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Abstract. Expanding upon the conservative spectral method for solving the Landau equation, developed by Zhang and Gamba, a
deterministic scheme has been developed for modeling Fokker-Planck-Landau type equations with Maxwell molecules and hard
sphere interactions. The original case, corresponding to the classical physical problem of Coulomb interactions, is also included
and the stability for all three scenarios investigated. The power of the method is exemplified through simulations demonstrating the
decay of relative entropy for both Coulomb interactions and hard potentials. The Coulomb interaction example shows that there is
a degenerate spectrum, with the relative entropy decaying at a rate close to the law of two thirds as predicted by Strain and Guo,
while the hard potential example exhibits a spectral gap.

1 Introduction

An important model for plasmas is the Landau equation, which results from the grazing collision limit of the Boltz-
mann equation. This limit, first derived by Landau [1], assumes that colliding particles are travelling almost parallel
to each other due to repulsive Coulomb forces. A more mathematical description of the limit was detailed by Villani
[2] and Desvillettes and Villani [3], even for extended potential rates higher than Coulumb interactions and up to
hard spheres. When rates different to Coulomb interactions are used, the equation is referred to as being of Fokker-
Planck-Landau type. Computationally, the problem has been studied by Bobylev and Potapenko [4], using Monte
Carlo methods, and in Fourier space by Haack and Gamba [5].

The Landau equation is rather difficult to model, either analytically or numerically, due to the high dimensionality,
non-linearity and non-locality. For numerical simulations, a deterministic scheme can be used, such as the conservative
spectral method, developed by Zhang and Gamba [6], which is the model of choice for the current work. Spectral
methods were first considered as a model for the homogeneous Landau equation by Bobylev and Rjasanow [7] and
Pareschi et al. [8]. The evolution of the Landau equation has also been simulated by means of a Monte-Carlo scheme
for the Boltzmann equation with sufficiently singular angular cross-sections that cancel the Coulomb potential. This
approach results in an expensive algorithm compared to the spectral-based methods.

The version of the spectral method in this work exploits the weak form of the Landau equation in order to
calculate the Fourier transform of the collision operator. It does so in justO(N3 log N) operations, where the number of
Fourier modes N in each velocity dimension can be small, thanks to the conservation enforcement. For computational
purposes, a cut-off domain in velocity space is used, within which the majority of the solution’s mass should be
supported, based on a result by Gamba et al. [9] for the Boltzmann equation. This general construction of a spectral
method was first applied to the Boltzmann equation by Gamba and Tharkabhushaman [10] and the details for the
derivation of the Landau equation scheme can be found in [6].

Pareschi’s construction of a spectral method involved extending the solution periodically, which did not respect
the decay of the solution toward infinity in velocity space. As a result, aliasing effects were noticed in their solution.
Subsequently, Filbet and Pareschi [11] applied this idea to the inhomogeneous Landau equation by using a finite
volume method in space but this scheme did not preserve the conservation properties of the Landau equation. A
conservative method was later proposed by Crouseilles and Filbet [12], using centered finite differences, but this only
conserved mass and energy, not momentum, and required certain symmetry properties of the initial data.



One particular attraction to the current method is its ability to yield the correct decay of entropy. The conservation
enforcement is essential in the proof of convergence of the spectral method applied to the Boltzmann equation [13]
and it is believed that the same should be true for Fokker-Planck-Landau type equations. The entropy decay rate is
also a consequence of this fact. To the best of the authors’ knowledge, this is the first time that the convergence rate
of two thirds, proven analytically by Strain and Guo [14], has been seen through a numerical approximation of the
relative entropy.

The method described in [6] is in fact a solver for the inhomogeneous Landau equation, coupled to Poisson’s
equation, where the advection is modeled by a discontinuous Galerkin scheme. Extensions of the relative entropy
results in this work to the inhomogeneous case are in progress. In addition, this paper contains results for Fokker-
Planck-Landau type equations associated to Maxwell molecules and hard spheres, expanding upon the previous work.

