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Abstract. Error estimates are rigorously derived for a semi-discrete version

of a conservative spectral method for approximating the space-homogeneous
Fokker-Planck-Landau (FPL) equation associated to hard potentials. The ana-

lysis included shows that the semi-discrete problem has a unique solution with

bounded moments. In addition, the derivatives of such a solution up to any
order also remain bounded in L2 spaces globally time, under certain condi-

tions. These estimates, combined with control of the spectral projection, are

enough to obtain error estimates to the analytical solution and convergence to
equilibrium states. It should be noted that this is the first time that an er-

ror estimate has been produced for any numerical method which approximates

FPL equations associated to any range of potentials.
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1. Introduction

An important model for plasmas is the Landau equation, which results from
the grazing collision limit of the Boltzmann equation. This limit, first derived by
Landau [22], assumes that colliding particles are travelling almost parallel to each
other due to repulsive Coulomb forces.

A more mathematical description of the limit was detailed by Degond and Lucquin-
Desreux [8], Desvillettes [9, 10], Villani [27] and Desvillettes and Villani [11], even for
extended potential rates higher than Coulomb interactions and up to hard spheres.
When rates different to Coulomb interactions are used, the equation is referred to
as being of Fokker-Planck-Landau type. Computationally, the limiting problem has
been studied by Bobylev and Potapenko [3], using Monte Carlo methods, and in
Fourier space by Haack and Gamba [19, 20].

The Landau equation is rather difficult to model, either analytically or numeric-
ally, due to the high dimensionality, non-linearity and non-locality. For numerical
simulations, a deterministic scheme can be used, such as the conservative spec-
tral method, developed by Zhang and Gamba [28], which is the model of choice
for the current work. The method described in [28] is in fact a solver for the
space-inhomogeneous Landau equation, coupled to Poisson’s equation, where the
advection is modeled by a discontinuous Galerkin scheme, but here only the space-
homogeneous version is considered. Qualitative evidence of the strength of this
scheme has been provided by the present authors [25, 26] by showing that it can
capture the correct decay rate to equilibrium for a range of potentials, from Coulomb
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to hard sphere interactions. This was exemplified by simulations of entropy decay
for both the space-homogeneous equation and by coupling to Poisson’s equation in
the mean-field limit.

Even less is known analytically about Fokker-Planck-Landau equations than the
Boltzmann equation. For hard potentials, many important results regarding exist-
ence and uniqueness, as well as moment and entropy estimates, can be found in
the work of Desvillettes and Villani [12, 13]. They use entropy methods to prove
convergence to equilibrium at a rate faster than any polynomial in time but this
was improved to an exponential rate by Carrapatoso [4].

In [13] there is an explicit lower bound for the spectral gap of the linearised
collision operator associated to hard potentials, which improves on the original
results by Degond and Lemou [7]. Long-time behaviour of linearised Fokker-Planck-
Landau equations has also been considered by several authors, including Guo [18]
and Baranger and Mouhot [2]. For soft potentials, Carrapatoso [5] used entropy
methods to prove convergence to equilibrium at a rate faster than any polynomial
for the fully nonlinear equation and exponentially in the linear setting.

Spectral methods as an approximating model for the space-homogeneous Landau
equation were first considered by Pareschi et al. [23], and later by Filbet and
Pareschi[15] and Crouseilles and Filbet [6], but did not preserve the conservation
properties of the Landau equation. This limited the ability of these schemes to com-
pute accurate dynamics for long time approximations to the Maxwell-Boltzmann
equilibrium.

The version of the spectral method in this work exploits the weak form of the
Landau equation in order to calculate the Fourier transform of the collision operator.
It does so in just O(N3 logN) operations, where the number of Fourier modes N
can be rather small, thanks to the conservation enforcement. No periodising is
required either, once again thanks to conservation. Instead, a cut-off domain in
velocity space is used, within which the majority of the solution’s mass should be
supported, based on a result by Gamba et al. [16] for the Boltzmann equation. This
general construction was first applied to the Boltzmann equation by Gamba and
Tharkabhushaman [17] and the details for the derivation of the Landau equation
scheme can be found in the paper by Zhang and Gamba [28].

It is important to note that, despite the importance of deterministic methods for
simulating Fokker-Planck-Landau type equations, there has been no analysis into
the convergence of the approximations of these schemes to the true solutions. Error
estimates were developed, however, by Alonso et. al [1] for the spectral method
used to solve the Boltzmann equation. These will be closely followed when deriving
error estimates for Fokker-Planck-Landau type equations, and coupled with the
analytical theory developed by Desvillettes and Villani [12].

The focus of the present work is to obtain an error estimate on the conservative
spectral method approximation to the space-homogeneous Landau equation associ-
ated to hard potentials. The problem being approximated is described in Section 2.
All work presented here is actually carried out on a semi-discrete version, which is
introduced in Section 4. The general idea to produce an error estimate on the solu-
tion of that semi-discrete problem begins with proving that the distance between
the conserved and unconserved collision operators is small in L2-norm, which is
achieved in Section 6. This fact is essential for every result that follows. The
next step is to prove that the moments and L2-norm of the semi-discrete problem
propagate in time, which is carried out in Section 7 after obtaining an estimate on
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the derivatives of these quantities. In that section it is also shown that the negative
part of the numerical approximation can be controlled.

It is then shown in Section 8 that the semi-discrete problem has a unique solution
which also satisfies the propagation of moments and L2-norm and in Section 9
the regularity of that solution is considered by bounding its Hs norm, for any
s > 0. This work is concluded by deriving the L2 error estimate in Section 10 and
proving that the approximation will always converge to the appropriate equilibrium
Maxwellian, provided it is close enough, in Section 11. Before starting this analysis,
however, some notation must be introduced in Section 3 and useful results from
previous authors on Fokker-Planck-Landau type equations stated in Section 5.

2. The Landau Equation

The initial value problem associated to a space-homogeneous Fokker-Planck-
Landau type equation is to find f(t,v), where (t,v) ∈ (R+,Rd), for dimension
d ∈ N+, such that

ft(t,v) = Q(f, f)(t,v), (2.1)

where f(0,v) = f0(v) and Q(f, f) is the collision operator defined as

Q(f, f) := ∇v ·
ˆ
R3

S(v − v∗)(f∗∇vf − f∇v∗f∗) dv∗, (2.2)

for S(u) := |u|λ+2

(
I− uu

T

|u|2

)
,

with I ∈ Rd×d the identity matrix and the subscript notation f∗ meaning evaluation
at v∗ (the velocity of a colliding particle). In general, λ > 0 corresponds to hard
potentials and λ < 0 to soft potentials. Here, λ = 1 models hard sphere interactions;
λ = 0 is known as a Maxwell type interaction; and λ = −3 models Coulomb
interactions between particles. For the current work, the attention is on 0 ≤ λ ≤ 1.

2.1. Properties of Fokker-Planck-Landau Type Equations. An important
identity associated to the Fokker-Planck-Landau operator (2.2) is the weak form.
After multiplying the operator (2.2) by a sufficiently smooth function φ and integrat-
ing over Rd, along with some variable changes and an application of the divergence
theorem, the weak form is given byˆ

Rd
Q(f, f)φ dv =

ˆ
R2d

(∇v∗φ∗ −∇vφ)TS(v − v∗)f∗∇vf dv∗dv. (2.3)

Furthermore, since Fokker-Planck-Landau type equations are a limit of the Boltzmann
equation, they enjoy the same conservation laws. In particular, for the set of colli-

sion invariants {φk(v)}d+1
k=0 :=

{
1, v1, . . . , vd, |v|2

}
,ˆ

Rd
Q(f, f)(v)φk(v) dv = 0, for k = 0, 1, . . . , d. (2.4)

This is important because it leads to the conservation of mass ρ, average velocity
V and kinetic energy T , where each of these quantities are found via

ρ :=

ˆ
Rd
f(t,v) dv, V :=

1

ρ

ˆ
Rd
f(t,v)v dv

and T :=
1

dρ

ˆ
Rd
f(t,v)|v|2 dv.
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These moments will always be conserved for the single-species space-homo-geneous
Fokker-Planck-Landau type equation (2.1). They will also be conserved for the
space-inhomogeneous version when solved with appropriate boundary conditions,
such as reflective or periodic conditions. If the initial mass, average velocity and
kinetic energy are denoted by ρ0, V0 and T0, respectively, the equilibrium solution
of the Landau equation is a Gaussian distribution with the same moments, namely

Meq(v) :=
ρ0

(2πT0)
d
2

e−
|v−V0|

2

2T0 . (2.5)

Initially f(0,v) = f0(v) and it is assumed that suppf b Ωv, since f should
have sufficient decay in velocity-space [16] and Ωv ⊂ Rd is chosen depending on
the initial data. It should still be that v ∈ Rd but values of f are negligible
outside a sufficiently large ball. The initial data is then extended by zero outside

the computational domain, which means it can be controlled by e−c|v|
2

, for c > 0
depending on the moments of f0. Under such conditions, it is expected that the
computational solution will remain supported on Ωv up to a fixed small error that
depends on the initial data. More details on this choice of domain can be seen in
Subsection 2.3.

2.2. The Spectral Method for Space-homogeneous Fokker-Planck-Landau
Type Equations. The method used for solving the space-homogeneous Fokker-
Planck-Landau type equation (2.1) is referred to as spectral because it exploits the
weighted convolution structure of the collision operator (2.2) to compute its values
using the fast Fourier transform (FFT). To see this, first note that by choosing the

Fourier transform kernel φ(v) = (2π)−
d
2 e−iξ·v in the weak form identity (2.3), the

Fourier transform of Q at a given Fourier mode ξ ∈ Rd is

Q̂(ξ) = (2π)−
d
2

ˆ
Rd
Q(f, f)e−iξ·v dv

= (2π)−
d
2

ˆ
R2d

(
∇v∗

(
e−iξ·v∗

)
−∇v

(
e−iξ·v

))T
S(v − v∗)f∗∇vf dv∗dv.

By evaluating the derivatives of the exponential functions and carrying out many
manipulations which take advantage of properties of the Fourier transform (the
details of which can be found in [28]), this expression for the Fourier transform

Q̂(ξ) reduces to

Q̂ (ξ) =

ˆ
Rd
f̂ (ξ − ω) f̂(ω)

(
ωT Ŝ (ω)ω − (ξ − ω)

T
Ŝ (ω) (ξ − ω)

)
dω, (2.6)

where Ŝ is the Fourier transform of S given in (2.2).

It should be noted that the Fourier transformed collision operator Q̂ retains the
convolution structure and can be written as

Q̂ (ξ) =

ˆ
Rd
f̂ (ξ − ω) f̂(ω)ĜL(ξ,ω) dω, (2.7)

for some weight GL. When applying similar manipulations to find the Fourier
transform of the Boltzmann collision operator, it can be written in the same form
as (2.7) but with a different weight, say, GB . This is the basis behind the proof
of convergence to the Boltzmann collision operator to the Landau one in Fourier
space described by Gamba and Haack [19, 20], as the problem reduces to proving
that the weight GB converges to GL.
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To save time computationally, the weight ĜL can be precomputed. The evalu-

ation of Q̂ then only involves an application of the FFT to find f̂ and a weighted
convolution which can be calculated by some quadrature method. Due to the speed
of the FFT, this can therefore be completed in O(Nd log(N)) operations for the
number of Fourier modes N in each velocity dimension. The final step is to take
the inverse fast Fourier transform (IFFT) to recover Nd many discrete evaluations
of Q.

2.3. Choosing a Computational Domain. For computational purposes, the
evaluation of the integral in expression (2.6) for Q̂ cannot be carried out over all
of Rd and a cut-off domain must be defined, say Ωξ ⊂ Rd, which is paired with an
associated velocity domain Ωv ⊂ Rd. This also means that the Landau collision
operator must be approximated on the computational domain Ωv. In doing so,
the conservative property of the Landau equation is lost because the integrals (2.4)
which enforce the conservation no longer use the collision operator Q defined on the
entire space Rd. This point is addressed by the conservation method but the effects
of introducing a bounded domain can be minimised by choosing it large enough.

In particular, as was proven by Gamba et al. [16] for the Boltzmann equation, if
the initial data f0(v) is bounded by a Gaussian distribution then there is a slightly
larger Gaussian distribution for which the solution f(t,v) is supported underneath
for any time t > 0. This means that if the domain is chosen large enough then, not
only will the approximation remain bounded, it also decays with Gaussian tails and
so it can be guaranteed that the majority of the mass and energy remain contained
in Ωv during any simulation.

More precisely, in order to choose the domain, assume that f0 satisfies

f0(v) ≤ C0ρ0

(2πT0)
d
2

e−
r0|v|

2

2T0 , (2.8)

for constants r0 ∈ (0, 1] and C0 ≥ 1 which stretch and dilate the Gaussian, as well
as the initial mass ρ0 =

´
Rd g0(v) dv and temperature T0 = 1

dρ0

´
Rd g0(v)|v|2 dv

(where V = 0 is chosen without loss of generality). Then, based on the result of
[16], there are new constants r ∈ (0, r0] and C ≥ C0 which depend on the initial data
and the potential λ (as well as the cross-section b for the result on the Boltzmann
equation) such that, for all t > 0,

f(v, t) ≤ Cρ0

(2πT0)
d
2

e−
r|v|2
2T0 . (2.9)

Then, since the tails of the Gaussian (2.9) have negligible mass and energy, a
positive value δM � 1 can be chosen such thatˆ

Ωcv

f(t,v)〈v〉2 dv ≤
ˆ

Ωcv

Cρ0

(2πT0)
d
2

e−
r|v|2
2T0 〈v〉2 dv ≤ δM

ˆ
Ωv

|f0(v)|〈v〉2 dv.

This means that δM can be considered as a tolerance for what portion of the initial
mass and energy is lost by using the bounded domain Ωv.

2.4. The Conservation Routine. Even if a larger domain Ωv will give a more
accurate approximation to Q̂, and therefore Q, some amount of error is unavoidable
whenever truncating the velocity domain. Conservation can be enforced, however,
by considering a constrained minimisation problem. Given a collection of discrete

values of the collision operator Q resulting from the spectral method, say {Q̃n}N
d

n=1,
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a new set of values {Qn}N
d

n=1 must be found which are as close as possible to the
original values in `2-norm but satisfy the discrete form of (2.4). This discrete form
replaces the integrals in (2.4) with quadrature sums and can be written as

Nd∑
n=1

Qn(φk)nωn = 0, for k = 0, 1, . . . , d+ 1,

where {(φk)n}d+1
k=0 are evaluations of the d+2 collision invariants at the same discrete

point where Qn is evaluated and ωn is the corresponding quadrature weight for that
point. If the discrete values ofQ are stored in the vectorQ of lengthNd, this discrete
conservation can be written as

AQ = 0, where Ak,n := (φk−1)nωn, for k = 1, 2 . . . , d+ 2, n = 1, 2, . . . Nd.
(2.10)

Then, given Q̃ = (Q̃1, Q̃2, . . . , Q̃Nd), the least squares problem is to find the
vector Q = (Q1, Q2, . . . , QNd) of conserved evaluations of the collision operator
which solves

min
Q∈RNd

∣∣∣∣Q̃−Q∣∣∣∣2
`2
, such that AQ = 0. (2.11)

This can then be solved as a (d + 2)-dimensional Lagrange multiplier problem by
defining the operator

L(Q,γ) :=

Nd∑
n=1

(
Q̃n −Qn

)2 − γTAQ.
By solving ∇QL = 0 for the Lagrange multiplier γ, the discrete values of the
conserved collision operator are found to be

Q = Λ(A)Q̃ where Λ(A) := I −AT (AAT )−1A. (2.12)

This means that the conservation is simply matrix-vector multiplication. The
details of the derivation of Λ(A) can be found in [17] and [28] for the Boltzmann
and Landau equations, respectively, but it should be noted that Λ(A) is identical for
both equations. The full algorithm of the conservative spectral method for solving
the space-homogeneous Fokker-Planck-Landau type equation (2.1) when conserving
in velocity space is then given in Algorithm 1.

Algorithm 1 The conservative spectral method for solving the space-homogeneous
Fokker-Planck-Landau type equation (2.1) when conserving in velocity space

Precondition: F contains evaluations of f on the uniform velocity grid at a given
time-step tn

1: for each step in Runge-Kutta do
2: Calculate the FFT of F and store the values in F̂ . O(Nd logN)

3: Calculate Q̂(F̂ ) at each point in the uniform Fourier space grid using identity

(2.6) and store the values in Q̂ . O(Nd)

4: Calculate the IFFT of Q̂ and store the values in Q̃ . O(Nd logN)

5: Set Q = Λ(A)Q̂ as in (2.12), with A given in (2.10) . O(Nd)
6: Perform the iteration of Runge-Kutta to update F . O(Nd)
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3. Notation

3.1. Spaces. The error estimate will be obtained by reproducing the error analysis
performed by Alonso et al. [1] on the space-homogeneous Boltzmann equation. For
this reason, a lot of the notation from their work will be introduced here. First, it
is convenient to use the angle brackets 〈v〉 :=

√
1 + |v|2, for v ∈ Rd. Then, for a

measurable set Ω ⊆ Rd, p ≥ 1 and k ∈ R, the Lebesgue spaces Lpk(Ω) are defined
by

Lpk(Ω) :=
{
f : ‖f‖Lpk(Ω) <∞

}
,

where

‖f‖Lpk(Ω) :=

{(´
Ω
|f(v)〈v〉k|p dv

) 1
p , when 1 ≤ p <∞,

esssup |f(v)〈v〉k|, when p =∞.
(3.1)

In addition, for s ∈ N, the Hilbert spaces Hs
k(Ω) are then defined as

Hs
k(Ω) :=

{
f : ‖f‖Hsk(Ω) <∞

}
, where ‖f‖Hsk(Ω) :=

 ∑
α∈Nd:
|α|≤s

‖Dαf‖2L2
k(Ω)


1
2

.

(3.2)
Note that the Hilbert space Hs is the completion of the infinitely smooth functions

C∞(ω) by the norm ‖f‖Hs(Ω) = ‖〈ξ〉sf̂‖L2(Ω) and is sometimes referred to as an
inhomogeneous Sobolev space. The corresponding homogeneous Sobolev space, de-
noted Ḣs, will sometimes be used as well and is the completion of C∞(Ω) by the

norm ‖f‖Ḣs(Ω) = ‖ |ξ|sf̂‖L2(Ω).

Most of the time, Ω is simply ΩLv := (−Lv, Lv)d or Rd and d = 3. Note also
that the classical Lp and Hα norms satisfy ‖f‖Lp(Ω) = ‖f‖Lp0(Ω) and ‖f‖Hα(Ω) =

‖f‖Hα0 (Ω). The special case of the L1
k(Rd) norm is referred to as the kth moment of

a function f , for k ∈ R, denoted mk(f), which means

mk(f) :=

ˆ
Rd
|f(v)|〈v〉k dv. (3.3)

3.2. Fourier Series. In order to discuss the convergence of the approximation to
the true solution, it is necessary to introduce the truncated Fourier series. To begin
with, for a function f ∈ L1(U) defined on an open set U ⊂ Rd, the formulation used
for the Fourier transform of f here is

f̂(ξ) :=
1

(2π)
d
2

ˆ
U

f(v)e−iξ·vdv.

Then, for U = ΩLv = (−Lv, Lv)d, if f ∈ L2(ΩLv ), the Fourier series of f is given
by

f(v) =
1

(2Lv)d

∑
k∈Zd

f̂(ξk)eiξk·v,

where ξk = 2π
Lv
k for the multi-index k = (k1, k2, . . . , kd). Furthermore, the ortho-

gonal projection onto the first (2N + 1)d basis elements is found through the mode
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projection operator ΠN
Lv

: L2(ΩLv )→ L2(ΩLv ), where ΠN
Lv
f is defined by

ΠN
Lvf(v) :=

1

(2Lv)d

∑
k∈Zd:
|ki|≤N

f̂(ξk)eiξk·v.

At this point it is convenient to notice that, for a multi-index α ∈ Nd, if f ∈
H
|α|
0 (ΩLv ), by using the properties of derivatives of Fourier transforms,

DαΠN
Lvf(v) =

1

(2Lv)d

∑
k∈Zd:
|ki|≤N

(iξ)αf̂(ξk)eiξk·v

=
1

(2Lv)d

∑
k∈Zd:
|ki|≤N

D̂αf(ξk)eiξk·v = ΠN
LvD

αf(v). (3.4)

This means that DαΠN
Lv

= ΠN
Lv
Dα and so the mode projection operator commutes

with differentiation. In addition, by Parseval’s theorem,

‖ΠN
Lvf‖L2(ΩLv ) ≤ ‖f‖L2(ΩLv ), for any N ∈ N,

with equality when N =∞, and

‖f −ΠN
Lvf‖L2(ΩLv ) → 0, as N →∞.

3.3. Extension Operators. Now, restricting the original velocity domain of Rd
to ΩLv introduces some complications at the boundary as a result of the solution
being truncated. To handle these issues, a scaled cut-off function χ is introduced,
given by

χ(v) := ϕ

(
v

Lv

)
, (3.5)

where ϕ : Rd → [0, 1] is any smooth non-negative function such that supp(ϕ) ⊂
(1− 1

5δχ)[−1, 1]d and ϕ(v) = 1 when v ∈ (1−δχ)[−1, 1]d, for some small 0 < δχ � 1.

Whereas the introduction of this cut-off function is not necessary for L2 estimates,
it is for the higher order Sobolev regularity results since it smooths the boundary
in such a way that does not introduce a significant amount of error. In particular,
for any function g ∈ Hs(ΩLv ), by the product rule,

‖χg‖Hs(ΩLv ) ≤ Cχ‖g‖Hs(ΩLv ), (3.6)

where Cχ ≥ ‖χ‖Cs can be taken as independent of Lv ≥ 1.
Furthermore, for any function g ∈ Hs(ΩLv ), the restriction of g by χ can be

viewed as a function defined on all of Rd with values extended by zero outside of
ΩLv , which gives

‖χg‖Hs(Rd) = ‖χg‖Hs(ΩLv ).

As a result, the cut-off function χ can actually be viewed as an extension operator
from Hs(ΩLv ) to Hs(Rd). This will be useful when needing to compare the semi-
discrete approximation (defined on ΩLv ) with the true continuous solution (defined
on all of Rd). Note that for L2 estimates, where the boundary does not present any
issues, χ may be chosen as χ(v) = 1 for any v ∈ Rd.
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4. The Semi-discrete Problem

First, applying the mode projection operator ΠN
Lv

to both sides of the space-
homogeneous Landau equation gives

∂

∂t
(ΠN

Lvf)(t,v) = ΠN
LvQ(f, f)(t,v),

with f(0,v) = f0(v),

for the pdf f(t,v), with (t,v) ∈ (R+,ΩLv ). It should then be expected that, as in
[1], when N is chosen to be sufficiently large,

ΠN
LvQ(f, f)(t,v) ∼ ΠN

LvQ(ΠN
Lvf,Π

N
Lvf)(t,v), for (t,v) ∈ (R+,ΩLv ).

When this analysis was applied to the Boltzmann equation, the collision operator
was split as Q = Q+ − Q− at this point, where Q+ and Q− are the positive and
negative parts of the collision operator, respectively. For the Boltzmann equation,
this is essential because any negative values in the collision operator come from
Q− and so this part needs to be isolated. For the Landau equation, however, the
negative contribution is more entangled due to the derivatives but can be extracted
by manipulations carried out by Desvillettes and Villani [12]. In order to use their
calculations, it is useful to introduce the notation

ai,j(z) := Si,j(z) = |z|λ+2

(
δi,j −

zizj
|z|2

)
, for i, j = 1, 2, . . . , d, (4.1)

bi(z) :=
∂

∂vj
(ai,j) = −2|z|λzi, for i = 1, 2, . . . , d, (4.2)

and c(z) :=
∂2

∂zi∂zj
(āi,j) = ∇ · b = −2(λ+ 3)|z|λ. (4.3)

Then, the collision operator Q can be written as

Q(f, g) = āi,j
∂2f

∂vi∂vj
− c̄f,

where the bar notation means convolution with the second argument of Q(f, g) (e.g.
ā = a ∗ g).

