

|ω|7

((
ω2

1 + ω2
2

)(
−(R|ω|)2 sin(R|ω|)− 3(R|ω|) cos(R|ω|)

+ 3 sin(R|ω|)
)

+ ω2
3

(
−(R|ω|)3 cos(R|ω|) + 5(R|ω|)2 sin(R|ω|)

+ 12(R|ω|) cos(R|ω|)− 12 sin(R|ω|)
))

,

when λ = 0,√
2

π

1

|ω|8

((
ω2

1 + ω2
2

)(
−(R|ω|)3 sin(R|ω|)− 4(R|ω|)2 cos(R|ω|)

+ 8(R|ω|) sin(R|ω|) + 8 cos(R|ω|)− 8
)

+ ω2
3

(
−(R|ω|)4 cos(R|ω|) + 6(R|ω|)3 sin(R|ω|)

+ 20(R|ω|)2 cos(R|ω|)− 40(R|ω|) sin(R|ω|)

− 40 cos(R|ω|) + 40
))

, when λ = 1.
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Finally, for Ŝ2
1,3(ω), f(u) = |u|λu1u3 and so

f
(
rATσ

)
= rλ+2 1

|ω|2
(
−ω1ω3 sin2(θ) cos2(φ) +

ω1ω
2
3√

ω2
1 + ω2

2

sin(θ) cos(θ) cos(φ)

+ ω2|ω| sin2(θ) sin(φ) cos(φ)− ω2ω3|ω|√
ω2

1 + ω2
2

sin(θ) cos(θ) sin(φ)

− ω1

√
ω2

1 + ω2
2 sin(θ) cos(θ) cos(φ) + ω1ω3 cos2(θ)

)
.

By inserting this expression in the general integral formula (A.1) and evaluating
integrals with respect to φ (noting that an integral of cos(φ), sin(φ) and sin(φ) cos(φ)
over −π ≤ φ ≤ π returns zero), this gives

Ŝ2
1,3(ω) = (2π)−

3
2
ω1ω3

|ω|2

ˆ R

0

rλ+4
(
−π
ˆ π

0

(1− cos2(θ))e−ir|ω| cos(θ) sin(θ) dθ

+ 2π

ˆ π

0

cos2(θ)e−ir|ω| cos(θ) sin(θ) dθ
)

dr.

Using the results for the integrals with respect to θ from Ŝ2
3,3,

Ŝ2
1,3(ω) = (2π)−

3
2 4π

ω1ω3

|ω|2

ˆ R

0

rλ+4

(( 1

(r|ω|)
− 3

(r|ω|)3

)
sin(r|ω|)

+
3

(r|ω|)2
cos(r|ω|)

)
dr.

Again, using a substitution of u = r|ω|, Ŝ2
1,3(ω) can be written as

Ŝ2
1,3(ω) = (2π)−

3
2 4π

ω1ω3

|ω|λ+7

ˆ R|ω|

0

(
(uλ+3 − 3uλ+1) sin(u) + 3uλ+2 cos(u)

)
du.

Then, by evaluating these integrals in each of the Coulomb, Maxwell type and
hardsphere cases, if |ω| 6= 0,

Ŝ2
1,3(ω) =



−
√

2

π

ω1ω3

|ω|4
2R|ω|+R|ω| cos(R|ω|)− 3 sin(R|ω|)

R|ω|
, when λ = −3,√

2

π

ω1ω3

|ω|7
(
−(R|ω|)3 cos(R|ω|) + 6(R|ω|)2 sin(R|ω|)

+ 15(R|ω|) cos(R|ω|)− 15 sin(R|ω|)
)
, when λ = 0,√

2

π

ω1ω3

|ω|8
(
−(R|ω|)4 cos(R|ω|) + 7(R|ω|)3 sin(R|ω|)

+ 24(R|ω|)2 cos(R|ω|)− 48(R|ω|) sin(R|ω|)

− 48 cos(R|ω|) + 48
)
, when λ = 1.

Appendix Appendix B Calculating Bounds for Ŝ

B.1 The case λ = −3: First, by the triangle inequality and noting that |ξk| ≥
hξ = π

Lv
when |ξk| 6= 0,

|Ŝ1
1,1(ξk)| ≤

√
2

π

1

|ξk|2
(2) ≤ 2

π2

√
2

π
L2
v.
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Also, since Ŝ1
1,1(0) =

√
1

2πL
2
v,

|Ŝ1
1,1(ξk)| ≤

√
1

2π
L2
v, for any k = 1, 2, . . . ,M.