The layout of this work is as follows. First, the set up of the problem is described in section 2, along with any
required definitions. The expressions for the Fourier transform of the Fokker-Planck-Landau type operators corre-
sponding to Coulomb interactions, Maxwell molecules and hard spheres are derived in section 3 and the stability
results given in section 4. Finally, section 5 contains the numerical results, demonstrating the correct decay rate to
equilibrium for both Coulomb interactions and hard spheres. All work here is part of a PhD thesis by the first author,
under advisorship of the second, and elaborated on in a future work by both authors [15].

2 Description of Problem

A space-homogeneous Fokker-Planck-Landau type equation for the probability density function (pdf) f (t, v), where
(t, v) ∈ (R+,Ωv), with Ωv ⊆ R3, is of the form

ft(t, v) =
1
ε

Q( f , f )(t, v), (1)

where ε is the Knudsen number and Q( f , f ) is the collision operator given by

Q( f , f ) = ∇v ·

∫
Ωv

S (v − v∗)( f∗∇v f − f∇v∗ f∗) dv∗, for S (u) = |u|γ+2
(
I −

uuT

|u|2

)
,

with −3 ≤ γ ≤ 1, I ∈ R3×3 the identity matrix and the subscript notation f∗ meaning evaluation at v∗. In general, γ > 0
corresponds to hard potentials and γ < 0 to soft potentials. In particular, γ = 1 model hard spheres; γ = 0 are known
as Maxwell molecules; and γ = −3 model Coulomb interactions between particles.

Since Fokker-Planck-Landau type equations are a limit of the Boltzmann equation, they enjoy the same conser-
vation laws. In particular, for the set of collision invariants {φk(v)}4k=0 =

{
1, v1, v2, v3, |v|2

}
,∫

R3
Q( f , f )(v)φk(v) dv = 0, for k = 0, 1, . . . , 4. (2)

This is important because it leads to the conservation of mass ρ, average velocity V and temperature T , where each of
these quantities are found via

ρ =

∫
R3

f (t, v) dv, V =
1
ρ

∫
R3

f (t, v)v dv and T =
1

3ρ

∫
R3

f (t, v)|v − V|2 dv.

These moments will always be conserved for the single-species homogeneous Landau equation (1) as well as for
the corresponding space-inhomogenous version, if modeled with appropriate boundary conditions (e.g. reflective or
periodic boundary conditions).

If the initial mass, average velocity and temperature are denoted by ρ0, V0 and T0, respectively, the equilibrium
solution of the Landau equation is a Gaussian distribution with the same moments. This is referred to as the equilibrium
Maxwellian, denoted byMeq, and is the specific Maxwellian distribution with moments equal to those of the initial
condition, given by

Meq(v) =
ρ0

(2πT0)
3
2

e−
|v−V0 |

2

2T0 .



Similarly, the H-theorem holds for Fokker-Planck-Landau type equations, which states that the entropy decays
throughout time.

The entropy is defined as H[ f ](t) =

∫
R3

f log( f ) dv

and so the H-theorem gives that
d
dt

(H[ f ]) ≤ 0.

At this point it is also useful to define the entropy relative to the equilibrium MaxwellianMeq as

H[ f |Meq](t) =

∫
R3

f log( f ) dv −
∫
R3
Meq log(Meq) dv =

∫
R3

f log
(

f
Meq

)
dv. (3)

Initially f (0, v) = f0(v) and it is assumed that supp f b Ωv, since f should have sufficient decay in velocity-space
[9] and Ωv is chosen depending on the initial data (see [13], section 2). In fact, v ∈ R3 but values of f are negligible
outside a sufficiently large ball. The initial data is then extended by zero outside the computational domain, which
means it can be controlled by e−c|v|2 , for c > 0 depending on the moments of f0. Under such conditions, it is expected
that the computational solution will remain supported on Ωv up to a fixed small error that depends on the initial data
(more details can be seen in the proof for the conservative spectral method applied to the Boltzmann equation in [13]).

Equation (1) is solved by the conservative spectral method with fourth order Runge-Kutta for time-stepping.
Conservation is enforced by considering a constrained minimisation problem. Given a collection of discrete values of
the collision operator, resulting from the spectral method, a new set of values must be found which are as close as
possible to the original values in `2-norm but satisfy the discrete form of (2), where the integrals are replaced with
quadrature sums. The solution to this problem is a matrix multiplication of the original values, where the matrix is
identical for both the Boltzmann and Landau equations. The complete derivation can be found in [10] and [6] for
the Boltzmann and Landau equations, respectively. As will be seen in the current work, the method also respects the
correct decay rate of entropy. The spectral method will be described in the next section and is extended from the
Landau equation with Coulomb interactions to Fokker-Planck-Landau type equations with Maxwell molecule and
hard sphere interactions.