Also with this notation, assuming that f(v)→ 0 as |v| → 0, the weak form of Q
can be written asˆ

Rd
Q(f, g)φ dv =

ˆ
Rd
f

(
āi,j

∂2φ

∂vi∂vj
+ 2b̄i

∂φ

∂vi

)
dv, (4.4)

which is derived in Lemma A.1 of the appendix.
One final thing to note is that, since Q involves a convolution operator, it has

support in Ω√2Lv
. So, for simplicity, it will be assumed that Q is defined on Ω2Lv .

The problem then reduces to finding the pdf g(t,v), with (t,v) ∈ (R+,ΩLv ), such
that

∂g

∂t
(t,v) = ΠN

2LvQ(χg,χg)(t,v), (4.5)

with g(0,v) = gN0 (v) = ΠN
2Lvf0(v).

Here, it should be that g ≈ ΠN
2Lv

f . The classical theory of spectral accuracy
already ensures that g is indeed a good approximation to the solution of the Landau
equation in the cut-off domain Ω2Lv , for sufficiently large N . The problem here,
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however, is that it is more desirable to fix a smaller number of Fourier modes for
computational purposes, but this removes the conservative properties of the collision
operator. For this reason, the right-hand side of equation (4.5) is referred to as the
unconserved collision operator, denoted Qu, namely

Qu(g, g)(t,v) := ΠN
2LvQ(χg,χg)(t,v). (4.6)

If the operator Qu was used by itself in the numerical method, an error would
accumulate due to the lack of conservation. This has already been seen in the work
of the present authors [25, 26] when the simulation was left to run with this operator
alone. The issue is fixed, however, by correcting any values of Qu computed to the
solution of a Lagrange minimisation problem which enforces conservation.

In order to describe the minimisation problem more precisely, first define the
Banach space B as

B :=

{
X ∈ L2(ΩLv ) :

ˆ
ΩLv

X dv =

ˆ
ΩLv

Xv dv =

ˆ
ΩLv

X|v|2 dv = 0

}
, (4.7)

which is simply all functions X ∈ L2(ΩLv ) with appropriate moments conserved.
This means that the solution X† to the minimisation problem of finding the closest
L2(ΩLv ) function to Qu with the correct collision invariants can be written as

X† := min
X∈B

ˆ
ΩLv

(Qu(f, f)−X)2 dv. (4.8)

Since this corrected version of Qu satisfies the correct conservation properties, it
is referred to as the conserved collision operator and denoted Qc(f, f) := X†. It
should be noted that, when f is discretised onto Nd many Fourier modes, the

conserved collision operator is also a discrete vector Qc ∈ RNd .
After correcting Qu to Qc via the above minimisation method, the actual semi-

discrete problem that will be analysed here is to find g(t,v), with (t,v) ∈ (R+,ΩLv ),
such that

∂g

∂t
(t,v) = Qc(g, g)(t,v), (4.9)

with g(0,v) = gN0 (v) = ΠN
2Lvf0(v).

The only assumption on the initial data required for the analysis here is that, for
some ε with 0 < ε ≤ 1

4 , g0 satisfiesˆ
{g0<0}

|g0(v)|〈v〉2 dv ≤ ε
ˆ
{g0≥0}

g0(v)〈v〉2 dv. (4.10)

Assumption (4.10) can be seen as a sort of stability condition on the initial data.

5. Useful Analytical Results

Here certain useful results from the previous work of other authors will be collec-
ted and restated for use throughout the analysis. First, perhaps the most frequently
used identity is the ellipticity of ā, written as Proposition 4 in [12].

Proposition 5.1. If f ∈ L1
2

⋂
L logL(Rd) then there is a constant Kλ(f0), depend-

ing on the potential λ and the initial condition f0, such that

āi,jξiξj ≥ Kλ(f0)(1 + |v|λ)|ξ|2, for any ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd,
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where Kλ(f0) is defined by a combination of expressions (52) and (55) in [12] and

can be written as Kλ(f0) = K̃λm0(f0), for a new constant K̃λ which no longer
depends on g0, but only λ.

Next, an important pair of theorems from [12] state that the moments and
weighted Sobolev H2

k -norm of the true solution f to the Fokker-Planck-Landau
equation (2.1) remain bounded in time, especially because the semi-discrete ana-
logues of these theorem will be proven on the solution g of equation (4.9). The
relevant theorem on propagation of moments is as follows.

Proposition 5.2. If f is a weak solution to the Fokker-Planck-Landau type equation
(2.1) associated to hard potentials, with initial condition f0 ∈ L1

2 then, for any s > 0
and time t0 > 0, there is a constant Cf (f0) > 0 depending on t0 and f0 such that

mk(f)(t) ≤ Cf (f0), for t > t0.

Then, the theorem from [12] related to the propagation of H2
k -norm of the true

solution f is stated. Some identities contained in the proof of this theorem are also
important so they will be quoted here as well.

Proposition 5.3. (a) If f0 ∈ L1
2+δ

⋂
L logL(Rd), for some δ > 0, then there is a

weak solution f to the Fokker-Planck-Landau type equation (2.1) associated to hard
potentials such that, for any k > 0,

(i) if ‖f0‖L2
k(Rd) <∞ and ‖f0‖L2

5
4

(k+λ)
(Rd) <∞ then

sup
t>t0

‖f(t, ·)‖L2
k
(Rd) <∞;

(ii) for any time t0 > 0 and s ∈ N0, there is a constant Cfλ,s,k(f0) which depends
on λ, s, k and t0 as much f0 such that

sup
t>t0

‖f(t, ·)‖Hsk(Rd) ≤ Cfλ,s,k(f0);

(iii) for any time t > 0, f ∈ C∞
(
[t0,∞));S(Rd)

)
.

(b) Moreover, for any k ≥ 0, if Kλ(f0) is the constant from Proposition 5.1,
(i) there is a constant Cλ, depending on the potential λ, such thatˆ

Rd
Q(f, f)f(v)〈v〉2k dv ≤ −Kλ(f0)‖f‖2

Ḣ1

k+λ
2

(Rd)
+ Cλ‖f‖2L1

5
2 (k+λ

2 )
(Rd);

(ii) for s ∈ N, there is some ν > 1 and constants Kλ,s(f0) > 0 (related to Kλ(f0))
and Cλ,s > 0, both depending on λ and s such that∑

α∈Nd:
|α|=s

ˆ
Rd
DαQ(f, f)Dαf〈v〉2k dv ≤ −Kλ,s(f0)

(
‖f‖2Ḣsk(Rd)

)ν
+ Cλ,s ‖f‖Ḣs ‖f‖

2
Hs−1

k+λ
2

+1
(Rd) .

Note that parts (b)(i) and (ii) of Proposition 5.3 appear in the proofs of (a)(i)
and (ii), respectively, in Section 6 of [12]. In the proof of (a)(ii), the Cλ,s ‖f‖Ḣs
term in the identity from (b)(ii) is merely replaced by a generic C but, by following
the previous details of the proof, it must be that C includes the factor ‖f‖Ḣs .

A more recent estimate on the Fokker-Planck-Landau operator given by He will
also be useful, in particular for obtaining a bound on the L2-norm of the operator.
The following result is a part of Theorem 1.5 in [21].
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Proposition 5.4. When λ > −2, given constants w1, w2, a, b ∈ R with w1 + w2 =
λ+ 2 and a+ b = 2 and any smooth functions F , G and H, there is some uniform
constant CH > 0 such that the Landau collision operator Q satisfies∣∣∣∣∣
ˆ

ΩLv

Q(F,G)H dv

∣∣∣∣∣ ≤ CH(‖F‖L1
λ+2+(−w1)++(−w2)+

(ΩLv )

+ ‖F‖L2(ΩLv )

)
‖G‖Haw1

(ΩLv )‖H‖Hbw2
(ΩLv ),

where the superscript + notation means to take the positive part (i.e.
(w)+ := max(w, 0)).

For the specific case of b = w2 = 0, so that a = 2 and w1 = λ+ 2,∣∣∣∣∣
ˆ

ΩLv

Q(F,G)H dv

∣∣∣∣∣ ≤ CH(‖F‖L1
λ+2(ΩLv )

+ ‖F‖L2(ΩLv )

)
‖G‖H2

λ+2(ΩLv )‖H‖L2(ΩLv ). (5.1)

To see how this leads to an estimate on the L2-norm of the collision operator,
first consider the dual space definition of the L2-norm, namely

‖Q(F,G)‖L2(ΩLv ) = sup
H∈L2(ΩLv ):
‖H‖L2(ΩLv

)≤1

∣∣∣∣∣
ˆ

ΩLv

Q(F,G)H dv

∣∣∣∣∣ .
By using the estimate (5.1), this means

‖Q(F,G)‖L2(ΩLv ) ≤ CH
(
‖F‖L1

λ+2(ΩLv ) + ‖F‖L2(ΩLv )

)
‖G‖H2

λ+2(ΩLv ). (5.2)

6. An Extended Isoperimetric Problem for Conservation

To begin the analysis required toward deriving an error estimate, it will first
be shown that the minimisation problem introduced in Section 4 to obtain the
conserved collision operator Qc corresponding to its unconserved counterpart Qc
has a unique solution. This is given in the following lemma.

Lemma 6.1. The unique minimiser to the conservation problem (4.8) is given by

Qc(f, f)(v) = Qu(f, f)(v)− 1

2

γ1 +

d∑
j=1

γj+1vj + γd+2|v|2
 , (6.1)

where Qu is defined by expression (4.6) and {γj}d+2
j=1 are the Lagrange multipliers

associated with the minimisation problem and are given by

γ1 = OdM1 +Od+2M|v|2 ,

γj+1 = Od+2Mvj , for j = 1, . . . , d, (6.2)

γd+2 = Od+2M1 +Od+4M|v|2 ,

where Or denotes a constant that is O(Lv
−r) and Mφ(v) :=

´
ΩLv

Qu(f, f)φ(v) dv,

for φ(v) = 1, v1, . . . , vd, |v|2, is a moment of Qu and is the residual error that
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should be zero if Qu were conservative. Furthermore, the L2(ΩLv ) function being
minimised in (4.8) can be bounded as

‖Qu(f, f)−Qc(f, f)‖L2(ΩLv ) ≤ cd

2γ2
1Lv

d +

d∑
j=1

γ2
j+1Lv

d+2 + γ2
d+2Lv

d+4


≤ Cd

Lv
d

M2
1 +

d∑
j=1

M2
vj +

M|v|2

Ld+1

 ,

where cd is a constant that depends on the dimension d. In particular, for the
physically realisable case of d = 3,

‖Qu(f, f)−Qc(f, f)‖L2(ΩLv ) ≤ 2γ2
1Lv

3 +
2

3

3∑
j=1

γ2
j+1Lv

5 + 4γ1γdLv
5 +

38

15
γ2

5Lv
7

≤ c3

Lv
3

M2
1 +

3∑
j=1

M2
vj +

M|v|2

Lv
4

 .

The proof of this is mainly an exercise in calculus of variations and is no different
for the current Fokker-Planck-Landau setting than it is for the Boltzmann equation,
as the explicit form ofQu is never required. The full proof can be found under lemma
3.2 in [1]. An important point to notice, however, is that the difference in Qu and
Qc only depends on squares of the moments M1, Mv1

, . . . ,Mvd , M|v|2 , which are
going to be small due to being errors in quantities that should be zero.

The next step is to find a bound on the moments of this correction, as in the
following theorem.

Theorem 6.2. For f ∈ L2(ΩLv ), the L2-error in the moments of the difference
between the conserved and unconserved collision operators is proportional to the
spectral error plus a negligible term inversely proportional to the size of the do-
main. More precisely, if Qc is the conserved operator given by (6.1) and Qu is the
unconserved operator given by (4.6), for any k ≥ 0 and k′ ≥ 2,∥∥(Qu(f, f)−Qc(f, f))〈v〉k

∥∥
L2(ΩLv )

≤ Cd√
2k + 1

(
O−k

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2 +k′−k

(
m0(f)mk′+λ(f) +mλ(f)mk′(f)

+m2(f)mk′+λ−2(f) +mλ+2(f)mk′−2(f)
))

, (6.3)

where Cd is a constant depending only on the dimension d and Or = O(Lv
−r). In

particular, for k = 0 and k′ = 2, this reduces to

‖Qu(f, f)−Qc(f, f)‖L2(ΩLv )

≤ Cd

(∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2 +2

(
m0(f)m2+λ(f) +mλ(f)m2(f)

))
, (6.4)

for a potentially different constant Cd.
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Proof. First, by using the expression for the conserved collision operator (6.1) in
place of Qc and then the triangle inequality,

∥∥(Qu(f, f)−Qc(f, f))〈v〉k
∥∥
L2(ΩLv )

=

∥∥∥∥∥∥1

2

γ1 +

d∑
j=1

γj+1vj + γd+2|v|2
 〈v〉k

∥∥∥∥∥∥
L2(ΩLv )

≤ 1

2

(
|γ1|

∥∥〈v〉k∥∥
L2(ΩLv )

+

d∑
j=1

|γj+1|
∥∥vj〈v〉k∥∥L2(ΩLv )

+ |γd+2|
∥∥|v|2〈v〉k∥∥

L2(ΩLv )

)
. (6.5)

Here, by using spherical polar co-ordinates and noticing that ΩLv ⊂ B√dLv , it can
be shown that

∥∥〈v〉k∥∥
L2(ΩLv )

≤

ωd−1d
d
2

2k + 1

2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2

Lv
d
2 , (6.6)

∥∥vj〈v〉k∥∥L2(ΩLv )
≤

ωd−1d
d
2 +1

2k + 1

2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2

Lv
d
2 +1 (6.7)

and
∥∥|v|2〈v〉k∥∥

L2(ΩLv )
≤

ωd−1d
d
2 +2

2k + 1

2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2

Lv
d
2 +2, (6.8)

where it was assumed that k is an integer. This can be done without loss of gen-
erality by noticing that 〈v〉k ≤ 〈v〉dke, so the next highest integer can replace k on
the right-hand side if necessary.

Using these estimates in (6.5) and further bounding by the largest power of d
gives

∥∥(Qu(f, f)−Qc(f, f))〈v〉k
∥∥
L2(ΩLv )

≤ 1

2

ωd−1d
d
2 +2

2k + 1

2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2 (
|γ1|Lv

d
2 +

d∑
j=1

|γj+1|Lv
d
2 +1

+ |γd+2|Lv
d
2 +2

)
. (6.9)

This reduces the problem to finding bounds on the Lagrange multipliers γ1, γ2, . . . , γd+2.
As in expressions (6.2), however, these all depend on the moments of the uncon-
served collision operator Mφ(v), for the collision invariants φ(v) = 1, v1, . . . , vd, |v|2,
so these are the quantities which must be estimated. Here, integrating the true
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collision operator Q against the collision invariants over all Rd gives zero and so

∣∣Mφ(v)

∣∣ =

∣∣∣∣∣
ˆ

ΩLv

Qu(f, f)φ(v) dv

∣∣∣∣∣
=

∣∣∣∣∣
ˆ

ΩLv

Qu(f, f)φ(v) dv −
ˆ
Rd
Q(χf,χf)φ(v) dv

∣∣∣∣∣
=

∣∣∣∣ˆ
ΩLv

(Qu(f, f)−Q(χf,χf))φ(v) dv

−
ˆ
Rd\ΩLv

Q(χf,χf)φ(v) dv

∣∣∣∣
=

∣∣∣∣ˆ
ΩLv

(
ΠN

2Lv − 1
)
Q(χf,χf)φ(v) dv

−
ˆ
Rd\ΩLv

Q(χf,χf)φ(v) dv

∣∣∣∣,
by using the definition of Qu in (4.6). So, by the triangle inequality and Cauchy-
Schwarz,∣∣Mφ(v)

∣∣ ≤ ∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

∣∣∣∣φ(v)
∣∣∣∣
L2(ΩLv )

+ Iφ(v),

for Iφ(v) :=

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)φ(v) dv

∣∣∣∣∣ .
Now, the L2-norms of the collision invariants are given by∣∣∣∣1∣∣∣∣

L2(ΩLv )
= (2Lv)

d
2 = O− d2

,
∣∣∣∣vj∣∣∣∣L2(ΩLv )

=
1

2
√

3
(2Lv)

d
2 +1 = O−( d2 +1)

and
∣∣∥∥|v|2∣∣∣∣

L2(ΩLv )
=

5d2 + 5d− 9

180
(2Lv)

d
2 +2 = O−( d2 +2), (6.10)

which means, by using the expressions for the Lagrange multipliers in (6.2),

γ1 = Od

(
O− d2

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+ I1

)
+Od+2

(
O−( d2 +2)

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+ I|v|2
)

= O d
2

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+OdI1 +Od+2I|v|2 ,

γj+1 = Od+2

(
O−( d2 +1)

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+ Ivj

)
= O d

2 +1

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+Od+2Ivj , for j = 1, . . . , d,

γd+2 = Od+2

(
O− d2

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+ I1

)
+Od+4

(
O−( d2 +2)

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+ I|v|2
)

= O d
2 +2

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+Od+2I1 +Od+4I|v|2 .

Then, using these expressions in the bounds on the moments in (6.9) and noting
that the first O d

2 +l term cancels perfectly with the power of Lv in the product with
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the Lagrange multiplier, for the constant Cd := 1
2

√
ωd−1d

d
2 +2 depending only on

the dimension,∥∥(Qu(f, f)−Qc(f, f))〈v〉k
∥∥
L2(ΩLv )

≤ Cd√
2k + 1

 2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2 (∣∣∣∣(ΠN

2Lv − 1
)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2
I1 +

d∑
j=1

O d
2 +1Ivj +O d

2 +2I|v|2

)
. (6.11)

Finally, for the bounds on I1, Ivj and I|v|2 , since the first argument in Q disap-
pears on the interior boundary, Lemma A.2 from the appendix can be used. The
bound on I1 is merely an application of the statement of the lemma. For I|v|2 ,
however, note that

1

Lv
2

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)|v|2 dv

∣∣∣∣∣ =
1

Lv
2

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)|v|k
′
|v|2−k

′
dv

∣∣∣∣∣
≤ Ok′

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)|v|k
′

dv

∣∣∣∣∣
and the remainder of the proof of the lemma follows in the same way. Then, for
Ivj ,

1

Lv

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)vj dv

∣∣∣∣∣ ≤ 1

Lv

ˆ
Rd\ΩLv

|Q(χf,χf)‖v‖v|k
′−1|v|−k

′+1 dv

≤ Ok′
ˆ
Rd\ΩLv

|Q(χf,χf)‖v|k
′

dv

and again the proof of the lemma follows. Strictly speaking, the weak form identity
should be applied to Q before the absolute values are moved inside the integral but
the result remains the same. In the end, for any k′ > 2,

max(I1, O1Ivj , O2I|v|2) = Ok′
(
m0(χf)mk′+λ(χf) +mλ(χf)mk′(χf)

+m2(χf)mk′+λ−2(χf) +mλ+2(χf)mk′−2(χf)
)
.

Therefore, using this in (6.11); bounding the extension operator χ by 1; and
considering the expression in the sum as an O−k term gives∥∥(Qu(f, f)−Qc(f, f))〈v〉k

∥∥
L2(ΩLv )

≤ Cd√
2k + 1

(
O−k

∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2 +k′−k

(
m0(f)mk′+λ(f) +mλ(f)mk′(f)

+m2(f)mk′+λ−2(f) +mλ+2(f)mk′−2(f)
))

, (6.12)

which is the required result (6.3) in Theorem 6.2.
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In addition, when k = 0, all of the initial calculations in this proof follow through
and the bound (6.11) becomes

‖Qu(f, f)−Qc(f, f)‖L2(ΩLv )

≤ Cd

(∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2
I1 +

d∑
j=1

O d
2 +1Ivj +O d

2 +2I|v|2

)
.

(6.13)

Then Lemma A.2 is applied again to bound the Iφ(v) terms, but this time with
k′ = 2 it should be noted that direct application of the lemma gives∣∣∣∣∣

ˆ
Rd\ΩLv

Q(χf,χf) dv

∣∣∣∣∣
≤ 2

(
m0(χf)m2+λ(χf) +mλ(χf)m2(χf)

)
+ 2
(
m2(χf)mλ(χf) +mλ+2(χf)m0(χf)

)
=

4

dLv
2

(
m0(χf)m2+λ(χf) +mλ(χf)m2(χf)

)
,

which gives the result for I1.
So, in a similar way to the more general case above and introducing a |v|2 term

in the integrand first then continuing through the proof of the lemma, for Ivj ,

1

Lv

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)vj dv

∣∣∣∣∣ ≤ 1

Lv

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)|v|2|v|−1 dv

∣∣∣∣∣
≤ 4√

dLv
2

(
m0(χf)m2+λ(χf)

+mλ(χf)m2(χf)
)

and for I|v|2 ,

1

Lv
2

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(χf,χf)|v|2 dv

∣∣∣∣∣ ≤ 4

Lv
2

(
m0(χf)m2+λ(χf)

+mλ(χf)m2(χf)
)
.

This means

max(I1, O1Ivj , O2I|v|2) =
4

Lv
2

(
m0(χf)m2+λ(χf) +mλ(χf)m2(χf)

)
.

Using this in (6.13), after bounding the extension operator χ by 1, gives∥∥(Qu(f, f)−Qc(f, f))〈v〉k
∥∥
L2(ΩLv )

≤ Cd

(∣∣∣∣(ΠN
2Lv − 1

)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2 +2

(
m0(f)m2+λ(f) +mλ(f)m2(f)

))
,

which shows that k = 0 and k′ = 2 can indeed be plugged into the previous bound
(6.12), to give the required result (6.4) in Theorem 6.2. �
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7. Numerical Moment and L2-norm Estimates

7.1. Estimates on the Time Derivatives of the Moments. Here it will be as-
sumed the solution g to the semi-discrete problem (4.9) is such that g ∈ C([0, T ];L2(ΩLv ))
and the initial condition g0 ∈ L2(ΩLv ) satisfies the stability condition (4.10). It will
also be assumed that, for the ε from this condition, there is some Tε > 0 such that
for all t ∈ [0, Tε],ˆ

{g(t,v)<0}
|g(t,v)|〈v〉2 dv ≤ ε

ˆ
{g(t,v)≥0}

g(t,v)〈v〉2 dv (7.1)

and sup
t∈[0,Tε]

‖g(t, ·)‖L2(ΩLv ) <∞.

Remark 7.1. The condition (7.1) is important here because, even if starting with
a non-negative function g0, imposing conservation by use of the solution (6.1) to
the Lagrange minimisation problem may force the solution g to become negative in
some parts. It will be shown later in the proof of Theorem 8.1 that this is in fact
true for all t > 0 and not just as an assumption.