Then, when |ξk| 6= 0,

|Ŝ2
3,3(ξk)| ≤

√
2

π

1

|ξk|4

(
|ξk|2

(
1 +

1

Lv|ξk|

)
+ |ξk|2

(
1 + 1 +

2

Lv|ξk|

))

= 3

√
2

π

1

|ξk|2

(
1 +

1

Lv

1

|ξk|

)
≤ 3

√
2

π

L2
v

π2

(
1 +

1

Lv

Lv
π

)
=

3

π3

(
π + 1

)√ 2

π
L2
v.

Also, since Ŝ2
3,3(0) = 1

3
√

2π
L2
v,

|Ŝ2
3,3(ξk)| ≤ 3

π3

(
π + 1

)√ 2

π
L2
v, for any k = 1, 2, . . . ,M.

This then means that the diagonal terms satisfy, for each i = 1, 2, 3 and k =
1, 2, . . . ,M ,

|Ŝi,i(ξk)| ≤ |Ŝ1
i,i(ξk)|+ |Ŝ2

i,i(ξk)| =

(√
1

2π
+

3

π3

(
π + 1

)√ 2

π

)
L2
v.

Similarly, when |ξk| 6= 0,

|Ŝ2
1,3(ξk)| ≤

√
2

π

|ξk||ξk|
|ξk|4

(
2 + 1 +

3

Lv|ξk|

)
= 3

√
2

π

1

|ξk|2

(
1 +

1

Lv

1

|ξk|

)
≤ 3

π3

(
π + 1

)√ 2

π
L2
v.

Also, since Ŝ2
3,3(0) = 0,

|Ŝ2
1,3(ξk)| ≤ 3

π3

(
π + 1

)√ 2

π
L2
v, for any k = 1, 2, . . . ,M.

This a bound for any off-diagonal term and so, since it is smaller than the bound
for the diagonal terms, for each i, j = 1, 2, 3 and k = 1, 2, . . . ,M , when λ = −3,

|Ŝi,j(ξk)| ≤ |Ŝi,i(ξk)| ≤

(√
1

2π
+

3

π3

(
π + 1

)√ 2

π

)
L2
v ≈ 0.719L2

v ≤ L2
v.
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B.2 The case λ = 0: Here, by factoring in the highest power of ξk appearing
in brackets and by the triangle inequality, when |ξk| 6= 0,

|Ŝ1
1,1(ξk)| ≤

√
2

π

1

|ξk|2

(
L3
v + 3L2

v

1

|ξk|
+ 6Lv

1

|ξk|2
+ 6

1

|ξk|3

)
≤
√

2

π

L2
v

π2

(
L3
v + 3L2

v

Lv
π

+ 6Lv
L2
v

π2
+ 6

L3
v

π3

)
=

√
2

π

1

π5

(
π3 + 3π2 + 6π + 6

)
L5
v.

Similarly, when |ξk| 6= 0,

|Ŝ2
3,3(ξk)| ≤

√
2

π

1

π5

((
π2 + 3π + 3

)
+
(
π3 + 5π2 + 12π + 12

))
L5
v

=

√
2

π

1

π5

(
π3 + 6π2 + 15π + 15

)
L5
v

and |Ŝ2
1,3(ξk)| ≤

√
2

π

1

π5

(
π3 + 6π2 + 15π + 15

)
L5
v.

Also, since Ŝ1
1,1(0) = 2

5

√
1

2πL
2
v, Ŝ

2
3,3(0) = 2

15
√

2π
L2
v and Ŝ2

3,3(0) = 0, which are all

less than the previous bounds, the above bounds are true for all k = 1, 2, . . . ,M .
Again, since the bounds for |Ŝ2

1,3(ξk)| and |Ŝ2
3,3(ξk)| are the same, the off-diagonal

terms are clearly bounded by a smaller value than the diagonal terms. So, for each
i, j = 1, 2, 3 and k = 1, 2, . . . ,M , when λ = 0,

|Ŝi,j(ξk)| ≤ |Ŝ1
i,i(ξk)|+ |Ŝ2

i,i(ξk)|

≤
√

2

π

1

π5

((
π3 + 3π2 + 6π + 6

)
+
(
π3 + 6π2 + 15π + 15

))
L5
v

=

√
2

π

1

π5

(
2π3 + 9π2 + 21π + 21

)
L5
v

≈ 0.620L5
v

≤ L5
v.