3 The Fourier Transform of the Collision Operator

As is shown in [6], when using a ball of radius R > 0 as the cut-off domain for computational purposes, the Fourier
transform of the collision operator Q is

Q̂( f̂ , f̂ ) (ξ) =

∫
Ωξ

f̂ (ξ − ω) f̂ (ω)
(
ωT Ŝ (ω)ω − (ξ − ω)T Ŝ (ω) (ξ − ω)

)
dω, for ξ ∈ Ωξ ⊆ R3, (4)

where Ŝ (ω) = (2π)−
3
2

∫
BR(0)

S (u)e−iω·udu, for S (u) = |u|γ+2
(
I −

uuT

|u|2

)
, with − 3 ≤ γ ≤ 1.

This means that evaluating Q̂ is performed by a fast Fourier transform (FFT) of the pdf f and then a weighted
convolution with itself. The FFT requires O(N3 log N) operations and multiplication by the weight and quadrature to
calculate the convolution requiresO(N3) operations. The weights can also be pre-computed and stored at the beginning
of the code run, where the bulk of the calculation is in evaluation of Ŝ . This has different forms depending on the value
of γ but the results are found through the same general method.

First, the entries of Ŝ can be decomposed as Ŝ i, j(ω) = Ŝ 1
i, j(ω) − Ŝ 2

i, j(ω), for i, j = 1, 2, 3, with

Ŝ 1
i, j(ω) = (2π)−

3
2

∫
BR(0)
|u|γ+2δi, je−iω·u du and Ŝ 2

i, j(ω) = (2π)−
3
2

∫
BR(0)
|u|γuiu je−iω·u du. (5)

Then, for a given ω = (ω1, ω2, ω3), it should be noted that when j = i, there is only one value of Ŝ 1
i,i(ω), for each

i = 1, 2, 3, and that Ŝ 1
i, j(ω) = 0 when i , j (thanks to the Kronecker delta). Also note that

Ŝ 2
1,1(ω1, ω2, ω3) = Ŝ 2

3,3(ω2, ω3, ω1) and Ŝ 2
2,2(ω1, ω2, ω3) = Ŝ 2

3,3(ω1, ω3, ω2), for i = j

and Ŝ 2
1,2(ω1, ω2, ω3) = Ŝ 2

1,3(ω1, ω3, ω2) and Ŝ 2
2,3(ω1, ω2, ω3) = Ŝ 2

1,3(ω2, ω1, ω3), for i , j.



The sub-diagonal entries are then also known since Ŝ is a symmetric matrix (because S is symmetric). This means
that only Ŝ 1

1,1, Ŝ 2
3,3 and Ŝ 2

1,3 need to be calculated.

Now, in general, to calculate an integral of the form (2π)−
3
2

∫
BR(0) G (u)e−iω·u du evaluated at ω such that |ω| , 0,

first a substitution is made in order to reduce the scalar product in the exponential to a single multiplication. To do
this, note that the rotation matrix A given by

A =


ω1ω3√
ω2

1+ω2
2

−
ω2 |ω|√
ω2

1+ω2
2

ω1

ω2ω3√
ω2

1+ω2
2

ω1 |ω|√
ω2

1+ω2
2

ω2

−

√
ω2

1 + ω2
2

0
ω3


has the property that Aω = (0, 0, |ω|). Also, since A is a rotation matrix, it is orthogonal and so A−1 = AT and det A = 1.

Then, changing variables via u = AT w and noting that ω · u = ωT AT w = (Aω)T w = |ω|w3, gives

(2π)−
3
2

∫
BR(0)

G (u)e−iω·u du = (2π)−
3
2

∫
BR(0)

G
(
AT w

)
e−i|ω|w3 dw.