Then, by writing g as g = g+ − g− where g+ ≥ 0 and g− ≥ 0 are the positive
and negative parts of g, respectively, |g| = g+ + g− = g + 2g− and soˆ

ΩLv

|g(t,v)|〈v〉2 dv =

ˆ
ΩLv

g(t,v)〈v〉2 dv + 2

ˆ
ΩLv

g−(t,v)〈v〉2 dv

=

ˆ
ΩLv

g0(v)〈v〉2 dv + 2

ˆ
ΩLv

g−(t,v)〈v〉2 dv,

where mass and energy conservation have been used for the first term, because
〈v〉2 = 1 + |v|2. So, by using the assumption (7.1),ˆ

ΩLv

|g(t,v)|〈v〉2 dv ≤
ˆ

ΩLv

g0(v)〈v〉2 dv + 2ε

ˆ
ΩLv

g+(t,v)〈v〉2 dv

≤
ˆ

ΩLv

g0(v)〈v〉2 dv + 2ε

ˆ
ΩLv

|g(t,v)|〈v〉2 dv

and, if ε ≤ 1
4 ,ˆ

ΩLv

|g(t,v)|〈v〉2 dv ≤ 1

1− 2ε

ˆ
ΩLv

g0(v)〈v〉2 dv ≤ 2

ˆ
ΩLv

g0(v)〈v〉2 dv. (7.2)

Also, before obtaining an estimate on the numerical moments in the following
lemma, first note that by subtracting and adding Qu(g, g) −Q(χg,χg), as well as
using the definition of Qu in (4.6),

∂g

∂t
= Qc(g, g) = Qc(g, g)−Qu(g, g) +Q(χg,χg) +Qu(g, g)−Q(χg,χg)

= Qc(g, g)−Qu(g, g) +Q(χg,χg)

+ ΠN
2LvQ(χg,χg)(t,v)−Q(χg,χg)

= Qc(g, g)−Qu(g, g) +Q(χg,χg)−
(
1−ΠN

2Lv

)
Q(χg,χg). (7.3)

Lemma 7.1. For a solution g of the semi-discrete problem (4.9) which satisfies the
stability condition (7.1) with ε ≤ min

(
1
4 , ε0

)
, and also has bounded gradient ∇g,
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given any k ≥ max(3, k0),

d

dt

(
mk(g)

)
≤ −1

2
εχ

2Kλ,km0(g0)mk+λ(g) + C1
d,k

(
m0(g) +mk(g)

)
+ C2

d,k

O
(
Lv

k+ d
2

)
N

d−1
2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

, (7.4)

where the moment operator mk and L2
k-norm are defined by (3.3) and (3.1), re-

spectively; g0 is any initial condition satisfying the stability condition (4.10); ε0 and
k0 are constants that will be defined in the proof by expressions (7.22) and (7.29),
respectively; εχ ∈ (0, 1) can be chosen arbitrarily in Lemma A.3 in the appendix;
and Kλ,k, C

1
d,k, C

2
d,k > 0 are constants with Kλ,k depending on the potential λ and

k and C1
d,k and C2

d,k depending on k and the dimension d.

Proof. First, after multiplying both sides of (7.3) by sgn(g)(v)〈v〉k and integrating
with respect to v over ΩLv ,ˆ

ΩLv

dg

dt
sgn(g)(v)〈v〉k dv

=

ˆ
ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

+

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
sgn(g)(v)〈v〉k dv. (7.5)

Then, since d
dt (|g|) = dg

dt sgn(g) by the chain rule (at least when g(t,v) 6= 0 but the
integral is blind to this point),

ˆ
ΩLv

dg

dt
sgn(g)(v)〈v〉k dv =

d

dt

(ˆ
ΩLv

|g(t,v)|〈v〉k dv

)
=

d

dt

(
mk(g)

)
, (7.6)

because g is only defined inside ΩLv . This means g can be assumed to be zero
in Rd\ΩLv and the integral over ΩLv can be replaced with one over Rd as in the
definition of mk in (3.3). Also, bounding the last integral in (7.5) by its absolute
value, then using the triangle inequality, allows d

dt

(
mk(g)

)
to be estimated by

d

dt

(
mk(g)

)
≤
ˆ

ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

+
∥∥(Qc(g, g)−Qu(g, g))〈v〉k

∥∥
L1(ΩLv )

+
∥∥(1−ΠN

2Lv

)
Q(χg,χg)〈v〉k

∥∥
L1(ΩLv )

. (7.7)

Now, for the remaining integral involving sgn(g), the weak form identity (4.4)
gives ˆ

ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

=

ˆ
ΩLv

χg
(
āi,j

∂2

∂vi∂vj

(
sgn(g)(v)〈v〉k

)
+ 2b̄i

∂

∂vi

(
sgn(g)(v)〈v〉k

))
dv.

In order to handle the derivative of the sgn function, it will be approximated by a
second order regularisation of the jump. In particular, for any δs > 0, define the
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monotone increasing function Hδ : R→ [−1, 1] by

Hδ(y) :=


−1, when y ≤ −δs,

1
δs2 y2 − 2

δs
y, when − δs < y ≤ 0,

− 1
δs2 y2 + 2

δs
y, when 0 < y < δs,

1, when y ≥ δs.

(7.8)

Then, after using sgn(g) = limδs→0Hδ, differentiating with the product rule and
noting that āi,j is symmetric so that the cross-terms in the second order derivative
double up,

āi,j
∂2

∂vi∂vj

(
sgn(g)(v)〈v〉k

)
+ 2b̄i

∂

∂vi

(
sgn(g)(v)〈v〉k

)
= lim
δs→0

(
āi,j

(
∂2Hδ

∂vi∂vj
〈v〉k + 2

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+Hδ

∂2

∂vi∂vj

(
〈v〉k

))

+ 2b̄i

(
∂Hδ

∂vi
〈v〉k +Hδ

∂

∂vi

(
〈v〉k

)))
.

So, assuming that Lebesgue’s dominated convergence theorem can be used,
ˆ

ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

= lim
δs→0

ˆ
ΩLv

χg
(
āi,j

∂2Hδ

∂vi∂vj
〈v〉k + 2āi,j

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+ 2b̄i

∂Hδ

∂vi
〈v〉k

)
dv

+

ˆ
ΩLv

χg
(
āi,j

∂2

∂vi∂vj

(
〈v〉k

)
+ 2b̄i

∂

∂vi

(
〈v〉k

))
lim
δs→0

Hδ dv. (7.9)

Remark 7.2. The parameter δs will be chosen sufficiently small to obtain estimates
on the derivatives of the moments mk. In particular, taking the limit in the second
integral in (7.9) recovers sgn(g) and estimates from [12] can be used. This will be
seen after demonstrating that the first integral in (7.9) converges to zero as δs → 0.

To analyse first integral in (7.9), first reduce the maximum order of the derivatives
on Hδ by the divergence theorem. In particular, if the vector āi is defined as the
ith row of the matrix ā so that āi = (āi,1, . . . , āi,d), for i = 1, . . . , d,

ˆ
ΩLv

χgāi,j
∂2Hδ

∂vi∂vj
〈v〉kdv =

ˆ
ΩLv

(
χg〈v〉kāi

)
· ∇
(
∂Hδ

∂vi

)
dv

=−
ˆ

ΩLv

∇ ·
(
χg〈v〉kāi

) ∂Hδ

∂vi
dv

=−
ˆ

ΩLv

(
∂

∂vj
(χg) 〈v〉kāi,j

+ χg
∂

∂vj

(
〈v〉k

)
āi,j + χg〈v〉k b̄i

)
∂Hδ

∂vi
dv.

Then, by noting that some of the terms which appeared by the product rule in
the last line here are the same as those in the first integral in expression (7.9), it
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can then be written as
ˆ

ΩLv

χg
(
āi,j

∂2Hδ

∂vi∂vj
〈v〉k + 2āi,j

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+ 2b̄i

∂Hδ

∂vi
〈v〉k

)
dv

=−
ˆ

ΩLv

∂

∂vj
(χg) 〈v〉kāi,j

∂Hδ

∂vi
dv

+

ˆ
ΩLv

χg
(
āi,j

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+ b̄i

∂Hδ

∂vi
〈v〉k

)
dv

=−
ˆ

ΩLv

∂

∂vj
(χg) 〈v〉kāi,jH ′δ(g)

∂g

∂vi
dv

+

ˆ
ΩLv

χg
(
āi,jH

′
δ(g)

∂g

∂vi

∂

∂vj

(
〈v〉k

)
+ b̄iH

′
δ(g)

∂g

∂vi
〈v〉k

)
dv. (7.10)

Here, by using the product rule one more time,

−
ˆ

ΩLv

∂

∂vj
(χg) 〈v〉kāi,jH ′δ(g)

∂g

∂vi
dv = −

ˆ
ΩLv

∂χ
∂vj

g〈v〉kāi,jH ′δ(g)
∂g

∂vi
dv

−
ˆ

ΩLv

χ
∂g

∂vj
〈v〉kāi,jH ′δ(g)

∂g

∂vi
dv

≤ −
ˆ

ΩC
(1−δχ)Lv

∂χ
∂vj

g〈v〉kāi,jH ′δ(g)
∂g

∂vi
dv,

because
∂χ
∂vj

= 0 when v ∈ Ω(1−δχ)Lv and the ellipticity of ā in Proposition 5.1,

along with χ≥ 0 and H ′δ(g) ≥ 0, gives

−
ˆ

ΩLv

χ
∂g

∂vj
〈v〉kāi,jH ′δ(g)

∂g

∂vi
dv ≤ 0.

Now, it is hoped that the integral (7.10) goes to zero as δs → 0, so it can be
coarsely bounded by its absolute value. This means

ˆ
ΩLv

χg
(
āi,j

∂2Hδ

∂vi∂vj
〈v〉k + 2āi,j

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+ 2b̄i

∂Hδ

∂vi
〈v〉k

)
dv

≤
ˆ

ΩC
(1−δχ)Lv

∣∣∣∣ ∂χ∂vj
∥∥∥∥ g|〈v〉k |āi,j | |H ′δ(g)|

∣∣∣∣ ∂g∂vi
∣∣∣∣ dv

+

ˆ
ΩLv

|χg|
(
|āi,j | |H ′δ(g)|

∣∣∣∣ ∂g∂vi
∣∣∣∣ ∣∣∣∣ ∂∂vj (〈v〉k)

∣∣∣∣+
∣∣b̄i∣∣ |H ′δ(g)|

∣∣∣∣ ∂g∂vi
∣∣∣∣ 〈v〉k)dv

≤2

(ˆ
{|g|≤δs}

⋂
ΩC

(1−δχ)Lv

∣∣∣∣ ∂χ∂vj
∣∣∣∣ 〈v〉k |āi,j | ∣∣∣∣ ∂g∂vi

∣∣∣∣dv
+

ˆ
{|g|≤δs}

(
|āi,j |

∣∣∣∣ ∂g∂vi
∣∣∣∣ ∣∣∣∣ ∂∂vj (〈v〉k)

∣∣∣∣+
∣∣b̄i∣∣ ∣∣∣∣ ∂g∂vi

∣∣∣∣ 〈v〉k)dv

)
, (7.11)

where it’s been used that the derivative H ′δ(g) = 0 when |g| > δs to reduce the
domain of integration. Also, on this new domain, |χg|, |g| ≤ δs and |H ′δ(g)| ≤ 2

δs
,

by definition of the assumed form of Hδ in (7.8).



22 CLARK A. PENNIE AND IRENE M. GAMBA

Here, by noting that |ai,j(v − v∗)| = |v − v∗|λ
∥∥v − v∗|2 − (v − v∗)i(v − v∗)j

∣∣
≤ 2|v − v∗|λ+2 ≤ 2

(
〈v〉λ+2 + 〈v∗〉λ+2

)
, for any arbitrary set Ω̃ ⊂ Rd,ˆ

Ω̃

∣∣∣∣ ∂χ∂vj
∣∣∣∣ 〈v〉k |āi,j | ∣∣∣∣ ∂g∂vi

∣∣∣∣ dv
≤
ˆ

Ω̃

ˆ
ΩLv

∣∣∣∣ ∂χ∂vj
∣∣∣∣ 〈v〉k |āi,j(v − v∗)‖ g(v∗)|

∣∣∣∣ ∂g∂vi
∣∣∣∣ dv∗dv

≤ 2

d∑
i,j=1

((ˆ
Ω̃

∣∣∣∣ ∂χ∂vj
∣∣∣∣ ∣∣∣∣ ∂g∂vi

∣∣∣∣ 〈v〉k+λ+2dv

)(ˆ
ΩLv

|g(v∗)|dv∗
)

+

(ˆ
Ω̃

∣∣∣∣ ∂χ∂vj
∣∣∣∣ ∣∣∣∣ ∂g∂vi

∣∣∣∣ 〈v〉kdv

)(ˆ
ΩLv

|g(v∗)|〈v∗〉λ+2dv∗

))

≤ 2d2O
(

1

δχ

)(
‖ |∇g‖ |L1

k+λ+2(Ω̃)m0(g) + ‖ |∇g‖ |L1
k(Ω̃)mλ+2(g)

)
, (7.12)

where the O
(

1
δχ

)
is a result of the fact that χ changes smoothly from a value of 1

to 0 in a space of O (δχ).

Similarly, since
∣∣∣ ∂∂vj (〈v〉k)∣∣∣ =

∣∣kvj〈v〉k−2
∣∣ ≤ k〈v〉k−1,

ˆ
Ω̃

|āi,j |
∣∣∣∣ ∂g∂vi

∣∣∣∣ ∣∣∣∣ ∂∂vj (〈v〉k)
∣∣∣∣dv

≤ 2kd2
(
‖ |∇g‖ |L1

k+λ+1(Ω̃)m0(g) + ‖ |∇g‖ |L1
k−1(Ω̃)mλ+2(g)

)
. (7.13)

Finally, by noting that |bi(v − v∗)| = |v − v∗|λ |(v − v∗)i| ≤ |v − v∗|λ+1 ≤
〈v〉λ+1 + 〈v∗〉λ+1,ˆ

Ω̃

∣∣b̄i∣∣ ∣∣∣∣ ∂g∂vi
∣∣∣∣ 〈v〉kdv

≤ d2
(
‖ |∇g‖ |L1

k+λ+1(Ω̃)m0(g) + ‖ |∇g‖ |L1
k(Ω̃)mλ+1(g)

)
, (7.14)

So, by using the bounds (7.12-7.14) with the appropriate domains replacing Ω̃ in
(7.11),ˆ

ΩLv

χg
(
āi,j

∂2Hδ

∂vi∂vj
〈v〉k + 2āi,j

∂Hδ

∂vi

∂

∂vj

(
〈v〉k

)
+ 2b̄i

∂Hδ

∂vi
〈v〉k

)
dv

≤2

(
2d2O

(
1

δχ

)(
‖ |∇g‖ |

L1
k+λ+2

(
{|g|≤δs}

⋂
ΩC

(1−δχ)Lv

)m0(g)

+ ‖ |∇g‖ |
L1
k

(
{|g|≤δs}

⋂
ΩC

(1−δχ)Lv

)mλ+2(g)
)

+ (2k + 1)d2
(
‖ |∇g‖ |L1

k+λ+1({|g|≤δs})m0(g) + ‖ |∇g‖ |L1
k−1({|g|≤δs})mλ+2(g)

))
.

(7.15)

This means that, since it is also assumed that the gradient of g is bounded inside
the domain, the integral in (7.15) is an O(δs) term, because δχ will remain fixed
throughout and the domain of the L1-norms of the gradients will shrink to sets of
zero of measure.
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Remark 7.3. This assumption on the gradient was not required in [1] when devising
error estimates for the Boltzmann equation scheme since there are no derivatives
involved there. It seems that for the Landau equation method, however, this is an
additional assumption to be added to the previously stated upper Maxwellian bound
(2.9).

Now, taking the limit as δs → 0 in (7.9) and using an identity from the proof of
Theorem 3 in [12] on the non-negligible integral gives

ˆ
ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

= k

ˆ
ΩLv

ˆ
Rd
χg(v)χg(v∗)|v − v∗|λ〈v〉k−2

(
−2|v|2 + 2|v∗|2

+ (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
sgn(g)(v) dv∗dv.

Here, in order to start bounding the quantity in brackets, some care must be taken to
ensure all other terms are positive. This is done by substituting χg(v)sgn(g)(v) =
|χg(v)| and χg(v∗) = |χg(v∗)| − 2χg−(v∗) to give

ˆ
ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

= k

(ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k−2

(
−2|v|2 + 2|v∗|2

+ (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

+ 2

ˆ
ΩLv

ˆ
Rd
|χg(v)|χg−(v∗)|v − v∗|λ〈v〉k−2

(
2|v|2 − 2|v∗|2

− (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

)
. (7.16)
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Now, by discarding the negative terms in the second integral in (7.16),

2

ˆ
ΩLv

ˆ
Rd
|χg(v)|χg−(v∗)|v − v∗|λ〈v〉k−2

(
2|v|2 − 2|v∗|2

− (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

≤ 2

ˆ
ΩLv

ˆ
Rd
|χg(v)|χg−(v∗)|v − v∗|λ〈v〉k−2

(
2|v|2

)
dv∗dv

≤ 4

ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k dv∗dv

≤ 4

((ˆ
ΩLv

|χg(v)|〈v〉k+λ dv

)(ˆ
Rd
|χg(v∗)| dv∗

)

+

(ˆ
ΩLv

|χg(v)|〈v〉k dv

)(ˆ
Rd
|χg(v∗)| 〈v∗〉λ dv∗

))

≤ 4

(
mk+λ(g)

ˆ
Rd
|χg(v∗)| dv∗ +mk(g)

ˆ
Rd
|χg(v∗)| 〈v∗〉λ dv∗

)
, (7.17)

where the identity |v − v∗|λ ≤ |v|λ + |v∗|λ ≤ 〈v〉λ + 〈v∗〉λ has been used. In order
to obtain the definitions of mk in (3.3), it was also used that |χg(v)| ≤ |g(v)| when
v ∈ ΩLv and the domain of integration expanded to all of Rd.

Then, since |χg(v∗)| = 0 when v∗ /∈ ΩLv ; |χg(v∗)| ≤ |g(v∗)| when v∗ ∈ ΩLv ;
and noting that λ ≤ 1 implies 〈v〉λ ≤ 〈v〉2,

ˆ
Rd
|χg(v∗)| 〈v∗〉λ dv∗ ≤

ˆ
ΩLv

|g(v∗)| 〈v∗〉2 dv∗ ≤
1

1− 2ε

ˆ
ΩLv

g0(v)〈v〉2 dv

≤ 1

1− 2ε
‖g0‖L1

2(ΩLv ),

by using identity (7.2) resulting from the stability condition (7.1). So, since 1 ≤
〈v〉2, the same argument bounds the first integral in expression (7.17) and this
means

2

ˆ
ΩLv

ˆ
Rd
|χg(v)|χg−(v∗)|v − v∗|λ〈v〉k−2

(
2|v|2 − 2|v∗|2

− (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

≤ 4

1− 2ε
(mk+λ(g) +mk(g)) ‖g0‖L1

2(ΩLv ). (7.18)

Also, by using further details of the proof of Theorem 3 in [12], since k > 2,
there exist constants Kk, C

1
k > 0, each depending on k, such that the first integral
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in (7.16) can be bounded asˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k−2

(
−2|v|2 + 2|v∗|2

+ (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

≤−Kk

ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k dv∗dv

+ C1
k

ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ

(
〈v∗〉〈v〉k−1 + 〈v〉〈v∗〉k−1

)
dv∗dv.

(7.19)

Remark 7.4. The results used from [12] here include the use of their Lemma 1,
which they state replaces the Povzner lemma associated to the Boltzmann equation.

Here, by again using |v − v∗|λ ≤ 〈v〉λ + 〈v∗〉λ in the second integral in (7.19),ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ

(
〈v∗〉〈v〉k−1 + 〈v〉〈v∗〉k−1

)
dv∗dv

≤
ˆ

ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)|(〈v〉k+λ−1〈v∗〉+ 〈v〉λ+1〈v∗〉k−1

+ 〈v〉k−1〈v∗〉λ+1 + 〈v〉〈v∗〉k+λ−1) dv∗dv

≤ mk+λ−1(g)m1(g) +mλ+1(g)mk−1(g) +mk−1(g)mλ+1(g) +m1(g)mk+λ−1(g)

= 2
(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
, (7.20)

where the last inequality comes from increasing the domain in the outer integral to
all of Rd to match the definition of mk in (3.3) and also bounding the extension
operator χ by 1.

Finally, for the first integral in (7.19) note that, for the constant cλ := min(1, 2λ−1) =
2λ−1 > 0 (since λ ≤ 1, so that 2λ−1 ≤ 1),

|v − v∗|λ ≥ cλ(1 + |v|2)
λ
2 − (1 + |v∗|2)

λ
2 ≥ cλ〈v〉λ − 〈v∗〉2,

because λ ≤ 1 implies (1 + |v∗|2)
λ
2 ≤ 1 + |v∗|2.

So, the first integral in (7.19) can be bounded by

−
ˆ

ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k dv∗dv

≤
ˆ

ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)|〈v∗〉2〈v〉k dv∗dv

− cλ
ˆ

ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)|〈v〉λ〈v〉k dv∗dv

=

(ˆ
Rd
|χg(v)|〈v〉k dv

)(ˆ
ΩLv

|χg(v∗)|〈v∗〉2 dv∗

)

− cλ
(ˆ

Rd
|χg(v)|〈v〉k+λ dv

)(ˆ
Rd
|χg(v∗)| dv∗

)
,

by taking advantage of the fact that χg(v) = 0 when v /∈ ΩLv and so the integral
domains can be switched between ΩLv and Rd. Then, by using identity (7.2) from
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the stability condition again on the first integral with respect to v∗ here, and also
by bounding the extension operators in that integral by 1,

−
ˆ

ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k dv∗dv

≤ 1

1− 2ε

(ˆ
Rd
|g(v)|〈v〉k dv

)(ˆ
ΩLv

g0(v∗)〈v∗〉2 dv∗

)

− cλ
(ˆ

Rd
|χg(v)|〈v〉k+λ dv

)(ˆ
Rd
|χg(v∗)| dv∗

)
≤ 1

1− 2ε
mk(g)‖g0‖L1

2(ΩLv ) − cλm0 (χg)mk+λ (χg) . (7.21)

This means, by retracing steps and first using the bounds (7.21) and (7.20) in
(7.19),

ˆ
ΩLv

ˆ
Rd
|χg(v)‖χg(v∗)‖v − v∗|λ〈v〉k−2

(
−2|v|2 + 2|v∗|2

+ (k − 2)
|v|2|v∗|2 − (v · v∗)2

1 + |v|2

)
dv∗dv

≤ Kk

1− 2ε
mk(g)‖g0‖L1

2(ΩLv ) − cλKkm0 (χg)mk+λ (χg)

+ 2C1
k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
;

then using this and (7.18) in (7.16) gives the bound on the remaining integral with
the sgn(g) term in (7.7) as

ˆ
ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

≤k

(
Kk

1− 2ε
mk(g)‖g0‖L1

2(ΩLv ) − cλKkm0 (χg)mk+λ (χg)

+ 2C1
k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
+

4

1− 2ε

(
mk+λ(g) +mk(g)

)
‖g0‖L1

2(ΩLv )

)

=k

(
−cλKkm0 (χg)mk+λ (χg) + 2C1

k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
+

4

1− 2ε

(
mk+λ(g) +

(
1 +

1

4
Kk

)
mk(g)

)
‖g0‖L1

2(ΩLv )

)

≤k

(
−cλKkm0 (χg)mk+λ (χg) + 2C1

k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
+

4(2 + 1
4Kk)

1− 2ε
mk+λ(g)‖g0‖L1

2(ΩLv )

)
,

because mk(g) ≤ mk+λ.
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Next, for some εχ ∈ (0, 1) that can be chosen as small as necessary, choose ε to
satisfy

1

1− 2ε
≤ (1− 2εχ)cλKkm0(g0)

4(2 + 1
4Kk)‖g0‖L1

2(ΩLv )

,

which is equivalent to taking ε ≤ ε0 with ε0 chosen as

ε0 :=
1

2

(
1−

4(2 + 1
4Kk)‖g0‖L1

2(ΩLv )

(1− 2εχ)cλKkm0(g0)

)
. (7.22)

If this is true then, by using results (A.7) and (A.8) from the appendix to bound
−m0 (χg)mk+λ (χg) from above,

ˆ
ΩLv

Q(χg,χg)sgn(g)(v)〈v〉k dv

≤ − (1− εχ)2kcλKkm0(g0)mk+λ(g) + (1− 2εχ)kcλKkm0(g0)mk+λ(g)

+ k2C1
k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
(7.23)

= − εχ2kcλKkm0(g0)mk+λ(g) + 2kC1
k

(
mk+λ−1(g)m1(g) +mk−1(g)mλ+1(g)

)
.