B.3 The case λ = 1: Finally, by the same method as for λ = 0, when |ξk| 6= 0,

|Ŝ1
1,1(ξk)|

≤
√

2

π

1

|ξk|2

(
L4
v + 4L3

v

1

|ξk|
+ 12L2

v

1

|ξk|2
+ 24Lv

1

|ξk|3
+ 24

1

|ξk|4
+ 24

1

|ξk|4

)
=

√
2

π

1

π6

(
π4 + 4π3 + 12π2 + 24π + 48

)
L6
v,

|Ŝ2
3,3(ξk)| ≤

√
2

π

1

π6

(
π4 + 7π3 + 24π2 + 48π + 96

)
L6
v

and |Ŝ2
1,3(ξk)| ≤

√
2

π

1

π6

(
π4 + 7π3 + 24π2 + 48π + 96

)
L6
v.

Also, since Ŝ1
1,1(0) = 1

3

√
1

2πL
2
v, Ŝ

2
3,3(0) = 1

9
√

2π
L2
v and Ŝ2

3,3(0) = 0, which are all

less than the previous bounds, the above bounds are true for all k = 1, 2, . . . ,M .
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Again, since the bounds for |Ŝ2
1,3(ξk)| and |Ŝ2

3,3(ξk)| are the same, the off-diagonal
terms are clearly bounded by a smaller value than the diagonal terms. So, for each
i, j = 1, 2, 3 and k = 1, 2, . . . ,M , when λ = 1,

|Ŝi,j(ξk)| ≤ |Ŝ1
i,i(ξk)|+ |Ŝ2

i,i(ξk)|

≤
√

2

π

1

π6

((
π3 + 4π3 + 12π2 + 24π + 48

)
+
(
π4 + 7π3 + 24π2 + 48π + 96

))
L6
v

=

√
2

π

1

π5

(
2π4 + 11π3 + 36π2 + 72π + 144

)
L6
v

≈ 1.047L6
v

. L6
v.

Appendix Appendix C Timescales for Simulations with Different
Masses

Consider two simulations of the space-homogeneous Fokker-Planck-Landau type
equation (2.3), where the solution of one has mass a factor of τ > 0 different to the
other. If the two solutions are denoted fa and f b then this means that f b = τfa.
Assume also that fa is modeled on time-scale ta and f b on time-scale tb. Then, the
equations which the function fa and f b satisfy respectively are

∂fa

∂ta
=

1

ε
Q(fa, fa) (C.1)

and
∂f b

∂tb
=

1

ε
Q(f b, f b). (C.2)

Now, using f b = τfa in equation (C.2) gives

∂ (τfa)

∂tb
=

1

ε
Q(τfa, τfa),

which is equivalent to τ
∂fa

∂tb
=
τ2

ε
Q(fa, fa), (C.3)

by considering the bilinear property of Q.

Then, if the timescales are chosen such that ta = τtb, ∂fa

∂tb
= τ ∂f

a

∂ta by the chain
rule, and equation (C.3) becomes

τ2 ∂f
a

∂ta
=
τ2

ε
Q(fa, fa),

which is equivalent to equation (C.1) after dividing through by τ2. This suggests
that when f b is modeled on the time-scale tb = 1

τ t
a then any results will be com-

parable to that of modeling fa on time-scale ta.
One final thing to notice here is that when f b = τfa then the entropy of f b

satisfies Hb[f b](t) = τHa[fa](t) + τ ln(τ). In this case, the equilibrium Maxwellians
Ma

eq andMb
eq approached by fa and f b, respectively, satisfyMb

eq = τMa
eq as well.

This means that the relative entropy is scaled as

Hb[f b|Mb
eq] = (τHa[fa](t) + τ ln(τ))− (τHa[Ma](t) + τ ln(τ)) = τHa[fa|Ma

eq].
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Appendix Appendix D Space-inhomoegeneous Equilibrium Energy
Calculations

As explained in the introduction while discussing the space-inhomogeneous equi-
librium Maxwellian (2.7), the equilibrium total energy T toteq satisfies T toteq = T tot(0),

for T tot calculated by expression (2.5). Here, TK(0) = T , for T used in the
Maxwellian in the initial condition (6.5). Also, it can easily be shown that the
exact solution to Poisson’s equation associated to the initial condition (6.5) is
Φ(x, 0) = 4A(1 − cos( 1

2x)) + C (for some constant C) which, when used in for-

mula 2.6, gives TE(0) = A2Lx.
By using expression (6.6) for the equilibrium solution, as well as Φeq(x) = 0, to

calculate T toteq = lim
t→∞

T tot(t),

T toteq =

ˆ Lx

0

ˆ
Ωv

1

(2πTeq)
3
2

e
− |v|

2

2Teq

(
1

2
|v|2 +

1

2
|0|2
)

dvdx =
3

2
ρ0Teq.

So, T toteq = T tot(0) is equivalent to

3

2
ρ0Teq =

3

2
ρ0T +A2Lx,

which gives

Teq = T +
2

3
A2,

since ρ0 = Lx here.
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