Finally, by changing to spherical coordinates via

w = rσ = r(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)),

where 0 ≤ r ≤ R, −π ≤ φ ≤ π and 0 ≤ θ ≤ π,

(2π)−
3
2

∫
BR(0)

G (u)e−iω·u du = (2π)−
3
2

∫ R

0

∫ π

−π

∫ π

0
G

(
rATσ

)
e−ir|ω| cos(θ)r2 sin(θ) dθdφdr. (6)

So, by using G(u) = |u|γ+2 for Ŝ 1
1,1(ω); G(u) = |u|γu2

3 for Ŝ 2
3,3(ω); and G(u) = |u|γu1u3 for Ŝ 2

1,3(ω), this means
that the required weights from (5) are given by

Ŝ 1
1,1(ω) =



√
2
π

1
|ω|2

(
1 − cos(R|ω|)

)
, when γ = −3,√

2
π

1
|ω|5

(
−(R|ω|)3 cos(R|ω|) + 3(R|ω|)2 sin(R|ω|) + 6(R|ω|) cos(R|ω|) − 6 sin(R|ω|)

)
, when γ = 0,√

2
π

1
|ω|6

(
−(R|ω|)4 cos(R|ω|) + 4(R|ω|)3 sin(R|ω|) + 12(R|ω|)2 cos(R|ω|)

− 24(R|ω|) sin(R|ω|) − 24 cos(R|ω|) + 24
)
, when γ = 1,

Ŝ 2
3,3(ω) =



√
2
π

1
|ω|4

((
ω2

1 + ω2
2

)R|ω| − sin(R|ω|)
R|ω|

− ω2
3

R|ω| + (R|ω|) cos(R|ω|) − 2 sin(R|ω|)
R|ω|

)
, when γ = −3,√

2
π

1
|ω|7

((
ω2

1 + ω2
2

)(
−(R|ω|)2 sin(R|ω|) − 3(R|ω|) cos(R|ω|) + 3 sin(R|ω|)

)
+ ω2

3

(
−(R|ω|)3 cos(R|ω|) + 5(R|ω|)2 sin(R|ω|) + 12(R|ω|) cos(R|ω|) − 12 sin(R|ω|)

))
, when γ = 0,√

2
π

1
|ω|8

((
ω2

1 + ω2
2

)(
−(R|ω|)3 sin(R|ω|) − 4(R|ω|)2 cos(R|ω|) + 8(R|ω|) sin(R|ω|)

+ 8 cos(R|ω|) − 8
)

+ ω2
3

(
−(R|ω|)4 cos(R|ω|) + 6(R|ω|)3 sin(R|ω|) + 20(R|ω|)2 cos(R|ω|)

− 40(R|ω|) sin(R|ω|) − 40 cos(R|ω|) + 40
))
, when γ = 1



and

Ŝ 2
1,3(ω) =



−

√
2
π

ω1ω3

|ω|4
2R|ω| + R|ω| cos(R|ω|) − 3 sin(R|ω|)

R|ω|
, when γ = −3,√

2
π

ω1ω3

|ω|7

(
−(R|ω|)3 cos(R|ω|) + 6(R|ω|)2 sin(R|ω|) + 15(R|ω|) cos(R|ω|) − 15 sin(R|ω|)

)
, when γ = 0,√

2
π

ω1ω3

|ω|8

(
−(R|ω|)4 cos(R|ω|) + 7(R|ω|)3 sin(R|ω|) + 24(R|ω|)2 cos(R|ω|)

− 48(R|ω|) sin(R|ω|) − 48 cos(R|ω|) + 48
)
, when γ = 1.

In addition, by substituting ω = 0 into the integrands found in Ŝ 1
1,1, Ŝ 2

3,3 and Ŝ 2
1,3 from (5) and evaluating directly

(noting that the exponential evaluated at ω = 0 is equal to one),

Ŝ 1
1,1(0) =



√
1

2π
R2, when γ = −3,

2
5

√
1

2π
R5, when γ = 0,

1
3

√
1

2π
R6, when γ = 1,

Ŝ 2
3,3(0) =



1

3
√

2π
R2, when γ = −3,

2

15
√

2π
R5, when γ = 0,

1

9
√

2π
R6, when γ = 1

and Ŝ 2
1,3(0) = 0 (for all γ).