Now, returning to the bound (7.7) on the derivatives of the moments of g, by the
Cauchy-Schwarz inequality,∥∥(Qc(g, g)−Qu(g, g))〈v〉k

∥∥
L1(ΩLv )

≤
∥∥(Qc(g, g)−Qu(g, g))〈v〉k

∥∥
L2(ΩLv )

‖1‖L2(ΩLv )

= (2Lv)
d
2

∥∥(Qc(g, g)−Qu(g, g))〈v〉k
∥∥
L2(ΩLv )

.

Then, using the result from Theorem 6.2 gives that, for any k′ > 2,∥∥(Qc(g, g)−Qu(g, g))〈v〉k
∥∥
L1(ΩLv )

≤ Cd(2Lv)
d
2

√
2k + 1

(
O−k

∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

+O d
2 +k′−k

(
m0(g)mk′+λ(g) +mλ(g)mk′(g)

+m2(g)mk′+λ−2(g) +mλ+2(g)mk′−2(g)
))
.

So, by choosing k′ = k > 2, which implies Cd (2Lv)
d
2 O d

2 +k′−k = C2
d for some new

constant C2
d ,∥∥(Qc(g, g)−Qu(g, g))〈v〉k

∥∥
L1(ΩLv )

≤ 1√
2k + 1

(
2
d
2CdO

(
Lv

k+ d
2

) ∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

+ C2
d

(
m0(g)mk+λ(g) +mλ(g)mk(g)

+m2(g)mk+λ−2(g) +mλ+2(g)mk−2(g)
))
. (7.24)
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Also, by noting that λ ≤ 1 implies, mλ(g) ≤ m1(g), mk+λ−2(g) ≤ mk−1(g) and
mλ+2(g) ≤ m3(g) and taking k ≥ 3, note that

mλ(g)mk(g) +m2(g)mk+λ−2(g) +mλ+2(g)mk−2(g)

≤
2∑
j=0

mj+1(g)mk−j(g) ≤
k−1∑
j=0

(
k

j

)
mj+1(g)mk−j(g)

≤ Ck
(
m0(g) +mk(g)

)
, (7.25)

for some constant Ck which depends only on k. Then, using this in the bound (7.24)
gives ∥∥(Qc(g, g)−Qu(g, g))〈v〉k

∥∥
L1(ΩLv )

≤ 1√
2k + 1

(
2
d
2CdO

(
Lv

k+ d
2

) ∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

+ C2
d

(
m0(g)mk+λ(g) + Ck

(
m0(g) +mk(g)

)))
. (7.26)

Next, by again using the Cauchy-Schwarz inequality on the remaining term in
(7.7) as well as the bound on

∥∥〈v〉k∥∥
L2(ΩLv )

in (6.6),∥∥(1−ΠN
2Lv

)
Q(χg,χg)〈v〉k

∥∥
L1(ΩLv )

≤
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

∥∥〈v〉k∥∥
L2(ΩLv )

≤

ωd−1d
d
2

2k + 1

2k∑
j=0

(
2k + 1

j + 1

)
Lv

j

 1
2

Lv
d
2

∥∥(1−ΠN
2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

=
2d−1Cd√

2k + 1
O
(
Lv

k+ d
2

)∥∥(1−ΠN
2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

. (7.27)

This means, by using the bounds (7.23), (7.26) and (7.27) in the overall bound
(7.7) for the derivative of the moments of g, and noting that λ ≤ 1 impliesmk+λ−1(g)m1(g)+
mk−1(g)mλ+1(g) ≤ Ck

(
m0(g) +mk(g)

)
by the same argument that led to (7.25),

d

dt

(
mk(g)

)
≤− εχ2Kλ,km0(g0)mk+λ(g) +

C2
d√

2k + 1
m0(g)mk+λ(g)

+ C1
d,k

(
m0(g) +mk(g)

)
+

C1
d√

2k + 1
O
(
Lv

k+ d
2

) ∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

, (7.28)

where Kλ,k := kcλKk, C1
d := 2

d
2Cd + 2d−1Cd and C1

d,k :=
(

2kC1
k +

C2
d√

2k+1

)
Ck.

Here it should be noted that, when the solution g is bounded under the Gaussian

(2.9), m0(g) ≤ Cr d2m0(g0). So, if it is further assumed that k ≥ k0 with k0 chosen
as

k0 :=
1

2

(2C2
dCr

d
2

εχ2Kλ,k

)2

− 1

 (7.29)

then

C2
d√

2k + 1
m0(g)mk+λ(g) ≤ εχ

2Kλ,k

2Cr
d
2

(
Cr

d
2m0(g0)

)
mk+λ(g)

=
1

2
εχ

2Kλ,km0(g0)mk+λ(g) (7.30)
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and this term can be combined with the negative contribution to give

d

dt

(
mk(g)

)
≤− 1

2
εχ

2Kλ,km0(g0)mk+λ(g) + C1
d,k

(
m0(g) +mk(g)

)
+

C1
d√

2k + 1
O
(
Lv

k+ d
2

) ∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

. (7.31)

Finally, for the term involving the partial Fourier series of Q, as is shown in [1]
by multiple uses of Parseval’s theorem, for any s > 0,∣∣∣∣(ΠN

2Lv − 1
)
Q(χg,χg)

∣∣∣∣
L2(Ω2Lv )

≤ 1

Ns

∣∣∣∣Q(χg,χg)
∣∣∣∣
Ḣs(Rd)

. (7.32)

Then, if it is also true that for any f ∈ L2
λ+1(Rd) and some constant CQ that will

depend on the Landau operator Q,∣∣∣∣Q(χg,χg)
∣∣∣∣
Ḣ
d−1

2 (Rd)
≤ CQ

∣∣∣∣χg∣∣∣∣2
L2
λ+1(Rd)

,

by choosing s = d−1
2 in identity (7.32),∣∣∣∣(ΠN

2Lv − 1
)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

≤
∣∣∣∣(ΠN

2Lv − 1
)
Q(χg,χg)

∣∣∣∣
L2(Ω2Lv )

≤ CQ

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(Rd)

.

=
CQ

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

. (7.33)

Therefore, by using this in (7.31) and defining the constant C2
d,k :=

C1
dCQ√
2k+1

,

d

dt

(
mk(g)

)
≤ −1

2
εχ

2Kλ,km0(g0)mk+λ(g) + C1
d,k

(
m0(g) +mk(g)

)
+ C2

d,k

O
(
Lv

k+ d
2

)
N

d−1
2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

,

which is the required result (7.4) in Lemma 7.1. �

7.2. Estimates on the Time Derivative of the L2-norm.

Lemma 7.2. For a solution g of the semi-discrete problem (4.9) which satisfies the
stability condition (7.1) with ε ≤ 1

4 ,

d

dt

(
‖χg‖L2(ΩLv )

)
≤−

KS
d,λ(g0)

Lv
2 ‖χg‖L2(ΩLv ) +Kd,λ(g0)Lv

d
2 + 2Cλ (2Lv)

d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )

+ CdO d
2 +2−λ‖g0‖2L1

2(ΩLv ) +
C3
d

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

, (7.34)

where the moment operator mk and L2
k-norm are defined by (3.3) and (3.1), re-

spectively; Or denotes a constant that is O(Lv
−r); g0 is the initial condition and

the constants Kd,λ(g0), KS
d,λ(g0), Cλ, Cd, C3

d > 0 with Cd and C3
d depending on the

dimension d; Cλ depending on the potential λ; and Kd,λ(g0) and KS
d,λ(g0) depending

on d and λ, as well as g0.
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Proof. First, multiplying the expansion (7.3) by χg(v) and integrating with respect
to v over ΩLv givesˆ

ΩLv

∂g

∂t
χg dv

=

ˆ
ΩLv

Q(χg,χg)χg dv

+

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg dv. (7.35)

Here it should be noted that, since the extension operator χ is independent of t,
by two applications of the chain rule,ˆ

ΩLv

∂g

∂t
χg dv =

1

2

ˆ
ΩLv

∂

∂t

(
χg2

)
dv ≈1

2

d

dt

(
‖χg‖2L2(ΩLv )

)
= ‖χg‖L2(ΩLv )

d

dt

(
‖χg‖L2(ΩLv )

)
,

where the ≈ is due to the requirement of an extra multiplication by χ at that stage
and that χ2 6= χ only on a very small subset of ΩLv . As a result, (7.35) can be
written as

‖χg‖L2(ΩLv )

d

dt

(
‖χg‖L2(ΩLv )

)
≤
ˆ

ΩLv

Q(χg,χg)χg(v) dv

+

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v) dv. (7.36)

Now, by the result of Proposition 5.3(b)(i),

ˆ
ΩLv

Q(χg,χg)χg(v)〈v〉2k dv ≤ −Kλ(g0)‖χg‖2
Ḣ1

k+λ
2

(ΩLv )

+ Cλ‖χg‖2L1
5
2 (k+λ

2 )
(ΩLv ). (7.37)

It should be noted that, by definition, the Ḣs-norm of a smooth function h with
s = 1 is simply

‖h‖2
Ḣ1(ΩLv )

=

ˆ
ΩLξ

|ξ|2
(
ĥ(ξ)

)2

dξ =

ˆ
ΩLξ

∣∣∣∇̂h(ξ)
∣∣∣2 dξ

=

ˆ
ΩLv

|∇h(v)|2 dv = ‖ |∇h‖ |2L2(ΩLv )

and, by the same argument, the weighted Ḣ1
k+λ

2

-norm is

‖h‖2
Ḣ1

k+λ
2

(ΩLv )
= ‖ |∇h‖ |2L2

k+λ
2

(ΩLv ),

so ‖χg‖2
Ḣ1

k+λ
2

(ΩLv )
=

ˆ
ΩLv

∣∣∣∇ (χg) (v)
(
1 + |v|2

) k
2 +λ

4

∣∣∣2 dv. (7.38)



31

Here, by the product rule,

∇ (χg) (v)
(
1 + |v|2

) k
2 +λ

4 = ∇
(
χg(v)

(
1 + |v|2

) k
2 +λ

4

)
−
(
k +

λ

2

)
vχg(v)

(
1 + |v|2

) k
2 +λ

4−1

and so
∣∣∣∇ (χg) (v)

(
1 + |v|2

) k
2 +λ

4

∣∣∣2
=
∣∣∣∇(χg(v)

(
1 + |v|2

) k
2 +λ

4

)∣∣∣2
− 2

(
k +

λ

2

)
v · ∇

(
χg(v)

(
1 + |v|2

) k
2 +λ

4

) (
1 + |v|2

) k
2 +λ

4−1

+

(
k +

λ

2

)2

|v|2 (χg(v))
2 (

1 + |v|2
)k+λ

2−2
. (7.39)

This means, by using expression (7.39) in (7.38), the negative term in (7.37) can be
written as

−Kλ(g0)‖χg‖2
Ḣ1

k+λ
2

(ΩLv )

=Kλ(g0)

(
−
ˆ

ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

) k
2 +λ

4

)∣∣∣2 dv

+ 2

(
k +

λ

2

)ˆ
ΩLv

v · ∇
(
χg(v)

(
1 + |v|2

) k
2 +λ

4

) (
1 + |v|2

) k
2 +λ

4−1
dv

−
(
k +

λ

2

)2 ˆ
ΩLv

|v|2 (χg(v))
2 (

1 + |v|2
)k+λ

2−2
dv

)
.

Here, by the divergence theorem on the second integral and noting that the
boundary terms go to zero due to the extension operator χ,

ˆ
ΩLv

v · ∇
(
χg(v)

(
1 + |v|2

) k
2 +λ

4

) (
1 + |v|2

) k
2 +λ

4−1
dv

=−
ˆ

ΩLv

∇ ·
((

1 + |v|2
) k

2 +λ
4−1

v
)
χg(v)

(
1 + |v|2

) k
2 +λ

4 dv.

Then, by noting that ∇ ·
((

1 + |v|2
) k

2 +λ
4−1

v
)

=
(
k + λ

2 − 2
) (

1 + |v|2
) k

2 +λ
4−2 |v|2

+d
(
1 + |v|2

) k
2 +λ

4−1
,

ˆ
ΩLv

v · ∇
(
χg(v)

(
1 + |v|2

) k
2 +λ

4

) (
1 + |v|2

) k
2 +λ

4−1
dv

=

(
2−

(
k +

λ

2

)) ˆ
ΩLv

|v|2χg(v)
(
1 + |v|2

)k+λ
2−2

dv

− d
ˆ

ΩLv

χg(v)
(
1 + |v|2

)k+λ
2−1

dv
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and this means

−Kλ(g0)‖χg‖2
Ḣ1

k+λ
2

(ΩLv )
=Kλ(g0)

(
−
ˆ

ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

) k
2 +λ

4

)∣∣∣2 dv

+ 4

(
k +

λ

2

)ˆ
ΩLv

|v|2χg(v)
(
1 + |v|2

)k+λ
2−2

dv

− 2

(
k +

λ

2

)2 ˆ
ΩLv

|v|2χg(v)
(
1 + |v|2

)k+λ
2−2

dv

− 2d

(
k +

λ

2

)ˆ
ΩLv

χg(v)
(
1 + |v|2

)k+λ
2−1

dv

−
(
k +

λ

2

)2 ˆ
ΩLv

|v|2 (χg(v))
2 (

1 + |v|2
)k+λ

2−2
dv

)
.

Now, setting k = 0 like in (7.36), as well as dropping the last term which is truly
negative, gives

−Kλ(g0)‖χg‖2
Ḣ1
λ
2

(ΩLv )
=Kλ(g0)

(
−
ˆ

ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

)λ
4

)∣∣∣2 dv

+ 4

(
λ

2

)ˆ
ΩLv

|v|2χg(v)
(
1 + |v|2

)λ
2−2

dv

− 2

(
λ

2

)2 ˆ
ΩLv

|v|2χg(v)
(
1 + |v|2

)λ
2−2

dv

− 2d

(
λ

2

)ˆ
ΩLv

χg(v)
(
1 + |v|2

)λ
2−1

dv

)
.

Then, by coarsely bounding by the positive version of the negative integrals and

noting that 0 ≤ λ ≤ 1 so that
(
λ
2

)2 ≤ λ
2 , this means

−Kλ(g0)‖χg‖2
Ḣ1
λ
2

(ΩLv )
=Kλ(g0)

(
−
ˆ

ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

)λ
4

)∣∣∣2 dv

+ 4
λ

2

ˆ
ΩLv

|v|2 |χg(v)|
(
1 + |v|2

)λ
2−2

dv

+ 2
λ

2

ˆ
ΩLv

|v|2 |χg(v)|
(
1 + |v|2

)λ
2−2

dv

+ 2d
λ

2

ˆ
ΩLv

|χg(v)|
(
1 + |v|2

)λ
2−1

dv

)

≤Kλ(g0)

(
−
ˆ

ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

)λ
4

)∣∣∣2 dv

+ (3 + d)λ

ˆ
ΩLv

|χg(v)|
(
1 + |v|2

)λ
2−1

dv

)
. (7.40)
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Here, by the Cauchy-Schwarz inequality and noting that ‖1‖L2(ΩLv ) = (2Lv)
d
2 ,ˆ

ΩLv

|χg(v)|
(
1 + |v|2

)λ
2−1

dv ≤ (2Lv)
d
2 ‖χg‖L2

λ
2
−1

(ΩLv ) ≤ (2Lv)
d
2 ‖χg‖L2(ΩLv ) ,

since λ ≤ 1 implies that 〈v〉λ2−1 ≤ 1 and so the weight can be removed from the
L2-norm.

Also, by using h = χg(v)
(
1 + |v|2

)λ
4 and p = 2 in the Sobolev inequality from

Lemma B.1 in the appendix, for CSd := CS2,d,ˆ
ΩLv

∣∣∣∇(χg(v)
(
1 + |v|2

)λ
4

)∣∣∣2 dv =
∥∥∥χg(v)

(
1 + |v|2

)λ
4

∥∥∥2

Ḣ1(ΩLv )

≥ 1(
CSd
)2 ∥∥∥χg(v)

(
1 + |v|2

)λ
4

∥∥∥2

L
2d
d−2 (ΩLv )

≥ 1(
CSd
)2 ‖χg‖2L 2d

d−2 (ΩLv )

≥ 1(
2CSd Lv

)2 ‖χg‖2L2(ΩLv ) ,

by considering the identity on the nesting of Lp norms over bounded spaces (or a
calculation involving an application of Hölder’s inequality).

So, using these last two inequalities in (7.40) means that identity (7.37) with
k = 0 leads toˆ

ΩLv

Q(χg,χg)χg(v) dv ≤−
KS
d,λ(g0)

Lv
2 ‖χg‖2L2(ΩLv )

+Kd,λ(g0)Lv
d
2 ‖χg‖L2(ΩLv ) + Cλ‖χg‖2L1

5λ
4

(ΩLv ),

(7.41)

for KS
d,λ(g0) :=

Kλ(g0)(
2CSd

)2 and Kd,λ(g0) := 2
d
2Kλ(g0)(3 + d)λ. (7.42)

Finally for this term, note that by using the Cauchy-Schwarz inequality on one
of the ‖χg‖L1

5λ
4

(ΩLv ) terms and then pulling out the maximum value of the weight,

‖χg‖2L1
5λ
4

(ΩLv ) ≤ (2Lv)
d
2 ‖χg‖L1

5λ
4

(ΩLv )‖χg‖L2
5λ
4

(ΩLv )

≤ (2Lv)
d
2
(
1 + Lv

2
)
‖χg‖L1

2(ΩLv )‖χg‖L2(ΩLv )

≤ 2 (2Lv)
d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )‖χg‖L2(ΩLv ),

after applying the bound (7.2) resulting from the stability condition (7.1). This
means that (7.41) becomes
ˆ

ΩLv

Q(χg,χg)χg(v) dv ≤
(
−
KS
d,λ(g0)

Lv
2 ‖χg‖L2(ΩLv ) +Kd,λ(g0)Lv

d
2

+ 2Cλ (2Lv)
d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )

)
‖χg‖L2(ΩLv ).

(7.43)
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Also, by using the Cauchy-Schwarz inequality on the second integral in (7.36)
and the triangle inequality,

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v) dv

≤
ˆ

ΩLv

∣∣∣((Qc(g, g)−Qu(g, g))−
(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v)

∣∣∣ dv

≤
∥∥∥((Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)∥∥∥
L2(ΩLv )

‖χg‖L2(ΩLv )

≤
(
‖(Qc(g, g)−Qu(g, g))‖L2(ΩLv )

+
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

)
‖χg‖L2(ΩLv ).

Then, by using the result from Lemma 6.2 on the first term with k = 0 and k′ =
2, and leaving in the extension operators in the moment terms before they were
bounded by 1 in the last line of that proof,

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v) dv

≤

(
Cd

(∣∣∣∣(ΠN
2Lv − 1

)
Q(χg,χg)

∣∣∣∣
L2(ΩLv )

+O d
2 +2

(
m0(χg)m2+λ(χg) +mλ(χg)m2(χg)

))
+
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

)
‖χg‖L2(ΩLv ).

So, by collecting the
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

terms and then using as-

sumption (7.33) to bound them,

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v) dv

≤

(
CdO d

2 +2

(
m0(χg)m2+λ(χg) +mλ(χg)m2(χg)

)
+
CQ(Cd + 1)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

)
‖χg‖L2(ΩLv ). (7.44)

Here, since λ ≤ 1 and χ(v) ≤ 1 for v ∈ ΩLv and 0 otherwise,

mλ(χg) ≤ ‖g‖L1
2(ΩLv ) ≤ 2‖g0‖L1

2(ΩLv ),

by using the bound (7.2) resulting from the stability condition (7.1). The upper
bound is also true for m0(χg) which means, by applying the same estimates for the
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extension operator χ in the other moment terms,

m0(χg)m2+λ(χg) +mλ(χg)m2(χg)

≤2‖g0‖L1
2(ΩLv )

(
‖g‖L1

2+λ(ΩLv ) + ‖g‖L1
2(ΩLv )

)
≤2‖g0‖L1

2(ΩLv )

((
1 + Lv

2
)λ

2 ‖g‖L1
2(ΩLv ) + ‖g‖L1

2(ΩLv )

)
≤4

(
1 +

(
1 + Lv

2
)λ

2

)
‖g0‖2L1

2(ΩLv ),

after pulling out the maximum value of an order λ portion of the weight of the
L2

2+λ-norm and then using the stability result (7.2) again. So, by noting that the

coefficient of ‖g0‖2L1
2(ΩLv )

is an O−λ term, (7.44) becomes

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg(v) dv

≤

(
CdO d

2 +2−λ‖g0‖2L1
2(ΩLv ) +

CQ(Cd + 1)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

)
‖χg‖L2(ΩLv ).

Therefore, by labeling C3
d := CQ(Cd + 1) and then using this bound in (7.36)

along with (7.43),

‖χg‖L2(ΩLv )

d

dt

(
‖χg‖L2(ΩLv )

)
≤
(
−
KS
d,λ(g0)

Lv
2 ‖χg‖L2(ΩLv ) +Kd,λ(g0)Lv

d
2 + 2Cλ (2Lv)

d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )

+ CdO d
2 +2−λ‖g0‖2L1

2(ΩLv ) +
C3
d

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

)
‖χg‖L2(ΩLv ),

and so dividing both sides by ‖χg‖L2(ΩLv ) gives

d

dt

(
‖χg‖L2(ΩLv )

)
≤−

KS
d,λ(g0)

Lv
2 ‖χg‖L2(ΩLv ) +Kd,λ(g0)Lv

d
2 + 2Cλ (2Lv)

d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )

+ CdO d
2 +2−λ‖g0‖2L1

2(ΩLv ) +
C3
d

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

,

which is the required result (7.34) in Lemma 7.2. �

7.3. Control of the Negative Part of the Solution. All the work so far has
hinged on the stability assumption (7.1) on the solution g(t) to the semi-discrete
problem (4.9) for all t > 0. This can only be assumed on the initial condition g0 (i.e.
assumption (4.10)) but it can be shown that this condition does indeed propagate
throughout all time.

Remark 7.5. The actual proof that the negative part of the solution is bounded is
written later in Section 8 on existence and regularity but it begins with finding an
estimate on the time derivative of the L2-norm of the negative part of the solution,
which is included here.
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Lemma 7.3. For a solution g of the semi-discrete problem (4.9), the negative part
g− (where g = g+ − g−, for g+, g− ≥ 0) satisfies

d

dt

(∥∥χg−∥∥
L2(ΩLv )

)
≤ Cd,λ ‖g0‖L1

2(ΩLv )

∥∥χg−∥∥
L2(ΩLv )

+ CdO d
2 +2−λm0(g0)m2(g) + CQ(Cd + 1)

(1 + Lv
2)2

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

, (7.45)

where the moment operator mk and L2
k-norm are defined by (3.3) and (3.1), re-

spectively; Or denotes a constant that is O(Lv
−r); g0 is the initial condition and

CQ, Cd, Cd,λ > 0 are constants with Cd,λ depending on d and the potential λ; Cd
defined in Lemma 6.2; and CQ defined in the proof of Lemma 7.1.