4 Stability of the Space-homogeneous Spectral Method

In order to consider the stability of the spectral method, first note that the integral (4) to calculate Q̂ is approximated
using quadrature. The current code uses the composite trapezoidal rule but, in general, for M equally spaced quadrature
nodes {ξm}

M
m=1 in Fourier space, corresponding weights {wm}

M
m=1 and Fourier space stepsize hξ,

Q̂
(
ξk

)
= h3

ξ

M∑
m=1

wm f̂
(
ξk − ξm

)
f̂ (ξm)

(
ξm

T Ŝ
(
ξm

)
ξm −

(
ξk − ξm

)T Ŝ
(
ξm

) (
ξk − ξm

))
, (7)

Now, according to Lebedev [16], the criterion for stability of a numerical method of the form

d
dt

(
f̂ (ξk)

)
= F( f̂ (ξk))

is that the time-stepsize ∆t must satisfy ∆t ≤
1

Lip(F)
,

for the Lipschitz norm of F, Lip(F). If an upper bound can be found on Lip(F), this will in turn give a lower bound
on (Lip(F))−1, which ∆t must be below for the numerical method to remain stable. To find the upper bound, note that

Lip(F) ≤ |Jk,l|, for the Jacobian Jk,l of F( f̂ (ξk)), given by Jk,l =
∂

∂ f̂ (ξl)

(
F( f̂ (ξk))

)
.

Here, F( f̂ (ξk)) = 1
ε
Q̂( f̂ , f̂ )

(
ξk

)
and, to calculate the derivative of Q̂( f̂ , f̂ )

(
ξk

)
with respect to f̂ (ξl), it should be

noted that there are two chances for f̂ (ξl) to appear in the quadrature sum (7). These are when m = l and in general
(depending on the choice of quadrature nodes) at another index, say m = n, where ξk−ξn = ξl. Assuming that there are
indeed two indices which give rise to non-zero derivatives in the sum, and considering that ξk − ξn = ξl is equivalent
to ξn = ξk − ξl, the derivative is given by

∂

∂ f̂ (ξl)

(
Q̂( f̂ , f̂ )

(
ξk

))
= h3

ξwl f̂
(
ξk − ξl

) (
ξl

T Ŝ
(
ξl
)
ξl −

(
ξk − ξl

)T Ŝ
(
ξl
) (
ξk − ξl

))
+ h3

ξwn f̂
(
ξn

) (
ξn

T Ŝ
(
ξn

)
ξn −

(
ξk − ξn

)T Ŝ
(
ξn

) (
ξk − ξn

))
= h3

ξwl f̂
(
ξk − ξl

) (
ξl

T Ŝ
(
ξl
)
ξl −

(
ξk − ξl

)T Ŝ
(
ξl
) (
ξk − ξl

))
+ h3

ξwn f̂
(
ξk − ξl

) (
(ξk − ξl)

T Ŝ
(
ξk − ξl

)
(ξk − ξl) − ξ

T
l Ŝ

(
ξk − ξl

)
ξl

)
. (8)



Then, since hξ = π
Lv

and |wl| ≤ 1 for any l, by the triangle inequality,∣∣∣∣∣∣ ∂

∂ f̂ (ξl)

(
Q̂( f̂ , f̂ )

(
ξk

))∣∣∣∣∣∣ ≤ π3

L3
v
| f̂

(
ξk − ξl

)
|
(
|ξl

T Ŝ
(
ξl
)
ξl| + |

(
ξk − ξl

)T Ŝ
(
ξl
) (
ξk − ξl

)
|

+ |(ξk − ξl)
T Ŝ

(
ξk − ξl

)
(ξk − ξl)| + |ξ

T
l Ŝ

(
ξk − ξl

)
ξl|

)
.

Note that if there had been no such ξn then the final two terms would be omitted here and the bound would only be
smaller.