Proof. Similar to the proof of Lemma 7.2 on the estimate for the time-derivative of
the L2-norm, begin by multiplying the expansion (7.3) by
χg1{g<0} = −g− and integrating with respect to v over ΩLv to give

ˆ
ΩLv

∂g

∂t
χg1{g<0} dv

=

ˆ
ΩLv

Q(χg,χg)χg1{g<0} dv

+

ˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg1{g<0} dv. (7.46)

Here, by the same reasoning as in the proof of Lemma 7.2,ˆ
ΩLv

∂g

∂t
χg1{g<0} dv ≈

∥∥χg1{g<0}
∥∥
L2(ΩLv )

d

dt

(∥∥χg1{g<0}
∥∥
L2(ΩLv )

)
=
∥∥χg−∥∥

L2(ΩLv )

d

dt

(∥∥χg−∥∥
L2(ΩLv )

)
. (7.47)

Next, replacing χg by χg1{g<0} = −χg− in identity (7.44),
ˆ

ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg1{g<0} dv

≤

(
CdO d

2 +2

(
m0(χg)m2+λ(χg) +mλ(χg)m2(χg)

)
+
CQ(Cd + 1)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

)
‖χg−‖L2(ΩLv ). (7.48)

Then, by pulling out the maximum value of the weight 〈Lv〉λ from each of the
moment terms (after noting that χg(v) = 0 when v /∈ ΩLv ) and bounding the
extension operator χ by 1,

m0(χg)m2+λ(χg) +mλ(χg)m2(χg) ≤ O−λm0(g)m2(g) ≤ O−λm0(g0)m2(g),

since m0(g) ≤ Cr− d2m0(g0) from assumption (2.9). Also,∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

≤
∣∣∣∣χg∣∣∣∣2

L2
2(ΩLv )

≤ (1 + Lv
2)2
∣∣∣∣χg∣∣∣∣2

L2(ΩLv )
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which means that (7.48) becomesˆ
ΩLv

(
(Qc(g, g)−Qu(g, g))−

(
1−ΠN

2Lv

)
Q(χg,χg)

)
χg1{g<0} dv

≤

(
CdO d

2 +2−λm0(g0)m2(g)

+
CQ(Cd + 1)(1 + Lv

2)2

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2
λ+1(ΩLv )

)
‖χg−‖L2(ΩLv ). (7.49)

Now, for the first integral on the right-hand side of identity (7.46), a little more
care must be taken with the characteristic functions 1{g<0}. This is done by intro-
ducing a second order smoothing approximation to 1{g<0}, similar to the function
Hδ defined by (7.8) in the proof of Lemma 7.1. In particular, for any δc > 0, define
the monotone decreasing function H−δ : R→ [0, 1] by

H−δ (y) :=


1, when y ≤ −2δc,

− 1
2δc2 y2 − 2

δc
y − 1, when − 2δc < y ≤ −δc,

1
2δc2 y2, when − δc < y ≤ 0,

0, when y > 0.

Remark 7.6. This approximation to the jump is made when y ≤ 0 to allow
H−δ (y) = 0 when y > 0. This ensures that (H−δ )′(y) = 0 when y > 0 which
will be important later.

This means, after using the weak form, inserting the approximation 1{g<0} =

limδc→0H
−
δ and then differentiating with the product rule,ˆ

ΩLv

Q(χg,χg)χg1{g<0} dv

=−
ˆ

ΩLv

(
ā∇ (χg)− b̄χg

)
· ∇
(
χg1{g<0}

)
dv

=−
ˆ

ΩLv

(
ā∇ (χg)− b̄χg

)
· ∇
(

lim
δc→0

χgH−δ

)
dv

= lim
δc→0

(
−
ˆ
{g<0}

(ā∇ (χg)) · ∇ (χg)H−δ dv −
ˆ
{g<0}

χgā∇ (χg) · ∇
(
H−δ

)
dv

+

ˆ
ΩLv

χgb̄ · ∇ (χg)H−δ dv +

ˆ
{g<0}

(χg)
2
b̄ · ∇

(
H−δ

)
dv

)
,

assuming that Lebesgue’s dominated convergence theorem can be used. Next, note
that by the chain rule and then the divergence theorem and product rule, since
χg = 0 on the boundary of ΩLv ,ˆ

ΩLv

χgb̄ · ∇ (χg)H−δ dv =
1

2

ˆ
ΩLv

H−δ b̄ · ∇
(

(χg)
2
)

dv

=− 1

2

ˆ
{g<0}

(χg)
2
b̄ · ∇

(
H−δ

)
dv

− 1

2

ˆ
{g<0}

(χg)
2 (∇ · b̄)H−δ dv.
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So, by using c̄ = ∇ · b̄,ˆ
ΩLv

Q(χg,χg)χg1{g<0} dv

= lim
δc→0

(
−
ˆ
{g<0}

(ā∇ (χg)) · ∇ (χg)H−δ dv −
ˆ
{g<0}

χgā∇ (χg) · ∇
(
H−δ

)
dv

− 1

2

ˆ
{g<0}

(χg)
2
c̄H−δ dv +

1

2

ˆ
{g<0}

(χg)
2
b̄ · ∇

(
H−δ

)
dv

)
, (7.50)

Then, by similar calculations to those in the proof of Lemma 7.1,

−
ˆ

ΩLv

χgā∇ (χg) · ∇
(
H−δ

)
dv ≤ 2d2δc

2

O (δχ)

(
‖ |∇g‖ |L1

λ+2({−2δc<g<0})m0(g)

+ ‖ |∇g‖ |L1({−2δc<g<0})mλ+2(g)
)

(7.51)

and
ˆ

ΩLv

(χg)
2
b̄ · ∇

(
H−δ

)
dv ≤ δcd2

(
‖ |∇g‖ |L1

λ+1({−2δc<g<0})m0(g)

+ ‖ |∇g‖ |L1({−2δc<g<0})mλ+1(g)
)
, (7.52)

which are both O(δc) terms if the gradient ∇g remains bounded as previously
assumed. This means both the terms (7.51) and (7.52) approach zero as δc → 0
and so can be dropped when the limit is taken.

Remark 7.7. In order to reach (7.51), the product rule was used on ∇ (χg) and
the ellipticity of ā in Proposition 5.1 used to drop the part involving ∇g. This is
where it helped that (H−)′(y) = 0 when y ≥ 0 to ensure that χg(H−)′(g)(v) ≥ 0
for all v ∈ ΩLv .

Furthermore, for the first integral on the right-hand side of (7.50), by again using
the ellipticity of ā in Proposition 5.1,

−
ˆ
{g<0}

(ā∇ (χg)) · ∇ (χg)H−δ dv

≤−Kλ(g0)

ˆ
{g<0}

H−δ |∇ (χg)|2 (1 + |v|λ) dv ≤ 0.

This means, after dropping this term in (7.50), as well as taking the limit as δc → 0
to remove the O(δc) terms resulting from (7.51) and (7.52), then using Lebesgue’s
dominated convergence theorem to reintroduce the characteristic function,ˆ

ΩLv

Q(χg,χg)χg1{g<0} dv

=− 1

2

ˆ
{g<0}

(χg)
2
c̄ dv

= (λ+ 3)

ˆ
{g<0}

(ˆ
ΩLv

χg∗|v − v∗|λ dv∗

)
(χg)

2
dv
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after writing out the definition of c̄ from expression (4.3). Then, since |v − v∗| ≤
〈v〉〈v∗〉 and applying the positive exponent λ is a monotone operation,ˆ

ΩLv

Q(χg,χg)χg1{g<0} dv

≤ (λ+ 3)

(ˆ
ΩLv

|χg∗| 〈v∗〉λ dv∗

)(ˆ
{g<0}

(χg)
2 〈v〉λ dv

)
≤ (λ+ 3) ‖g‖L1

λ
2

(ΩLv )

∥∥χg−∥∥2

L2(ΩLv )

≤ Cr−( d2 +1)(λ+ 3) ‖g0‖L1
2(ΩLv )

∥∥χg−∥∥2

L2(ΩLv )
,

because ‖g‖L1
λ
2

(ΩLv ) ≤ ‖g‖L1
2(ΩLv ) ≤ Cr

−( d2 +1) ‖g0‖L1
2(ΩLv ) from assumption (2.9).

So, by using this bound, along with (7.47) and (7.49) in the estimate (7.46) gives∥∥χg−∥∥
L2(ΩLv )

d

dt

(∥∥χg−∥∥
L2(ΩLv )

)
≤Cr−( d2 +1)(λ+ 3) ‖g0‖L1

2(ΩLv )

∥∥χg−∥∥2

L2(ΩLv )

+

(
CdO d

2 +2−λm0(g0)m2(g)

+
CQ(Cd + 1)(1 + Lv

2)2

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

)∥∥χg−∥∥
L2(ΩLv )

.

Equivalently, by dividing through by ‖χg−‖L2(ΩLv ) and defining the constant Cd,λ :=

Cr−( d2 +1)(λ+ 3),

d

dt

(∥∥χg−∥∥
L2(ΩLv )

)
≤ Cd,λ ‖g0‖L1

2(ΩLv )

∥∥χg−∥∥
L2(ΩLv )

+ CdO d
2 +2−λm0(g0)m2(g) + CQ(Cd + 1)

(1 + Lv
2)2

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

,

which is the required result (7.45) in Lemma 7.3. �

7.4. Propagation of Moments and L2-norm. The final step in this section is to
show that the moments and L2-norm of the solution g of the semi-discrete problem
remain bounded by using the estimates on the time derivatives of those quantities.
In order to do this, the results from Lemmas 7.1 and 7.2 are added and an estimate
found on the time derivative of the sum mk(g) + ‖χg‖L2(ΩLv ). Before this can

happen, however, the results of these lemmas must be adjusted slightly.
First, for the result on the time derivative of the moments from Lemma 7.1,

after pulling out the maximum value of (1 + L2
v)λ+1 given by the weights in the

L2
λ+1-norm and noting that mk+λ(g) ≥ mk(g), this gives

d

dt

(
mk(g)

)
≤ −1

2
εχ

2Kλ,km0(g0)mk(g) + C1
d,k

(
m0(g) +mk(g)

)
+ C2

d,k

O
(
Lv

k+ d
2 +2λ+2

)
N

d−1
2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

.



40 CLARK A. PENNIE AND IRENE M. GAMBA

The C1
d,k

(
m0(g) + mk(g)

)
term here can also be bounded by the initial data by

noting that the these moments first appeared as functions of χg in Lemma 7.1 (or
by considering that g can be assumed to be zero outside of ΩLv ) so they can be
replaced by L1

k-norms. Then, by again pulling out the maximum value of the weight
and using the bound (7.2) resulting from the stability condition (7.1),

C1
d,k

(
m0(g) +mk(g)

)
≤ C1

d,k

(
‖g‖L1

2(ΩLv ) + (1 + Lv
2)

k
2−1‖g‖L1

2(ΩLv )

)
≤ 2C1

d,k

(
1 + (1 + Lv

2)
k
2−1
)
‖g0‖L1

2(ΩLv ).

So, the estimate on the time derivative of the moments becomes

d

dt

(
mk(g)

)
≤ −1

2
εχ

2Kλ,km0(g0)mk(g) + 2C1
d,k

(
1 + (1 + Lv

2)
k
2−1
)
‖g0‖L1

2(ΩLv )

+ C2
d,k

O
(
Lv

k+ d
2 +2λ+2

)
N

d−1
2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

. (7.53)

Similarly, by pulling out the maximum value of (1 + L2
v)

1
2 (λ+1) given by the

weights in the L2
λ+1-norm in the result on the time derivative of the L2-norm from

Lemma 7.2,

d

dt

(
‖χg‖L2(ΩLv )

)
≤−

KS
d,λ(g0)

Lv
2 ‖χg‖L2(ΩLv ) +Kd,λ(g0)Lv

d
2 + 2Cλ (2Lv)

d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv )

+ CdO d
2 +2−λ‖g0‖2L1

2(ΩLv ) + C3
d

O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

. (7.54)

Here, by defining the variable X(t) := mk(g) + ‖χg‖L2(ΩLv ) and adding the

estimates (7.53) and (7.54), this gives the ordinary differential inequality (ODI)

dX

dt
≤ A0

d,k(g0)−A1
d,k(g0)X +A2

d,k

O (Lv
κ)

N
d−1

2

X2, (7.55)

for κ :=

{
k + d

2 + 2λ+ 2, if Lv ≥ 1,

2λ+ 2, if Lv < 1,

where A0
d,k(g0) := 2C1

d,k

(
1 + (1 + Lv

2)
k
2−1
)
‖g0‖L1

2(ΩLv ) +Kd,λ(g0)Lv
d
2

+ 2Cλ (2Lv)
d
2
(
1 + Lv

2
)
‖g0‖L1

2(ΩLv ) + CdO d
2 +2−λ‖g0‖2L1

2(ΩLv ),

A1
d,k(g0) := min

(
1

2
εχ

2Kλ,km0(g0),
KS
d,λ(g0)

Lv
2

)
(7.56)

and A2
d,k := max

(
C2
d,k, C

3
d

)
.

Remark 7.8. The coefficient A0
d,k(g0) will always be large, no matter the size of

Lv. If Lv > 1 then the powers of Lv with positive exponents will dominate. On the

other hand, if Lv < 1 then the O d
2 +2−λ = O

(
Lv
− d2−2+λ

)
terms dominate as this

exponent is always negative when λ ≤ 1.
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Theorem 7.4. For a solution g of the semi-discrete problem (4.9) which satisfies
the stability condition (7.1) with ε ≤ min

(
1
4 , ε0

)
, given any initial condition g0

satisfying the stability condition (4.10), if the number of Fourier modes N ≥ N0,
for some base number of modes N0 > 0 to be defined in the proof, the numerical
moments mk(g) and L2-norm ‖χg‖L2(ΩLv ) defined by (3.3) and (3.1), respectively,

satisfy

sup
t≥0

mk(g) = sup
t≥0
‖χg‖L2(ΩLv ) ≤ ζ(g0), for any k ≥ max(3, k0), (7.57)

where ζ(g0) := max

(
mk(g0) + ‖g0‖L2(ΩLv ) , 2

A0
d,k(g0)

A1
d,k(g0)

)
, (7.58)

for A0
d,k(g0) and A1

d,k(g0) defined as the coefficients in (7.56); and ε0 and k0 are

constants defined in the proof of Lemma 7.1 in expressions (7.22) and (7.29), re-
spectively.

Furthermore, supt≥0mk(g) = supt≥0 ‖χg‖L2(ΩLv ) ≤ ζ̃(g0), for any k ≥ max(3, k0),

with ζ̃(g0) given by

ζ̃(g0) := max

(
mk(g0) + ‖g0‖L2(ΩLv ) , 2

A1
d,k(g0)N

d−1
2

A2
d,kO (Lv

κ)

)
, (7.59)

for A2 defined as the coefficient in (7.56).

Remark 7.9. Whereas the bound using ζ defined in (7.58) may be cleaner, the

bound with ζ̃ defined in (7.59) will be more useful later as it is easier to see that

ζ̃(h0)→ 0 as ‖h0‖L2(ΩLv ) → 0, for fixed Lv and N . This is because h0 only appears

in the numerator of ζ̃(h0), but is in both the numerator and denominator of ζ(h0).

Proof. First, the second order polynomial on the right-hand side of the ODI (7.55)
has roots

X± =
A1
d,k(g0)±

√(
A1
d,k(g0)

)2

− 4A0
d,k(g0)A2

d,k
O(Lvκ)

N
d−1

2

2A2
d,k
O(Lvκ)

N
d−1

2

.

Here, since all coefficients A0
d,k(g0), A1

d,k(g0) and A2
d,k(g0) are positive, the poly-

nomial is guaranteed to have two distinct real (and positive) roots by taking the
number of Fourier modes N large enough. In addition, as N → ∞, X+ ↗ ∞ and

X− → A0
d,k(g0)

A1
d,k(g0)

by an application of L’Hôpital’s rule.

Furthermore, the lower root X− is in fact a decreasing function of N for large

enough Lv. To see this, by denoting Ñ := N
d−1

2 and dropping the dependence on
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g0 for convenience, note that the derivative of X− with respect to Ñ is

∂X−

∂Ñ
=

A1
d,k

2A2
d,kO (Lv

κ)
−

(
A1
d,k

)2

Ñ − 2A0
d,kA

2
d,kO (Lv

κ)

Ñ

√(
A1
d,k

)2

− 4A0
d,kA

2
d,k
O(Lvκ)

Ñ

≤
A1
d,k

2A2
d,kO (Lv

κ)
−

(
A1
d,k

)2

Ñ − 2A0
d,kA

2
d,kO (Lv

κ)

A1
d,kÑ

=

(
A1
d,k

)2

Ñ − 2
(
A1
d,k

)2

A2
d,kO (Lv

κ) Ñ + 4A0
d,k

(
A2
d,kO (Lv

κ)
)2

2A1
d,kA

2
d,kO (Lv

κ) Ñ
,

since N has been chosen large enough that the quantity under the square root is

positive. Another consequence of this fact is that 4A0
d,kA

2
d,kO (Lv

κ) <
(
A1
d,k

)2

Ñ

and so

∂X−

∂Ñ
<

(
A1
d,k

)2

Ñ − 2
(
A1
d,k

)2

A2
d,kO (Lv

κ) Ñ +
(
A1
d,k

)2

A2
d,kO (Lv

κ) Ñ

2A1
d,kA

2
d,kO (Lv

κ) Ñ

=

(
1−A2

d,kO (Lv
κ)
)(

A1
d,k

)2

Ñ

2A1
d,kA

2
d,kO (Lv

κ) Ñ
.

The denominator here is always positive and so, for large enough Lv to cause

A2
d,kO (Lv

κ) ≥ 1, this means that ∂X−

∂Ñ
< 0 and so the lower root X− decreases

in Ñ = N
d−1

2 , or equivalently as the number of Fourier modes N increases. This

means that X− ↘ A0
d,k(g0)

A1
d,k(g0)

as N →∞.

Then, since X+ ↗ ∞ as N → ∞, there exists some N0 > 0 such that, for N ≥
N0, the initial sum of k-th moment and L2-norm X(0) = mk(g0) + ‖χg0‖L2(ΩLv )

satisfies X(0) ≤ X+. If, in addition, X(0) ≥ X− the derivative X ′(t) must be
negative, since it is bounded above by the polynomial which is negative between
the roots, and so X(t) is decreasing. If, for some T > 0, the solution drops to
X(T ) < X− then it could be that X ′(t) ≤ 0 or X ′(t) > 0 for t ≥ T . If X ′(t) ≤ 0
then the solution will remain bounded but will also never drop below zero as, by
definition of the moments and L2-norm in (3.3) and (3.1), respectively, X(t) =
mk(g) + ‖χg‖L2(ΩLv ) ≥ 0. If X ′(t) > 0, however, as soon as the solution reaches

X− it must decrease again as once more the derivative is forced to be negative. This
means that whenX(t) drops below the lower rootX− it must remain bounded above
by X−. In particular, this means that if X(0) ≤ X− then X(t) may increase above
X(0) but X(t) ≤ X− and so

X(t) ≤ max
(
X(0), X−

)
. (7.60)

A sketch of this argument is shown in Fig. 1 where, given the initial condition
X(0) ≤ X+, the hatched region shows the possible values for the derivative X ′(t).
In addition, by some simple factorisation, note that when N ≥ N0 and so the
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discriminant of the polynomial on the right-hand side of (7.55) is positive,

X− =
A1
d,k(g0)−

√(
A1
d,k(g0)

)2

− 4A0
d,k(g0)A2

d,k
O(Lvκ)

N
d−1

2

2A2
d,k
O(Lvκ)

N
d−1

2

(7.61)

=

A1
d,k(g0)

(
1−

√
1− 4

A0
d,k(g0)A2

d,k

(A1
d,k(g0))

2
O(Lvκ)

N
d−1

2

)
2A2

d,k
O(Lvκ)

N
d−1

2

≤
A1
d,k(g0)

(
1− 1 + 4

A0
d,k(g0)A2

d,k

(A1
d,k(g0))

2
O(Lv

κ)

N
d−1

2

)
2A2

d,k
O(Lvκ)

N
d−1

2

= 2
A0
d,k(g0)

A1
d,k(g0)

,

since a positive discriminant is only possible when 1 − 4
A0
d,k(g0)A2

d,k

(A1
d,k(g0))

2
O(Lv

κ)

N
d−1

2

≤ 1

and so the square root of this quantity is larger. So, using this bound on X− in
identity (7.60), as well as the fact that X(0) = mk(g0) + ‖χg0‖L2(ΩLv ) ≤ mk(g0) +

‖g0‖L2(ΩLv ), gives

X(t) ≤ max

(
mk(g0) + ‖g0‖L2(ΩLv ) , 2

A0
d,k(g0)

A1
d,k(g0)

)
.

In conclusion, since both mk(g) and ‖χg‖L2(ΩLv ) are positive, they each have

the same bound as X(t), which gives the required result (7.57) coupled with (7.58)
in Theorem 7.4.

Figure 1. A sketch of the parabola which is the right-hand side
of the ODI (7.55) for large enough number of Fourier modes N to
give two distinct real roots. Since the derivative of X(t) = mk(g)+
‖χg‖L2(ΩLv ) is bounded above by this curve, if the initial condition

satisfies X(0) < X+, the derivative remains in the hatched region.
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Additionally, the result involving ζ̃ defined in (7.59) is true by using the expres-
sion (7.60) and trivially bounding the lower root X− by removing the square root
in expression (7.61) �

8. Existence and Uniqueness for the Semi-discrete Problem

The results on the propagation of moments and L2-norm from Theorem 7.4 can
now be used to show that the semi-discrete problem (4.9) has a unique solution, for
some initial condition f0 ∈ L2(Rd) which has support contained in ΩLv . The proof
of this is an application of the contraction mapping theorem, which first requires
the definition of a Banach space in which the solution will live. For this purpose,
first let g0 = ΠN

Lv
f0 and then define the Banach space Bk ⊂ C([0, T ];L2(ΩLv )), for

any required k ≥ max(3, k0) with k0 defined by (7.29), as

Bk :=
{
f ∈ C([0, T ];L2(ΩLv )) : sup

t∈[0,T ]

mk(f(t)) ≤ 2ζ(g0),

sup
t∈[0,T ]

‖χf(t)‖L2(ΩLv ) ≤ 2ζ(g0)
}
,

where ζ(g0) is defined by (7.58) in Theorem 7.4.
To introduce an operator to be used in the contraction mapping theorem, also

notice that the semi-discrete problem (4.9) is equivalent to stating that its solution

g satisfies g(t) = g0 +
´ t

0
Qc(g, g)(s) ds. As a result, define the operator T : Bk →

C([0, T ];L2(ΩLv )) by

T (g)(t) := g0 +

ˆ t

0

Qc(g, g)(s) ds. (8.1)

Theorem 8.1. For an initial condition g0 = ΠN
2Lv

f0 ∈ L1
k

⋂
L2(ΩLv ), where k ≥

max(3, k0), which satisfies the stability condition (4.10) with ε ≤ min
(

1
4 , ε0

)
, if

the number of Fourier modes N ≥ N0 and Lv ≥ L0, there is a unique solution
g ∈ C([0, T ];L2(ΩLv )) to the semi-discrete problem (4.9), for any T > 0, which
satisfies

mk(g) ≤ ζ(g0) and ‖χg‖L2(ΩLv ) ≤ ζ(g0), for all t ≤ T,

with ε0 and k0 are defined in the proof of Lemma 7.1 in expressions (7.22) and
(7.29), respectively; ζ(g0) defined by expression (7.58) and N0 described in Theorem
7.4; and L0 > 0 large enough which will be described in the current proof.

Proof. First it will be shown that the map T defined in (8.1) is a contraction. To

see this, for f , f̃ ∈ Bk, note that

T (f)− T (f̃)

=

ˆ t

0

(
Qc(f, f)(s)−Qc(f̃ , f̃)(s)

)
ds (8.2)

=

ˆ t

0

(
ΠN

2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)
− 1

2

(
(γ1 − γ̃1) +

d∑
j=1

(γj+1 − γ̃j+1) vj + (γd+2 − γ̃d+2) |v|2
))

ds,
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by using expression (6.1) for Qc. So, by pulling out the supremum from the integral
with respect to s, the triangle inequality and noting that the Lagrange multipliers
γj are constants, for j = 1, 2, . . . , d+ 2,∥∥∥T (f)− T (f̃)

∥∥∥
L2(ΩLv )

≤ t sup
s∈[0,t]

(∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

+
1

2

(
|γ1 − γ̃1| ‖1‖L2(ΩLv ) +

d∑
j=1

|γj+1 − γ̃j+1| ‖vj‖L2(ΩLv )

+ |γd+2 − γ̃d+2|
∥∥|v|2∥∥

L2(ΩLv )

))
.

Now, by using the definition of γ1 in (6.2), and explicitly writing out the moments
Mφ(v), after using the triangle inequality,

|γ1 − γ̃1| ≤Od
ˆ

ΩLv

∣∣∣ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∣∣∣ dv

+Od+2

ˆ
ΩLv

∣∣∣ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∣∣∣ |v|2 dv

≤ Od
∥∥∥ΠN

2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

‖1‖L2(ΩLv )

+Od+2

∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

∥∥|v|2∥∥
L2(ΩLv )

,

by the Cauchy-Schwarz inequality. Similarly, by using the definitions in (6.2) for
the remaining Lagrange multipliers,

|γj+1 − γ̃j+1| ≤ Od+2

∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

‖vj‖L2(ΩLv ) ,

for j = 1, 2, . . . , d, and

|γd+2 − γ̃d+2| ≤ Od+2

∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

‖1‖L2(ΩLv )

+Od+4

∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

∥∥|v|2∥∥
L2(ΩLv )

.

Next, by considering that the expressions (6.10) show ‖1‖L2(ΩLv ) = O− d2
, ‖vj‖L2(ΩLv ) =

O−( d2 +1), for j = 1, 2, . . . , d, and ‖|v|2‖L2(ΩLv ) = O(− d2 +2), all of the Od terms can-

cel with the O−d terms from the L2-norms of the collision invariants and this means

that there exists some constant C̃1 > 0 such that∥∥∥T (f)− T (f̃)
∥∥∥
L2(ΩLv )

≤ C̃1t sup
s∈[0,t]

∥∥∥ΠN
2Lv

(
Q(χf,χf)−Q(χf̃ ,χf̃)

)∥∥∥
L2(ΩLv )

≤ C̃1t sup
s∈[0,t]

∥∥∥Q(χf,χf)−Q(χf̃ ,χf̃)
∥∥∥
L2(ΩLv )

, (8.3)

by Parseval’s theorem, and so proving that T is a contractive map reduces to
showing that Q is. To do this, notice that by the bi-linearity of Q,

Q(χf,χf)−Q(χf̃ ,χf̃) = Q(χf − χf̃ ,χf + χf̃)
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and so an estimate is required on ‖Q(F,G)‖L2(ΩLv ), where F = χf−χf̃ = χ(f− f̃)

and G = χf + χf̃ = χ(f + f̃). Well, by using these functions in the L2-estimate
(5.2) resulting from Proposition 5.4,

‖Q(χ(f − f̃),χ(f + f̃))‖L2(ΩLv )

≤ CH

(
‖χ(f − f̃)‖L1

λ+2
+ ‖χ(f − f̃)‖L2

)
‖χ(f + f̃)‖H2

λ+2
.

Then, using this estimate for the L2-norm in (8.3) and the Cauchy-Schwarz
inequality, a bound for the maximum value of the weights and the triangle inequality
on the H2-norms gives∥∥∥T (f)− T (f̃)

∥∥∥
L2(ΩLv )

≤ C̃1CHt sup
s∈[0,t]

(
‖χ(f − f̃)‖L1

λ+2
+ ‖χ(f − f̃)‖L2

)
‖χ(f + f̃)‖H2

λ+2

≤ C̃1CHt
(

(2Lv)
d
2 (1 +

(
Lv)2

)λ+2
+ 1
)

sup
s∈[0,t]

‖χ(f − f̃)‖L2‖χ(f + f̃)‖H2

≤ C̃1CHCχt
(

(2Lv)
d
2 (1 +

(
Lv)2

)λ+2
+ 1
)

sup
s∈[0,t]

(
‖f‖H2 + ‖f̃‖H2

)
‖f − f̃‖L2 ,

by bounding the extension operators by 1 in the L2-norm and using the bound
(3.6) in the H2-norms. This means, if it can also be assumed that the H2-norms

of the functions f, f̃ ∈ Bk are uniformly bounded up to some time TT (which will
be proven in the next section and does not rely on this theorem directly), for a
constant Cλ,Lv > 0 depending on λ and Lv,

sup
t∈[0,TT ]

∥∥∥T (f)− T (f̃)
∥∥∥
L2(ΩLv )

≤ TT Cλ,Lv sup
t∈[0,TT ]

‖f − f̃‖L2 . (8.4)

So, if TT is chosen small enough so that TT Cλ,Lv < 1 then the operator T is indeed
a contraction.

Furthermore, setting f̃ = 0 in the above estimates which prove that Q is a
contraction,

sup
t∈[0,TT ]

‖T (f)‖L2(ΩLv ) ≤ ‖g0‖L2(ΩLv ) + sup
t∈[0,TT ]

∥∥∥∥ˆ t

0

Qc(f, f)(s) ds

∥∥∥∥
L2(ΩLv )

≤ ‖g0‖L2(ΩLv ) + TT Cλ,Lv sup
t∈[0,TT ]

‖f‖L2 ≤ ‖g0‖L2(ΩLv ) + TT Cλ,Lvζ(g0),

because f ∈ Bk. That means, since ‖g0‖L2(ΩLv ) ≤ ζ(g) (by definition of ζ in (7.58))

and TT has already been chosen such that TT Cλ,Lv ≤ 1 in the contraction statement
(8.4), supt∈[0,TT ] ‖T (f)‖L2(ΩLv ) ≤ 2ζ(g0).

Also, notice that

mk(T (g)(t)) =

ˆ
Rd

∣∣∣∣g0 +

ˆ t

0

Qc(f, f)(s) ds

∣∣∣∣ 〈v〉k dv

≤ mk(g0) + t sup
s∈[0,t]

ˆ
Rd
|Qc(f, f)(s)| 〈v〉k dv.
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Then, by using the expanded identity (7.3) for Qc, as well as the triangle inequality
and noting that f will only be defined inside ΩLv so that Q has support in Ω2Lv ,

ˆ
Rd
|Qc(f, f)(s)| 〈v〉k dv

≤
ˆ
Rd
|Q(χf,χf)(s)| 〈v〉k dv +

∥∥(Qc(f, f)−Qu(f, f))〈v〉k
∥∥
L1(Ω2Lv )

+
∥∥(1−ΠN

2Lv

)
Q(χf,χf)〈v〉k

∥∥
L1(Ω2Lv )

. (8.5)

Here, by the arguments in the proof of Lemma 7.1, the L1-norm terms in (8.5) are
bounded as∥∥(Qc(f, f)−Qu(f, f))〈v〉k

∥∥
L1(Ω2Lv )

+
∥∥(1−ΠN

2Lv

)
Q(χf,χf)〈v〉k

∥∥
L1(Ω2Lv )

≤ C2
dCr

d
2m0(g0)√

2k + 1
mk+λ(f) +

CkCd√
2k + 1

(
m0(f) +mk+λ(f)

)
+

C1
dCQ

N
d−1

2

√
2k + 1

O
(
Lv

k+ d
2 +λ+2

) ∣∣∣∣χf ∣∣∣∣2
L2(ΩLv )

≤ C2
dCr

d
2 (1+Lv

2)λm0(g0)√
2k+1

mk(f) +
CkCd√
2k+1

(
mk(f) + (1 + Lv

2)λmk(f)
)

+
C1
dCQ

N
d−1

2

√
2k+1

O
(
Lv

k+ d
2 +λ+2

) ∣∣∣∣χf ∣∣∣∣2
L2(ΩLv )

. (8.6)

Now, if it can also be assumed that the moments of the collision operator, namely´
Rd |Q(χf,χf)(s)| 〈v〉k dv, can be bounded by moments of f then, by combining

that with the estimates in (8.6), since f ∈ Bk and every term will involve mk(f) or∣∣∣∣χf ∣∣∣∣
L2(ΩLv )

, this means that the supremum of these quantities are bounded by

some function of ζ(g0), which also depends on k, λ, Lv and N , say Ck,λ,Lv,N (ζ(g0)).
More precisely, this means

sup
s∈[0,t]

ˆ
Rd
|Qc(f, f)(s)| 〈v〉k dv ≤ Ck,λ,Lv,N (ζ(g0)), for t ≤ TT ,

and so

sup
t∈[0,TT ]

mk(T (f)(t)) ≤ sup
t∈[0,TT ]

(
mk(g0) + t sup

s∈[0,t]

ˆ
Rd
|Qc(f, f)(s)| 〈v〉k dv

)
≤ mk(g0) + TT Ck,λ,Lv,N (ζ(g0)).

Here, since mk(g0) ≤ ζ(g0) by definition of ζ in (7.58), if TT is additionally
chosen small enough so that TT Ck,λ,Lv,N (ζ(g0)) ≤ ζ(g0) then it is also true that
supt∈[0,TT ]mk(T (f)(t)) ≤ 2ζ(g0).

This means that T (f) ∈ Bk because supt∈[0,TT ]mk(T (f)(t)) ≤ 2ζ(g0) and supt∈[0,TT ] ‖T (f)(t)‖L2(ΩLv ) ≤
2ζ(g0). Therefore, since T : Bk → Bk is a contraction, there is a unique solution to
the semi-discrete problem (4.9) for 0 < t ≤ TT by the contraction mapping theorem.

The next step is to show that there is a unique solution for all time t > 0. This
is achieved by first proving that the stability assumption (7.1) is true for all t > 0.
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In particular, by using the result of Lemma 7.3 in the case where g ∈ Bk,

d

dt

(∥∥χg−∥∥
L2(ΩLv )

)
≤ Cd,λ ‖g0‖L1

2(ΩLv )

∥∥χg−∥∥
L2(ΩLv )

+ 2CdO d
2 +2−λm0(g0)ζ(g0) + 4CQ(Cd + 1)

(1 + Lv
2)2

N
d−1

2

(ζ(g0))
2
.

So, by Grönwall’s inequality,∥∥χg−(t)
∥∥
L2(ΩLv )

≤ ε(t, Lv, N),

where

ε(t, Lv, N) = e
Cd,λ‖g0‖L1

2(ΩLv
)
t

(∥∥χg−0 ∥∥L2(ΩLv )
+ 2CdO d

2 +2−λm0(g0)ζ(g0)

+ 4CQ(Cd + 1)
(1 + Lv

2)2

N
d−1

2

(ζ(g0))
2

)
.

Now, since ε(t, Lv, N) is an increasing function of t, ε(t, Lv, N) ≤ ε(T0, Lv, N)
for some T0 > 0 and the negative part of the solution satisfiesˆ
{g(t,v)<0}

|g(t,v)|〈v〉2 dv ≤ (1 + Lv
2)
∥∥χg−(t)

∥∥
L2(ΩLv )

≤ (1 + Lv
2)ε(T0, Lv, N).

This means´
{g(t,v)<0} |g(t,v)|〈v〉2 dv´
{g(t,v)≥0} g(t,v)〈v〉2 dv

=

´
{g(t,v)<0} |g(t,v)|〈v〉2 dv´

ΩLv
g(t,v)〈v〉2 dv −

´
{g(t,v)<0} g(t,v)〈v〉2 dv

≤ (1 + Lv
2)ε(T0, Lv, N)´

ΩLv
g(t,v)〈v〉2 dv − (1 + Lv

2)ε(T0, Lv, N)
. (8.7)

Then, for fixed T0 > 0 small enough, ε(T0, Lv, N) can be made smaller by increasing
Lv and N . This means that T0, Lv and N can be chosen so that the right-hand
side of (8.7) is less than ε in the assumption (4.10). This is only true for times
0 < t ≤ T0, however, but the argument can be repeated from time t = T0 to give
the same result for times T0 < t ≤ 2T0 and so on. This then gives the result for all
time t > 0. Equivalently, this means that the stability condition (7.1) is true for all
t > 0.

Therefore, the only assumption of Theorem 7.4 is true and so, for any k ≥
max(3, k0), it is in fact true that

mk(g) ≤ ζ(g0) and ‖χg‖L2(ΩLv ) ≤ ζ(g0), for all t ≤ TT .

This means that the set 1
2Bk is in fact stable and the argument can be repeated,

starting at time TT , to give a unique solution by the contraction mapping theorem
up to time 2TT . Therefore, by repeating this argument, there is global existence
and uniqueness to the semi-discrete problem (4.9), as required by the statement of
Theorem 8.1. �

Corollary 1. For the unique solution gN = g from Theorem 8.1 to the semi-
discrete problem (4.9), as the number of Fourier modes N → ∞, gN → ḡ strongly
in C(0, T, L2(ΩLv )) where ḡ is the solution to

∂ḡ

∂t
= Q(χḡ,χḡ)(v)− 1

2

γ̄1 +

d∑
j=1

γ̄j+1vj + γ̄d+2|v|2
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with initial condition g0 = f0 and the Lagrange multipliers γ̄j are defined by evalu-
ating the expressions (6.2) at Q(χḡ,χḡ)(v) (instead of Qu), for j = 1, 2, . . . , d+ 2.

Proof. First, by explicitly writing the dependence of g on the solution with N

Fourier modes as gN , gN (t) = gN0 +
´ t

0
Qc(g

N , gN )(s) ds, this means that, for
N,M ∈ N,

gN (t)− gM (t) = gN0 − gM0 +

ˆ t

0

(
Qc(g

N , gN )(s)−Qc(gM , gM )(s)
)

ds

and so, by using identity (8.2) with f = gN and f̃ = gM and then following through
the contraction argument to get to result (8.4) without taking the supremum in s,∥∥gN (t)− gM (t)

∥∥
L2(ΩLv )

≤
∥∥gN0 − gM0 ∥∥L2(ΩLv )

+

∥∥∥∥ˆ t

0

(
Qc(g

N , gN )(s)−Qc(gM , gM )(s)
)

ds

∥∥∥∥
L2(ΩLv )

≤
∥∥gN0 − gM0 ∥∥L2(ΩLv )

+ Cλ,Lv

ˆ t

0

‖gN (s)− gM (s)‖L2 ds.

So, by using Grönwall’s inequality again,∥∥gN (t)− gM (t)
∥∥
L2(ΩLv )

≤
∥∥gN0 − gM0 ∥∥L2(ΩLv )

eCλ,Lv t.

This means, since gN0 → g0 as N → ∞,
∥∥gN0 − gM0 ∥∥L2(ΩLv )

→ 0 as N → ∞ which

means
∥∥gN (t)− gM (t)

∥∥
L2(ΩLv )

→ 0 as N → ∞, because eCλ,Lv t < ∞ is constant

for fixed t > 0. Therefore the sequence {gN} is a Cauchy sequence which lives
in the Banach space Bk and converges to some function ḡ which must solve the
semi-discrete problem (4.9) in the limit as N →∞, as required by the statement of
Corollary 1. �

9. Regularity of the Approximate Solution

Here an estimate will be obtained on the Hs-norm of any solution g to the semi-
discrete problem (4.9) which satisfies the bounds on the moments and L2-norm
given by Theorem 7.4, for any s > 0.

Remark 9.1. The result of the following theorem was actually required to prove
the existence of a unique solution in Theorem 8.1. For that reason, the following
result does not reference Theorem 8.1 directly, but it will indeed apply to the unique
solution found there.

Theorem 9.1. For a solution g of the semi-discrete problem (4.9), with initial
condition g0, which satisfies the result of the moment and L2-norm propagation

theorem 7.4, if the number of Fourier modes N ≥ Ñ0 and domain length Lv > L̃0,

for some base number of modes Ñ0 > 0 and length L̃0 > 0 to be defined in the proof,
the Hs-norm ‖g‖Hs(ΩLv ) satisfies

‖g‖Hs(ΩLv ) ≤ η(g0), for any s ≥ 0, t ≥ 0, (9.1)
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where η(g0) := max

(
‖g0‖Hs(ΩLv ) , 2

C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0)

)
, (9.2)

for C0
λ,d,Lv,N (g0) := O

(
Lv

2λ+4
)

+ Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2

and Kλ,s,ν(g0) := (s+ 1)1−ν min
j≤s
{Kλ,j(g0)},

where the Hs-norm is defined by (3.2); Or denotes a constant that is O(Lv
−r);

ν > 1 and Kλ,j(g0) are from Proposition 5.3(b)(ii); Cd is defined in the proof of
Theorem 6.2; CQ is defined in the proof of Lemma 7.1; and ζ(g0) is the bound on
the moments and L2-norm defined by expression (7.58) in Theorem 7.4.

Remark 9.2. It is believed that a similar bound should hold for the weighted Hs
k-

norm, for k ≥ λ + 2, especially since such a result exists for the true solution to
the Fokker-Planck-Landau type equation associated to hard potentials, as given in
Proposition 5.3(a)(ii). In particular, there will exist some ηk(g0) depending on λ,
d, s k, Lv and N such that ‖g‖Hsk(ΩLv ) ≤ ηk(g0).

Proof. For some multi-index α ∈ Nd, first differentiate the expansion (7.3) with
respect to v of order α to give

∂(Dαg)

∂t
= Dα

(
Qc(g, g)−Qu(g, g)

)
+DαQ(χg,χg)

−Dα
( (

1−ΠN
2Lv

)
Q(χg,χg)

)
.

Then, multiplying this by Dαg and integrating with respect to v over ΩLv and
noting that Dαg ∂∂t (D

αg) = 1
2
∂
∂t

(
(Dαg)2

)
by the chain rule gives

1

2

d

dt

(
‖Dαg‖2L2(ΩLv )

)
=

ˆ
ΩLv

Dα
(
Qc(g, g)−Qu(g, g)

)
Dαg dv

+

ˆ
ΩLv

DαQ(χg,χg)Dαg dv +

ˆ
ΩLv

Dα
((

1−ΠN
2Lv

)
Q(χg,χg)

)
Dαg dv

≤
ˆ

ΩLv

DαQ(χg,χg)Dαg dv +

(∥∥Dα
(
Qu(g, g)−Qc(g, g)

)∥∥
L2(ΩLv )

+
∥∥∥Dα

((
1−ΠN

2Lv

)
Q(χg,χg)

)∥∥∥
L2(ΩLv )

)
‖Dαg‖L2(ΩLv ) , (9.3)

by the Cauchy-Schwarz inequality.
Now, by the result of Lemma 6.1, Qu(g, g) − Qc(g, g) is simply a second order

polynomial in v and so taking derivatives would only reduce the order of the mo-
ments involved in the L2-norm bound of the Dα derivatives this term. This means
that the result of Theorem 6.2 with k = 0 and k′ = 2 can be still be applied here
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to give

∥∥Dα
(
Qu(g, g)−Qc(g, g)

)∥∥
L2(ΩLv )

≤ Cd
(∣∣∣∣(ΠN

2Lv − 1
)
Q(χf,χf)

∣∣∣∣
L2(ΩLv )

+O d
2 +2

(
m0(f)m2+λ(f) +mλ(f)m2(f)

))

≤ Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

+O d
2 +2

(
m0(g)m2+λ(g) +mλ(g)m2(g)

)
≤ Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2
, (9.4)

after using assumption (7.33); pulling out the maximum value of (1 +L2
v)λ+1 given

by the weights in the L2
λ+1-norm; and using mk(g) ≤ ζ(g0) and

‖χg‖L2(ΩLv ) ≤ ζ(g0) since g satisfies the result of Theorem 7.4.

Next, since derivatives Dα commute with the mode projection operator ΠN
2Lv

by
the result (3.4), then distributing the derivatives over the arguments of Q using the
Leibniz formula,∥∥∥Dα

((
1−ΠN

2Lv

)
Q(χg,χg)

)∥∥∥
L2(ΩLv )

=
∥∥(1−ΠN

2Lv

)
DαQ(χg,χg)

∥∥
L2(ΩLv )

≤ CQ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣Dα (χg)
∣∣∣∣2
L2(ΩLv )

≤ CQ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
H|α|(ΩLv )

≤ CQCχ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣g∣∣∣∣2
H|α|(ΩLv )

, (9.5)

after using the assumption (7.33) and also (3.6) to pull the extension operator out
of the H |α|-norm.

Finally, by Proposition 5.3(b)(ii) with k = 0, for some ν > 1,

∑
α∈Nd:
|α|=s

ˆ
ΩLv

DαQ(χg,χg)Dαg dv

≤ −Kλ,s(g0)
(
‖g‖2Ḣs(ΩLv )

)ν
+ Cλ,s ‖g‖Ḣs ‖g‖

2
Hs−1
λ
2

+1
(ΩLv )

≤ −Kλ,s(g0)
(
‖g‖2Ḣs(ΩLv )

)ν
+ Cλ,sO

(
Lv

λ+2
)
‖g‖Ḣs , (9.6)

after pulling the maximum value of (1 +L2
v)

λ
2 +1 given by the weights in the Hs−1

λ
2 +1

-

norm and using an inductive argument to bound ‖g‖2H|α|−1 .

Remark 9.3. Proposition 5.3 is in fact an estimate on the integral of DαQ(g, g)Dαg,
without the extension operators χ. They can be added without loss of generality,
however, because an application of Leibniz’ formula and definition of χ, including
the property (3.6), would lead to the same result.
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So, by summing up (9.3) over all multi-indices α ∈ Nd with |α| = s and using
linearity of the time derivative,

1

2

d

dt

(
‖g‖2Ḣs(ΩLv )

)
=
∑
α∈Nd:
|α|=s

1

2

d

dt

(
‖Dαg‖2L2(ΩLv )

)

≤−Kλ,s(g0)
(
‖g‖2Ḣs(ΩLv )

)ν
+ Cλ,sO

(
Lv

λ+2
)
‖g‖Ḣs

+ ds

(
Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2

+ CQCχ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣g∣∣∣∣2
Hs(ΩLv )

)
‖g‖Ḣs ,

after using the bounds (9.4-9.6) and then noting that ‖Dαg‖L2(ΩLv ) ≤ ‖g‖Ḣs(ΩLv )

when |α| = s, so that ds many of the same term are added together. Similarly, after
summing up all of the order j derivative bounds, for j ≤ s, this gives

1

2

d

dt

(
‖g‖2Hs(ΩLv )

)
=

s∑
j=0

1

2

d

dt

(
‖g‖2Ḣj(ΩLv )

)
≤−Kλ,s,ν(g0)

(
‖g‖2Hs(ΩLv )

)ν
+O

(
Lv

2λ+4
)
‖g‖Hs(ΩLv )

+

(
Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2

+ CQCχ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣g∣∣∣∣2
Hs(ΩLv )

)
‖g‖Hs(ΩLv ) , (9.7)

where Kλ,s,ν(g0) := (s+ 1)1−ν minj≤s{Kλ,j(g0)}. Note that the appearance of this
constant is a consequence of the fact that, for any p > 1 and vector (z0, z1, . . . zs) ∈
Rs+1,

∣∣∣∣ s∑
j=0

zj

∣∣∣∣p ≤ (s+ 1)p−1
s∑
j=0

|zj |p and so −
s∑
j=0

|zj |p ≤ −(s+ 1)1−p
∣∣∣∣ s∑
j=0

zj

∣∣∣∣p.

This can easily proven using Hölder’s inequality for sums and is then applied, after
the minimum value of Kλ,j(g0) is pulled out of the sum as a lower bound, with

zj = ‖g‖2Ḣj(ΩLv ) and p = ν.



53

Equivalently, since 1
2
d
dt

(
‖g‖2Hs(ΩLv )

)
= ‖g‖Hs(ΩLv )

d
dt

(
‖g‖Hs(ΩLv )

)
by the chain

rule, dividing both sides of the bound (9.7) by ‖g‖Hs(ΩLv ) gives

d

dt

(
‖g‖Hs(ΩLv )

)
≤−Kλ,s,ν(g0) ‖g‖2ν−1

Hs(ΩLv ) +O
(
Lv

2λ+4
)

+ Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2

+ CQCχ
O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣g∣∣∣∣2
Hs(ΩLv )

. (9.8)

Now, by defining the variable Y (t) := ‖g‖Hs(ΩLv ), the bound (9.8) can be simply

written as the ODI

dY

dt
≤ C0

λ,d,Lv,N (g0)−Kλ,s,ν(g0)Y 2ν−1 + C̃χ
O
(
Lv

2λ+2
)

N
d−1

2

Y 2, (9.9)

where C0
λ,d,Lv,N (g0) := O

(
Lv

2λ+4
)

+ Cd

CQO
(
Lv

2λ+2
)

N
d−1

2

+O d
2 +2

 (ζ(g0))
2

and C̃χ := CQCχ.

The ODI (9.9) can be handled in a similar way to the ODI (7.55) on X(t) =
mk(g)+‖χg‖L2(ΩLv ) because it takes a similar form but with an extra power 2ν−1

on the negative term. This only helps to control the derivative further, however,
because 2ν − 1 > 1 here and so only restricts Y from increasing too much. First, if
ν > 3

2 so that 2ν−1 > 2 then, no matter what size the coefficients are on the right-

hand side of (9.9), eventually the negative term will dominate and force dY
dt < 0.

This means that, if the initial data Y (0) is below the root of the polynomial on the
right-hand side of (9.9), say Y −, then Y remains bounded by Y −. If Y (0) > Y −,
however, then dY

dt < 0 from the start and so Y cannot increase past Y (0). This

means that ‖g‖Hs(ΩLv ) = Y (t) ≤ max (Y (0), Y −) when ν > 3
2 .

On the other hand, for any ν > 1, it is always true that

dY

dt
≤ C0

λ,d,Lv,N (g0)−Kλ,s,ν(g0)Y 2ν−1 + C̃χ
O
(
Lv

2λ+2
)

N
d−1

2

Y 2

≤ C0
λ,d,Lv,N (g0)−Kλ,s,ν(g0)Y + C̃χ

O
(
Lv

2λ+2
)

N
d−1

2

Y 2, when Y ≥ 1.

(9.10)

This means that, for 1 < ν < 3
2 , the same argument can be made as for the

ODI (7.55) on X. In particular, N can be chosen large enough for this quadratic
polynomial to have two distinct and real roots. Then, if Lv is large enough to cause

C̃χO
(
Lv

2λ+2
)
≥ 1 then the lower root of the quadratic polynomial on the right-

hand side of (9.10), say Ỹ −, satisfies
C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0) < Ỹ − < 2
C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0) . Given

some initial condition Y (0) = ‖g0‖Hs(ΩLv ), N can also be chosen larger than some
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base number of modes Ñ0 so that the larger root of the quadratic polynomial on

the right-hand side of (9.10), say Ỹ +, satisfies Ỹ + > Y (0).

Further, assuming Lv > L̃0, for L̃0 large enough to have
C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0) ≥ 1, then

this means that the roots of the polynomial on the right-hand side of (9.9), say Y −

and Y + satisfy Y − < Ỹ − < 2
C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0) and Y + > Ỹ + > Y (0), by the second

inequality in (9.10). This means that the exact same conclusion can be made as

for the ODI (7.55) and once again ‖g‖Hs(ΩLv ) = Y (t) ≤ max
{
Y (0), 2

C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0)

}
,

when 1 < ν < 3
2 . A sketch of this argument is shown in Fig. 2(a) where, given the

initial condition Y (0) ≤ Y +, the hatched region shows the possible values for the
derivative Y ′(t).

Note that for the case when ν > 3
2 , and so 2ν − 1 > 2, if it is still assumed that

N > Ñ0 and Lv > L̃0 then the only root of the polynomial on the right-hand side

of (9.9) once again satisfies Y − < Ỹ − < 2
C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0) . In this case, the number

of Fourier modes N does not need to be chosen quite as high because there is no
second root and so the initial condition can be much larger than Y − and it will
always be true that Y ′(t) < 0. A sketch of this can be seen in Fig. 2(b) where the
hatched region shows the possible values for the derivative Y ′(t) given any initial
Y (0).

Therefore, no matter the size of ν, if Lv > L̃0 and N > Ñ0 then, since Y (0) =
‖g0‖Hs(ΩLv ),

‖g‖Hs(ΩLv ) = Y (t) ≤ max

(
‖g0‖Hs(ΩLv ) , 2

C0
λ,d,Lv,N

(g0)

Kλ,s,ν(g0)

)
,

which is the required result (9.1) coupled to (9.2) in Theorem 9.1. �

10. The L2-norm Error Estimate

It will now be shown that the unique solution g from Theorem 8.1 does indeed
converge to the true solution f of the space-homogeneous Fokker-Planck-Landau
type equation (2.1) by devising an error estimate comparing g and f in L2-norm,
up to some fixed time T > 0.

Theorem 10.1. Given some initial condition f0 ∈ L1
k

⋂
L2(ΩLv ), where k ≥

max(3, k0), if the number of Fourier modes N ≥ N0 and Lv ≥ L0, the difference in
L2-norm between the solution f to the space-homogeneous Fokker-Planck-Landau
type equation (2.1) associated to hard potentials with f(0) = f0 and the solution
g to the semi-discrete problem (4.9) with initial condition g0 = ΠN

2Lv
f0 which is

assumed to satisfy the stability condition (4.10) with ε ≤ min
(

1
4 , ε0

)
, each solved

for 0 < t ≤ T , satisfies

sup
t∈[0,T ]

‖f − g‖L2(ΩLv ) ≤ e
CH

(
Cfλ,2,λ+2(f0)+η(g0)

)
T

(
‖f0 − g0‖L2(ΩLv ) +O d

2 +2

+
O
(
Lv

2λ+2
)

N
d−1

2

+
1

2
ζ̃(f0 − g0)

)
, (10.1)

where CH is the constant from Proposition 5.4; Cfλ,2,λ+2(f0) is the constant Cfλ,s,k(f0)

from Proposition 5.3(a)(ii) with s = 2 and k = λ+ 2; η(g0) is defined by expression
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(a)

(b)

Figure 2. Sketches of the polynomial on the right-hand side of the
ODI (9.9) for to the two possible cases (a) 1 < ν ≤ 3

2 and (b) ν > 2,
with a large enough number of Fourier modes N to give two distinct
real roots in case (a). Since the derivative of Y (t) = ‖g‖Hs(ΩLv ) is

bounded above by this curve, the derivative remains in the hatched
region. For this to be true in case (a) the initial condition must
satisfy Y (0) < Y +.

(9.2) in Theorem 9.1; ζ̃(f0 − g0) is defined by expression (7.59) in Theorem 7.4;
ε0 and k0 are defined in the proof of Lemma 7.1 in expressions (7.22) and (7.29),
respectively; ζ(g0) defined by expression (7.58) and N0 described in Theorem 7.4;
and L0 > 0 described in the current proof of Theorem 8.1.

Before proving this theorem, it should be noted that the term in parenthesis
in the error estimate (10.1) can be made as small as necessary by choosing large
enough N and Lv, as well as f0 and g0 sufficiently close. This means that, since
the exponential in front is a constant for fixed T > 0, the approximation from the
semi-discrete problem (4.9) does indeed converge to the true solution.

More precisely, since g0 = ΠN
Lv
f0, if f0 is sufficiently smooth then choosing N

large enough ensures that ‖f0 − g0‖L2(Lv) is small by the Fourier approximation
result given in Lemma B.2 in the appendix. Consequently, since ‖f0 − g0‖L1(Lv) ≤
(2Lv)

d
2 ‖f0 − g0‖L2(Lv) by the Cauchy-Schwarz inequality, this means that g0 also

converges to f0 in L1-norm as N →∞.

Then, it is also true that ζ̃(h)→ 0 as its argument h = f0− g0 converges to zero
in both L1 and L2-norm. Clearly this is true for the first term inside the maximum
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function in the definition (7.59). Then, for the second term inside the maximum
function, by using the definition of A1

d,k(h) from the ODI (7.55),

2
A1
d,k(h)N

d−1
2

A2
d,kO (Lv

κ)
= 2

min

(
1
2εχ

2Kλ,km0(h),
KS
d,λ(h)

Lv2

)
N

d−1
2

A2
d,kO (Lv

κ)

= 2

min

(
1
2εχ

2Kλ,k,
K̃λ

(2CSd Lv)
2

)
N

d−1
2

A2
d,kO (Lv

κ)
m0(h),

after using expression (7.42) for KS
d,λ(h) and factoring out the m0(h) term which

appears in both arguments of the minimum. This means that this term also de-
creases as m0(f0 − g0) does, or equivalently ‖f0 − g0‖L1(Lv) since f0 and g0 are
assumed to have compact support. Note that the Fourier approximation lemma
B.2 also takes care of the N appearing in the numerator here if it is assumed that
f0 ∈ Hs(ΩLv ) for s > d−1

2 . In particular, this means that there is some constant
Cζ > 0 such that

ζ̃(h) ≤ Cζ‖h‖L2(ΩLv ). (10.2)

Proof. First note that the assumptions on k, ε, Lv and N ensure the existence of
a unique solution g to the semi-discrete problem (4.9) which satisfies the regularity
properties from Theorem 9.1. For such a function g, the main trick here is to write
the collision operator Q as

Q(g, g) = Q(χg + (1− χ)g,χg + (1− χ)g) = Q(χg,χg) + E(g, g),

for E(g, g) := Q(χg, (1− χ)g) +Q((1− χ)g,χg) +Q((1− χ)g, (1− χ)g).
(10.3)

Then, by definition (4.6) of the unconserved operator Qu in (4.6) and since
Q(χg,χg) = Q(g, g)− E(g, g),

Qu(g, g) = ΠN
2LvQ(χg,χg).

= Q(χg,χg)−
(
1−ΠN

2Lv

)
Q(χg,χg)

= Q(g, g)− E(g, g)−
(
1−ΠN

2Lv

)
Q(χg,χg). (10.4)

Now, by subtracting the semi-discrete equation (4.9) (for the approximation g)
from the homogeneous Fokker-Planck-Landau equation (2.1) (for the true solution
f), then adding and subtracting the unconserved operator Qu,

∂

∂t
(f − g) = Q(f, f)−Qc(g, g) = Q(f, f)−Qu(g, g) +Qu(g, g)−Qc(g, g)

= Q(f, f)−Q(g, g) +Qu(g, g)−Qc(g, g)

+ E(g, g) +
(
1−ΠN

2Lv

)
Q(χg,χg),

after using identity (10.4) to replace the first instance of Qu here. Then, multiplying
this by (f − g), integrating with respect to v over ΩLv , and noting that the chain
rule implies (f − g) ∂∂t (f − g) = 1

2
∂
∂t ((f − g)2), gives

1

2

d

dt

(
‖f − g‖2L2(ΩLv )

)
= I1 + I2 + I3, (10.5)
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where I1 :=

ˆ
ΩLv

(f − g)
(
Qu(g, g)−Qc(g, g) +

(
1−ΠN

2Lv

)
Q(χg,χg)

)
dv,

I2 :=

ˆ
ΩLv

(f − g)E(g, g) dv

and I3 :=

ˆ
ΩLv

(f − g) (Q(f, f)−Q(g, g)) dv.

First, by the Cauchy-Schwarz inequality,

I1 ≤
(
‖Qu(g, g)−Qc(g, g)‖L2(ΩLv )

+
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

)
‖f − g‖L2(ΩLv ) ,

where, by the result from Theorem 6.2 with k = 0 and k′ = 2,

‖Qu(g, g)−Qc(g, g)‖L2(ΩLv ) +
∥∥(1−ΠN

2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

≤ O d
2 +2

(
m0(g)m2+λ(g) +mλ(g)m2(g)

)
+ (Cd + 1)

∥∥(1−ΠN
2Lv

)
Q(χg,χg)

∥∥
L2(ΩLv )

≤ O d
2 +2

(
m0(g)m2+λ(g) +mλ(g)m2(g)

)
+ CQ(Cd + 1)

O
(
Lv

2λ+2
)

N
d−1

2

∣∣∣∣χg∣∣∣∣2
L2(ΩLv )

≤

O d
2 +2 + (Cd + 1)

CQO
(
Lv

2λ+2
)

N
d−1

2

 (ζ(g0))
2
, (10.6)

after using assumption (7.33); pulling out the largest value of the weight 〈v〉2(λ+1)

from the L2
λ+1-norm; and using mk(g) ≤ ζ(g0) and ‖χg‖L2(ΩLv ) ≤ ζ(g0), for ζ(g0)

defined by (7.58), since g is the unique solution from Theorem 8.1. This means

I1 ≤

O d
2 +2 + (Cd + 1)

CQO
(
Lv

2λ+2
)

N
d−1

2

 (ζ(g0))
2 ‖f − g‖L2(ΩLv ) . (10.7)

Next, for a bound on I2, note that E(g, g) contains evaluations of Q of the form
Q(χ̃1g, χ̃2g), where χ̃i could be χ or 1− χ, for i = 1, 2. Then, by the result (5.1)
in Proposition 5.4 with F = χ̃1g, G = χ̃2g and H = f − g,∣∣∣∣∣

ˆ
ΩLv

(f − g)Q(χ̃1g, χ̃2g) dv

∣∣∣∣∣
≤ CH

(
‖χ̃1g‖L1

λ+2(ΩLv ) + ‖χ̃1g‖L2(ΩLv )

)
‖χ̃2g‖H2

λ+2(ΩLv )‖f − g‖L2(ΩLv ).

Now, in expression (10.3) for E(g, g), each term has one of χ̃1 or χ̃2 replaced by
1−χ. Since (1− χ) (v) = 0 when v ∈ Ω(1−δχ)Lv , this means that one of the factors

here involving norms of χ̃ig, for i = 1, 2, is an O (δχ) term, while the other remains

bounded. More precisely, after pulling out the maximum value of (1+L2
v)

λ
2 +1 given

by the weights and denoting the norms of (1− χ)g by an O (δχ) term,

I2 ≤ CH max(ζ(g0), η(g0))
(

(1 + L2
v)λ+2 + (1 + L2

v)
λ
2 +1
)
O (δχ) ‖f − g‖L2(ΩLv ),

(10.8)
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where the quantities ζ(g0) defined by (7.58) and η(g0) defined by (9.2) have been
used to bound the L1

k- and Hs-norms of χg, respectively, after using (3.6) to remove
the extension operator χ.

Finally, for the integral I3 in (10.5), first note that by the bi-linearity and sym-
metry of Q,

I3 =

ˆ
ΩLv

(f − g)Q(f − g, f + g) dv.

This means that the result (5.1) in Proposition 5.4 can once again be used, this
time with the choices of F = f − g, G = f + g and H = f − g, to give

I3 ≤ CH

(
‖f − g‖L1

λ+2(ΩLv ) + ‖f − g‖L2(ΩLv )

)
‖f + g‖H2

λ+2(ΩLv )‖f − g‖L2(ΩLv )

≤ CH(Cfλ,2,λ+2(f0) + η(g0))ζ̃(f0 − g0)‖f − g‖L2(ΩLv )

+ CH
(
Cfλ,2,λ+2(f0) + η(g0)

)
‖f − g‖2L2(ΩLv ), (10.9)

after using the triangle inequality on the H2
λ+2-norm; Cfλ,s,k(f0) from Proposition

5.3 with s = 2 and k = λ + 2 to bound ‖f‖H2
λ+2(ΩLv ); η(g0) defined by (9.2) in

Theorem 9.1 to bound ‖g‖H2
λ+2

; and ‖f − g‖L1
λ+2
≤ ‖f − g‖L1

3
≤ ζ̃(f0 − g0), for ζ̃

defined by expression (7.59) in Theorem 7.4. Note that here the weight is bounded
as λ+2 ≤ 3, since λ ≤ 1, to allow Theorem 7.4 to be used because it requires k ≥ 3.

Remark 10.1. To reach the bound (10.9), an estimate was required on the weighted
norm ‖g‖H2

λ+2
. Whereas this result hasn’t explicitly been proven in the current work,

it is expected to be true, as mentioned in Remark 9.2.

Remark 10.2. ζ̃ is used here, instead of the bound with ζ defined by (7.58), because

it is easier to show that ζ̃(h0) approaches zero as the argument h0 := f0−g0 decreases
in L1-norm. This will be explained at the end of the current proof.

Then, using the bounds (10.7-10.9) in (10.5) gives

1

2

d

dt

(
‖f − g‖2L2(ΩLv )

)
≤ CH

(
Cfλ,2,λ+2(f0) + η(g0)

)
‖f − g‖2L2

+ CH max(ζ(g0), η(g0))
(

(1 + L2
v)λ+2 + (1 + L2

v)
λ
2 +1
)
O (δχ) ‖f − g‖L2

+

(
CH
(
Cfλ,2,λ+2(f0) + η(g0)

)
ζ̃(f0 − g0)

+

O d
2 +2 + (Cd + 1)

CQO
(
Lv

2λ+2
)

N
d−1

2

 (ζ(g0))
2

)
‖f − g‖L2(ΩLv ) .

(10.10)

At this stage it should be noted that there are no more χg terms and so the limit
δχ → 0 can be taken, independently of Lv, to remove any smoothing of the extension

operator. Taking this limit in the bound (10.10) and denoting Z := ‖f − g‖2L2(ΩLv )
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gives

dZ

dt
≤ 2CH

(
Cfλ,2,λ+2(f0) + η(g0)

)
Z

+

(
CH
(
Cfλ,2,λ+2(f0) + η(g0)

)
ζ̃(f0 − g0)

+

O d
2 +2 + (Cd + 1)

CQO
(
Lv

2λ+2
)

N
d−1

2

 (ζ(g0))
2

)
√
Z. (10.11)

To recover a bound on Z, using the Gronwall type result from Lemma B.3 in the
appendix with the choices u = Z,α = 1

2 , and the appropriate coefficients from the
ODI (10.11), gives

Z(t) ≤ e2CH

(
Cfλ,2,λ+2(f0)+η(g0)

)
t

((
Z(0)

) 1
2 +O d

2 +2 +
O
(
Lv

2λ+2
)

N
d−1

2

+
1

2
ζ̃(f0 − g0)

)2

,

where any constants multiplying or dividing the O d
2 +2 or O

(
Lv

2λ+2
)

terms have

been absorbed and the division of the coefficient of t in the exponent cancels nicely

with the factor of ζ̃.
Therefore, since Z = ‖f − g‖2L2(ΩLv ), after taking a square root, this means that

sup
t∈[0,T ]

‖f − g‖L2(ΩLv ) ≤ e
CH

(
Cfλ,2,λ+2(f0)+η(g0)

)
T

(
‖f0 − g0‖L2(ΩLv ) +O d

2 +2

+
O
(
Lv

2λ+2
)

N
d−1

2

+
1

2
ζ̃(f0 − g0)

)
,

which is the required error estimate (10.1) stated in Theorem 10.1. �

11. Long Time Behaviour

Now that the approximation g from the semi-discrete problem (4.9) has been
shown to converge to the true solution of the Fokker-Planck-Landau type equation
(2.1), the final step is to show that g converges to the equilibrium MaxwellianMeq

defined by expression (2.5). This will be achieved by setting g =Meq + h, for the
perturbation h(t,v) := g(t,v) −Meq(v). The aim is then to show that the L2-
norm of h can be made as small as needed, provided that the initial perturbation
h0(v) := h(0,v) = g0(v) −Meq(v) is small enough. This is made more precise in
the following result.

Lemma 11.1. For k ≥ max(3, k0), let g0 = ΠN
2Lv

f0 ∈ L1
k

⋂
L2(ΩLv ) be an initial

condition which satisfies the stability condition (4.10) with ε ≤ min
(

1
4 , ε0

)
andMeq

be the equilibrium Maxwellian associated to g0, where ε0 and k0 are defined in the
proof of Lemma 7.1 in expressions (7.22) and (7.29), respectively. Given any δ > 0,
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if

‖g0 −Meq‖L2(ΩLv ) ≤ min

(
1

2Cζ
δ,

1

8
δ

)
(11.1)

and ‖g0 −Meq‖H2
λ+2(ΩLv ) ≤ δη, (11.2)

where δη > 0 is chosen such that CHCχη(g0−Meq) ≤ 1
2λ0, for the spectral gap λ0,

and the number of Fourier modes N and domain size Lv are sufficiently large, then

‖g(t)−Meq‖L2(ΩLv ) ≤ δ, for all t > 0,

where CH is the constant from Proposition 5.4; Cχ is the constant associated to
the extension operator from the bound (3.6); η is defined by expression (9.2) in
Theorem 9.1; and Cζ is a constant defined in (10.2), associated to ζ given by (7.58)
in Theorem 7.4.

Proof. First, as was the case for the semi-discrete scheme associated to the Boltzmann
equation in [1], the conserved operator Qc associated to the semi-discrete scheme
4.9 satisfies

Qc(Meq + h,Meq + h) = Qc(Meq,Meq) +Qc(Meq, h) +Qc(h,Meq) +Qc(h, h).
(11.3)

Next, define the linearised operators

Lc(h) := Qc(Meq, h) +Qc(h,Meq) (11.4)

and L(χh) := Q(Meq,χh) +Q(χh,Meq). (11.5)

Then, by noting that d
dt (Meq) = 0, χ is independent of t, and Meq + h = g is

the solution to the semi-discrete problem (4.9),

d

dt
(χh) = χ

d

dt
(Meq + h) = χQc(Meq + h,Meq + h).

So, by inserting the expansion (11.3) with the notation (11.4),

d

dt
(χh) = χQc(Meq,Meq) + χLc(h) + χQc(h, h)

= L(χh) +Q(χh,χh) +R(h), (11.6)

where R(h) := χQc(Meq,Meq) + χLc(h)− L(χh) + χQc(h, h)−Q(χh,χh),
(11.7)

which is obtained by adding and subtracting L(χh) +Q(χh,χh), for L defined by
(11.5).

Next, by adding and subtracting Qu(Meq,Meq),

Qc(Meq,Meq) = Qc(Meq,Meq)−Qu(Meq,Meq) +Qu(Meq,Meq)

= Qc(Meq,Meq)−Qu(Meq,Meq)

−
(
1−ΠN

2Lv

)
Q(χMeq,χMeq)− E(Meq,Meq),

after using the expansion for Qu given in expression (10.4), with E defined by (10.3)
and noticing that Q(Meq,Meq) = 0. So, by the triangle inequality,

‖Qc(Meq,Meq)‖L2(ΩLv ) ≤ ‖Qc(Meq,Meq)−Qu(Meq,Meq)‖L2(ΩLv )

+
∥∥(1−ΠN

2Lv

)
Q(χMeq,χMeq)

∥∥
L2(ΩLv )

+ ‖E(Meq,Meq)‖L2(ΩLv ) .
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Here, the first two terms can be bounded by (10.6), after noting that the moments
and L2-norm of Meq are bounded. Additionally, the term involving E can be
bounded by expression (5.2) for the L2-norm of Q, along with the calculations
leading to (10.8). Combining these gives

‖Qc(Meq,Meq)‖L2(ΩLv ) ≤ O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

so that, by bounding the extension operator χ by 1,

‖χQc(Meq,Meq)‖L2(ΩLv ) ≤ ‖Qc(Meq,Meq)‖L2(ΩLv ) ≤ O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

.

(11.8)
The above arguments which led to (11.8) can then applied to Qc(h, h). Here,

however, Q(h, h) 6= Q(χh,χh) 6= 0 and so the full expansion of Qu given by (10.4)
appears. Then, by using expression (5.2) for the L2-norm ofQ and following through
the calculations that lead to (10.9), this gives

‖Q(h, h)−Q(χh,χh)‖L2(ΩLv ) ≤CH(1 + Cχ)η(h0)ζ̃(h0 − χh0)

+ CH(1 + Cχ)η(h0)‖h− χh‖L2(ΩLv ). (11.9)

Note that this can be made sufficiently small for χ chosen close enough to 1ΩLv
because then ‖h − χh‖L2(ΩLv ) will be almost zero. This means that the right-
hand side of (11.9) would contribute an O(δχ) term, which is negligible and can be
dropped for clarity. In the end, this leads to

‖χQc(h, h)−Q(χh,χh)‖L2(ΩLv ) ≤ O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

. (11.10)

Similarly,

‖χLc(h)− L(χh)‖L2(ΩLv ) ≤ O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

. (11.11)

So, by using the bounds (11.8), (11.10) and (11.11), the remainder termR defined
by (11.7) also satisfies

‖R(h)‖L2(ΩLv ) ≤ O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

. (11.12)

In addition, by using expression (5.2) for the L2-norm of Q,

‖Q(χh,χh)‖L2(ΩLv ) ≤ CH
(
‖χh‖L1

λ+2(ΩLv ) + ‖χh‖L2(ΩLv )

)
‖χh‖H2

λ+2(ΩLv )

≤ CHCχη(h0)
(
ζ̃(h0) + ‖h‖L2(ΩLv )

)
, (11.13)

for η, the bound on ‖h‖H2
λ+2(ΩLv ), defined by (9.2) in Theorem 9.1 and ζ̃, the bound

on ‖h‖L1
λ+2(ΩLv ) ≤ mλ+2(h), defined by (7.59) in Theorem 7.4, because h = g−Meq

solves the semi-discrete problem (4.9) since g does and Meq is the equilibrium
solution. The most important thing to notice here is that both η(h0) → 0 and

ζ̃(h0)→ 0 as ‖h0‖H2
λ+2(ΩLv ) → 0, which can be seen in their definitions.

Remark 11.1. Once again, an estimate is actually required on the weighted norm
‖h‖H2

λ+2
, which is expected to be true, as mentioned in Remark 9.2.



62 CLARK A. PENNIE AND IRENE M. GAMBA

Now, following the notation used for the Boltzmann equation in [1], let eL(t)

denote the semi-group associated to the linearised operator L. Then, the solution
to the linearised equation (11.6) can be written as

χh(t) = χh0 +

ˆ t

0

eL(t−s)Q(χh,χh)(s) ds+

ˆ t

0

eL(t−s)R(h)(s) ds, (11.14)

for h0 := g0 −Meq.
Next, since the remainder R may not have zero mass, momentum and energy,

it is necessary to introduce the projection operator π onto the null-space of the
Fokker-Planck-Landau equation. As is stated in [4], where the form of linearised
operator defined by (11.5) is used, the null-space N (L) is given by

N (L) =
{
µ(v), v1µ(v), . . . , vdµ(v), |v|2µ(v)

}
,

where µ denotes the normalised Maxwellian with mass 1, zero bulk velocity and
temperature d. Then, for the set of collision invariants I :=

{
1, v1, . . . , vd, |v|2

}
,

the projection operator π is defined by

πh :=
∑
φ∈I

(ˆ
Rd
h(ṽ)φ(ṽ) dṽ

)
φ(v)µ(v).

Note that this projection operator satisfies

‖πh‖L2(ΩLv ) ≤
∑
φ∈I

(ˆ
Rd
|h(ṽ)φ(ṽ)| dṽ

)
‖φµ‖L2(ΩLv ) ≤ C

4
d ‖h‖L1

2(Rd) , (11.15)

for C4
d := (d + 2) ‖µ‖L2

2(Rd), where the weights on the norms come from the fact

that φ(v) ≤ 〈v〉2 for each φ in the sum.
Then, since the semigroup eL(t) and null-space projection operator commute,

applying (1− π) to both sides of equation (11.14) gives

(1− π)χh(t) = (1− π)χh0 +

ˆ t

0

eL(t−s)Q(χh,χh)(s) ds

+

ˆ t

0

eL(t−s)(1− π)R(h)(s) ds, (11.16)

since Q(χh,χh) is already conservative and so (1 − π)Q(χh,χh) = Q(χh,χh).
Also, by properties of the semigroup, which are detailed in [4],

∥∥∥eL(t)
∥∥∥
L2(ΩLv )

≤ e−λ0t,

where λ0 is the spectral gap that was first estimated for the Fokker-Planck-Landau
type equation associated to hard potentials in [7].
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So, by applying the L2-norm and using the triangle inequality, as well as this
bound on the semigroup eL(t),

‖(1− π)χh(t)‖L2(ΩLv )

≤‖(1− π)χh0‖L2(ΩLv ) +

ˆ t

0

e−λ0(t−s) ‖Q(χh,χh)(s)‖L2(ΩLv ) ds

+

ˆ t

0

e−λ0(t−s) ‖(1− π)R(h)(s)‖L2(ΩLv ) ds

≤‖(1− π)χh0‖L2(ΩLv ) +
1

λ0

O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2


+

ˆ t

0

e−λ0(t−s)CHCχη(h0)
(
ζ̃(h0) + ‖h(s)‖L2(ΩLv )

)
ds, (11.17)

where the bounds (11.13) and (11.12) have been used and the anti-derivative of the
exponential term used to introduce the reciprocal of the spectral gap. Furthermore,
since the conservation routine ensures that πh(t) = 0 for all t ≥ 0,

‖πχh(t)‖L2(ΩLv ) = ‖π(1− χ)h(t)‖L2(Rd) ≤ C
4
d ‖(1− χ)h(t)‖L1

2(ΩLv ) = O(δχ),

(11.18)
by using the bound (11.15) and then noting that this final norm is an O(δχ) term
by definition of the extension operator in (3.5).

As a result of the bound (11.18),

‖(1− π)χh(t)‖L2(ΩLv ) = ‖χh(t)‖L2(ΩLv ) +O(δχ) = ‖h(t)‖L2(ΩLv ) +O(δχ).

(11.19)
So, rearranging equation (11.19) and then using the bound (11.17) gives

‖h(t)‖L2(ΩLv ) = ‖(1− π)χh(t)‖L2(ΩLv ) +O(δχ) ≤W (t) (11.20)

for W (t) := ‖h0‖L2(ΩLv ) +O(δχ) +
1

λ0

O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2


+ CHCχη(h0)

ˆ t

0

e−λ0(t−s)
(
ζ̃(h0) + ‖h(s)‖L2(ΩLv )

)
ds, (11.21)

where expression (11.19) has again been used on the h0 term.
Here, by using the product rule,

W ′(t) = CHCχη(h0)

(
ζ̃(h0) + ‖h(t)‖L2(ΩLv )

− λ0

ˆ t

0

e−λ0(t−s)
(
ζ̃(h0) + ‖h(s)‖L2(ΩLv )

)
ds

)
(11.22)

and so

W ′(t) + λ0W (t) = CHCχη(h0)‖h(t)‖L2(ΩLv ) + CHCχη(h0)ζ̃(h0)

+ λ0 ‖h0‖L2(ΩLv ) + λ0O(δχ) +O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

= CHCχη(h0)‖h(t)‖L2(ΩLv ) + CHCχη(h0)ζ̃(h0) +W (0),
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by noting that the definition of W in (11.21) gives

W (0) = ‖h0‖L2(ΩLv ) +O(δχ) +
1

λ0

O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

 . (11.23)

This means, since ‖h(t)‖L2(ΩLv ) ≤ Y (t) from inequality (11.20) and then re-
arranging, this gives the ODI

W ′(t) ≤ (CHCχη(h0)− λ0)W (t) + CHCχη(h0)ζ̃(h0) +W (0). (11.24)

At this stage, for the ODI (11.24) to be useful, the linear term must be negative
to control the derivative. By recalling the definition of η in (9.2), this linear term
can be made negative by noting that η(h0) is controlled by ‖h0‖H2

λ+2(ΩLv ). More

precisely, by assumption (11.1), the initial perturbation h0 has weighted Sobolev
norm ‖h0‖H2

λ+2(ΩLv ) ≤ δη, for δη > 0 small enough to cause

CHCχη(h0) ≤ 1

2
λ0. (11.25)

In this case, the ODI (11.24) can be written as

W ′(t) ≤− 1

2
λ0W (t) +

1

2
λ0ζ̃(h0) + λ0W (0). (11.26)

Remark 11.2. In the definition (9.2) of η, only the unweighted Sobolev norm
‖h0‖H2 appears. Since this bound is actually being used to control the weighted
Sobolev norms, as per Remark 9.2, it is conjectured that the definition of η for this
purpose would also have to include the weighted norm ‖h0‖H2

λ+2
.

Then, by applying the Gronwall inequality for linear ODIs to (11.26) and using
the inequality (11.20),

‖h(t)‖L2(ΩLv ) ≤W (t) ≤ e−
1
2λ0t

(
W (0)−

(
ζ̃(h0) + 2W (0)

))
+ ζ̃(h0) + 2W (0)

= ζ̃(h0) + 2W (0)−
(
ζ̃(h0) +W (0)

)
e−

1
2λ0t

≤ Cζ‖h0‖L2(ΩLv ) + 2W (0), (11.27)

because ζ̃(h0) ≤ Cζ‖h0‖L2(ΩLv ) from (10.2) and
(
ζ̃(h0) +W (0)

)
e−

1
2λ0t ≥ 0, where

W (0) is given by (11.23).
Finally, given any δ > 0, when the initial data satisfies assumptions (11.1) and

(11.2), so that

‖h0‖L2(ΩLv ) ≤ ‖h0‖H2
λ+2(ΩLv ) ≤ min

(
δη,

1

2Cζ
δ,

1

8
δ

)
,

and the domain size Lv, number of Fourier modes N and extension function χ are
chosen such that

O(δχ) +
1

λ0

O d
2 +2 +

O
(
Lv

2λ+2
)

N
d−1

2

 ≤ 1

8
δ,

by definition of W (0) in (11.23),

W (0) ≤ 1

8
δ +

1

8
δ =

1

4
δ.
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Therefore, by the bound (11.27), the perturbation h = g −Meq satisfies

‖h(t)‖L2(ΩLv ) ≤ Cζ

(
1

2Cζ
δ

)
+ 2

(
1

4
δ

)
≤ δ,

for all time t > 0, which is the required result stated in Lemma 11.1. �

12. Conclusion

A mathematical analysis was presented to prove an estimate in L2 spaces on
the error between the approximate solution obtained by the conservative spectral
method for solving space-homogeneous FPL type equations associated to hard po-
tentials and the corresponding true solution. This is the first time an error estimate
has been derived for a direct method to FPL type equations, with any range of
potentials.

In order to obtain such a result, it was also shown that the there is always a
unique solution to the conservative spectral method. For a large enough cut-off
velocity domain and a sufficient number of Fourier modes, the moments and L2-
norm of this solution also remain bounded. Furthermore, regularity of the solution
was also shown to propagate by proving that its derivatives remain bounded in L2

spaces, up to any order.

Appendix Appendix A Results for the Landau Equation

A.1 The Weak Form.

Lemma A.1. If f is a function such that f(v) → 0 as |v| → 0, the weak form of
the operator Qa isˆ

Rd
Q(f, g)φ dv =

ˆ
Rd
f

(
āi,j

∂2φ

∂vi∂vj
+ 2b̄i

∂φ

∂vi

)
dv. (A.1)

Proof. To make the notation a little easier, define the vector āi as the ith row of
the matrix ā so that āi = (āi,1, . . . , āi,d), for i = 1, . . . , d. Then,

ˆ
Rd
āi,j

∂2f

∂vi∂vj
φ dv =

d∑
i=1

ˆ
Rd
∇
(
∂f

∂vi

)
· φāi dv

=

d∑
i=1

lim
R→∞

ˆ
ΩR

∇
(
∂f

∂vi

)
· φāi dv

=

d∑
i=1

lim
R→∞

(ˆ
∂ΩR

∂f

∂vi
φāi · n ds+

ˆ
ΩR

∂f

∂vi
∇ · (φāi) dv

)

=

d∑
i=1

lim
R→∞

ˆ
ΩR

∂f

∂vi
(∇φ · āi + φ∇ · āi) dv,

where the boundary integral evaluates to zero as the limit as R→∞ is taken as it
must also be that ∂f

∂vi
→ 0 as |v| → ∞.

Now, note that ∇ · āi = ∂
∂vj

(ai,j) = bi and

∂f

∂vi
∇φ · āi =

∂f

∂vi

∂φ

∂vj
āi,j =

∂f

∂vi
(ā∇φ)i = ∇f · ā∇φ.
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So,

ˆ
Rd
āi,j

∂2f

∂vi∂vj
φ dv = lim

R→∞

ˆ
ΩR

∇f ·
(
φb̄+ ā∇φ

)
dv

= lim
R→∞

(ˆ
∂ΩR

f
(
φb̄+ ā∇φ

)
· n ds

+

ˆ
ΩR

f

(
∇φ · b̄+ φ∇ · b̄+

∂āi,j
∂vi

∂φ

∂vj

+ āi,j
∂2φ

∂vi∂vj

)
dv

)
=

ˆ
Rd
f

(
āi,j

∂2φ

∂vi∂vj
+ 2b̄i

∂φ

∂vi
+ c̄φ

)
dv,

since ∇φ · b̄ = b̄i
∂φ
∂vi

, ∇ · b̄ = c̄ and the boundary term disappears again as the limit
R→∞ is taken.

Therefore,

ˆ
Rd
Q(f, g)φ dv =

ˆ
Rd
āi,j

∂2f

∂vi∂vj
φ dv −

ˆ
Rd
c̄φ dv

=

ˆ
Rd
f

(
āi,j

∂2φ

∂vi∂vj
+ 2b̄i

∂φ

∂vi

)
dv, as required.

�

A.2 Collision Operator Decay Estimate.

Lemma A.2. If f is a function such that f(v) → 0 as |v| → ∞ and f(v) = 0
when v ∈ ΩLv then, for any λ ∈ (0, 1] and k′ ≥ 2,

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g) dv

∣∣∣∣∣ ≤ Ok′(m0(g)mk′+λ(f) +mλ(g)mk′(f)

+m2(g)mk′+λ−2(f)

+mλ+2(g)mk′−2(f)
)

(A.2)

Proof. First, for any k′ ≥ 0

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g) dv

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g)|v|−k
′
|v|k

′
dv

∣∣∣∣∣
≤ (
√
dLv)−k

′

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g)|v|k
′

dv

∣∣∣∣∣ (A.3)
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Now, by using identity (4.4) for the weak form of Q,∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g)|v|k
′

dv

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Rd\ΩLv

f

(
āi,j

∂2

∂vi∂vj

(
|v|k

′
)

+ 2b̄i
∂

∂vi

(
|v|k

′
))

dv

∣∣∣∣∣ .
=

∣∣∣∣∣k′
ˆ
Rd\ΩLv

ˆ
Rd
f(v)g(v∗)|v − v∗|λ|v|k

′−2

(
−2|v|2 + 2|v∗|2

+(k′ − 2)
|v|2|v∗|2 − (v · v∗)2

|v|2

)
dv∗ dv

∣∣∣∣ ,
which used an identity similar to one derived in Desvillette and Villani’s proof of
moment propagation in Theorem 3(i) in [12], where they use φ(v) = (1 + |v|2)

s
2

for s > 2 instead, so the details can be found there (and it can also be checked
that their proof up to this result does still work for s = 2). Then, by bringing the
absolute values inside the integral and expanding the domain of integration for v
to all of Rd,∣∣∣∣∣

ˆ
Rd\ΩLv

Q(f, g)|v|k
′

dv

∣∣∣∣∣
≤ k′

ˆ
Rd

ˆ
Rd
|f(v)‖g(v∗)‖v − v∗|λ|v|k

′−2

(
2|v|2 + 2|v∗|2

+ (k′ − 2)
|v|2|v∗|2 − (v · v∗)2

|v|2

)
dv∗dv, (A.4)

where it has also been used that k′ ≥ 2 and that |v|2|v∗|2 − (v · v∗)2 ≥ 0 by the
Cauchy-Schwarz inequality. Furthermore, since (v · v∗)2 ≥ 0,

|v|2|v∗|2 − (v · v∗)2

|v|2
≤ |v|

2|v∗|2

|v|2
= |v∗|2, (A.5)

and using this in (A.4) along with |v − v∗|λ ≤ |v|λ + |v∗|λ gives∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g)|v|k
′

dv

∣∣∣∣∣
≤ k′

ˆ
Rd

ˆ
Rd
|f(v)‖g(v∗)|

(
|v|λ + |v∗|λ

)
|v|k

′−2
(
2|v|2 + k′|v∗|2

)
dv∗dv,

= k′
ˆ
Rd

ˆ
Rd
|f(v)‖g(v∗)|

(
2|v|k

′+λ + 2|v|k
′
|v∗|λ + k′|v|k

′+λ−2|v∗|2

+ k′|v|k
′−2|v∗|λ+2

)
dv∗dv,

= 2k′
(
m0(g)mk′+λ(f) +mλ(g)mk′(f)

)
+ k′2

(
m2(g)mk′+λ−2(f) +mλ+2(g)mk′−2(f)

)
.
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Therefore, using this last expression in (A.3) gives∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g) dv

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
Rd\ΩLv

Q(f, g)|v|−k
′
|v|k

′
dv

∣∣∣∣∣
≤ k′(

√
dLv)−k

′
(

2
(
m0(g)mk′+λ(f) +mλ(g)mk′(f)

)
+ k′

(
m2(g)mk′+λ−2(f) +mλ+2(g)mk′−2(f)

))
which is the result (A.2), as required. �

A.3 Lower Bound on Moments of Cut-off.

Lemma A.3. Given some εχ ∈ (0, 1), any solution g(t,v) to the semi-discrete
problem (4.9), for which there exist constants C ≥ 1 and r ∈ (0, 1] such that

|g(t,v)| ≤ Cρ0

(2πT0)
d
2

e−
r|v|2
2T0 (A.6)

where ρ0 =

ˆ
Rd
g0(v) dv and T0 =

1

3ρ0

ˆ
Rd
g0(v)|v|2 dv,

satisfies

(i) m0(χg) ≥ (1− εχ)m0(g0), (A.7)

(ii) mk(χg) ≥ (1− εχ)mk(g), for any k ≥ 0. (A.8)

Proof. By adding and subtracting the k-th moment of g to that of χg

mk(χg) = mk(g)−
ˆ
Rd

(1− χ)|g(v)|〈v〉k dv.

Then, by noting that χ(v) = 1 when v ∈ Ω(1−δχ)Lv and 0 ≤ χ(v) < 1 otherwise,ˆ
Rd

(1− χ)|g(v)|〈v〉k dv =

ˆ
Rd\Ω(1−δχ)Lv

(1− χ)|g(v)|〈v〉k dv

≤
ˆ
Rd\Ω(1−δχ)Lv

|g(v)|〈v〉k dv

≤
ˆ
Rd\Ω(1−δχ)Lv

Cρ0

(2πT0)
d
2

e−
r|v|2
2T0 〈v〉k dv

= τkρ0,

for τk =

ˆ
Rd\Ω(1−δχ)Lv

C

(2πT0)
d
2

e−
r|v|2
2T0 〈v〉k dv

where the domain Ω(1−δχ)Lv has Lv chosen large enough and δχ small enough so
that τk ≤ εχ for any required value of k ≥ 0, due to the Gaussian decay being so
much faster than any polynomial can increase.

Also, ρ0 =

ˆ
Rd
g0(v) dv ≤

ˆ
Rd
|g0(v)| dv = m0(g0),

which means that
´
Rd(1− χ)|g(v)|〈v〉k dv ≤ εχm0(g0) and so, for k = 0,

m0(χg) ≥ m0(g)− εχm0(g) = (1− εχ)m0(g0),
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which is result (A.7).
Furthermore, since g is a solution of equation (4.9) which conserves mass,

ρ0 =

ˆ
Rd
g0(v) dv =

ˆ
Rd
g(v) dv ≤

ˆ
Rd
|g(v)| dv ≤

ˆ
Rd
|g(v)|〈v〉k dv = mk(g).

This means that
´
Rd(1− χ)|g(v)|〈v〉k dv ≤ εχmk(g) and therefore

mk(χg) ≥ mk(g)− εχmk(g) = (1− εχ)mk(g),

which is result (A.8).
�

Appendix Appendix B Additional Mathematical Results

B.1 A Sobolev Embedding Result.

Lemma B.1. For Ω ⊂ Rd and any 1 ≤ p < d, given a function h ∈ Ḣ1(Ω), there
exists some constant CSp,d that depends on p and the dimension d but is independent
of Ω such that

‖h‖
L

dp
d−p (Ω)

≤ CSp,d‖h‖Ḣ1(Ω).

B.2 A Fourier Approximation Estimate.

Lemma B.2. Given s ∈ N and ΩLv = [−Lv, Lv]d, for Lv > 0 and d ∈ N, if
f ∈ Hs(ΩLv ) then the remainder of a partial Fourier series of f satisfies

∥∥(1−ΠN
Lv

)
f
∥∥
L2(ΩLv )

≤ 1

(2π)
d
2

(
Lv

2πN

)s
‖f‖Hs(ΩLv ) .

B.3 A Nonlinear Gronwall Inequality.

Lemma B.3. Given an ODI for u(t), defined for 0 < t < T , with constant coeffi-
cients A,B ∈ R of the form

du

dt
≤ Au(t) +B(u(t))α, with 0 ≤ α < 1,

if B
A ≥ 0 then the solution satisfies

u(t) ≤ eAt
((
u(0)

)1−α
+
B

A

) 1
1−α

.

Proof. This results follows directly from Theorem 21 in [14] and then using the fact
that the coefficients are constant. First, by that result, the solution satisfies

u(t) ≤

((
u(0)

)1−α
e((1−α)

´ t
0
A ds) + (1− α)

ˆ t

0

Be((1−α)
´ t
s
A dr) ds

) 1
1−α

.



70 CLARK A. PENNIE AND IRENE M. GAMBA

So, by evaluating the integrals in the case of constant coefficients A and B,

u(t) ≤

((
u(0)

)1−α
e((1−α)At) + (1− α)Be((1−α)At)

ˆ t

0

e−((1−α)As) ds

) 1
1−α

=

((
u(0)

)1−α
e((1−α)At) +

B

A
e((1−α)At)

(
1− e−((1−α)At)

)) 1
1−α

≤ eAt
((
u(0)

)1−α
+
B

A

) 1
1−α

, if
A

B
≥ 0, as required.

�
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