Also, by definition of the Fourier transform,

| f̂
(
ξk − ξl

)
| ≤ (2π)−

3
2

∫
BR(0)
| f (u) ||e−i(ξk−ξl)·u|du = (2π)−

3
2 || f ||L1(BR(0)),

since |e−i(ξk−ξl)·u| = 1, and so∣∣∣∣∣∣ ∂

∂ f̂ (ξl)

(
Q̂( f̂ , f̂ )

(
ξk

))∣∣∣∣∣∣ ≤ π
3
2

2
√

2L3
v

|| f ||L1(BR(0))

(
|ξl

T Ŝ
(
ξl
)
ξl| + |

(
ξk − ξl

)T Ŝ
(
ξl
) (
ξk − ξl

)
|

+ |(ξk − ξl)
T Ŝ

(
ξk − ξl

)
(ξk − ξl)| + |ξ

T
l Ŝ

(
ξk − ξl

)
ξl|

)
. (9)

Now, for the terms involving Ŝ , note that for a general matrix A ∈ R3×3 and vectors y, z ∈ R3,

yT Az =

3∑
i, j=1

Ai, jyiz j and so |yT Az| ≤ (3)2 max
i, j=1,2,3

|Ai, j|( max
i=1,2,3

yi)( max
i=1,2,3

zi). (10)

This means that a bound must be found on |Ŝ i, j(ξ)|, which is achieved by using the expressions in section 3 for Ŝ 1
1,1,

Ŝ 2
3,3 and Ŝ 2

1,3, for γ = −3, 0 and 1. It is shown in [15] that, for any k = 1, 2, . . . ,M,

|Ŝ i, j(ξk)| ≤



(√
1

2π
+

3
π3

(
π + 1

)√2
π

)
L2

v , when γ = −3,√
2
π

1
π5

(
2π3 + 9π2 + 21π + 21

)
L5

v , when γ = 0,√
2
π

1
π6

(
2π6 + 11π3 + 36π2 + 72π + 144

)
L6

v , when γ = 1

.


L2

v , when γ = −3,

L5
v , when γ = 0,

L6
v , when γ = 1.

Then, by using the identity (10) and noting that |(ξk)i| ≤ Lξ = π
hv

, for any k, l, n = 1, 2, . . . ,M,

|ξT
k Ŝ (ξl)ξn| . 9

π2

h2
v
×


L2

v , when γ = −3,

L5
v , when γ = 0,

L6
v , when γ = 1.

Now, since ξk − ξl = ξn, each mixed ξk − ξl and ξl term in inequality (9) has the same upper bound. This gives

∣∣∣∣∣∣ ∂

∂ f̂ (ξl)

(
Q̂( f̂ , f̂ )

(
ξk

))∣∣∣∣∣∣ . 4

9 π
7
2

2
√

2h2
v L3

v

|| f ||L1(BR(0))

 ×


L2
v , when γ = −3,

L5
v , when γ = 0,

L6
v , when γ = 1,

and so

|Jk,l| ≤
1
ε

∣∣∣∣∣∣ ∂

∂ f̂ (ξl)

(
Q̂( f̂ , f̂ )

(
ξk

))∣∣∣∣∣∣ . 18π
7
2

√
2εh2

v

|| f ||L1(BR(0)) ×


1
Lv
, when γ = −3,

L2
v , when γ = 0,

L3
v , when γ = 1,



which means

1
|Jk,l|

&



√
2εLvh2

v

18π
7
2 || f ||L1(BR(0))

, when γ = −3,

√
2εh2

v

18π
7
2 L2

v || f ||L1(BR(0))
, when γ = 0,

√
2εh2

v

18π
7
2 L3

v || f ||L1(BR(0))
, when γ = 1.

Therefore, to ensure that ∆t ≤ 1
|Jk,l |

, choose ∆t such that

∆t ≤



√
2εLvh2

v

18π
7
2 || f ||L1(BR(0))

, when γ = −3,

√
2εh2

v

18π
7
2 L2

v || f ||L1(BR(0))
, when γ = 0,

√
2εh2

v

18π
7
2 L3

v || f ||L1(BR(0))
, when γ = 1

=



2
√

2εL3
v

9π
7
2 N2|| f ||L1(BR(0))

, when γ = −3,

2
√

2ε

9π
7
2 N2|| f ||L1(BR(0))

, when γ = 0,

2
√

2ε

9π
7
2 N2Lv|| f ||L1(BR(0))

, when γ = 1.

5 Numerical Results and Entropy Decay

5.1 The Coulomb Case (γ = −3)
The purpose of this example is to numerically verify the rate of convergence to equilibrium, proven analytically by
Strain and Guo [14]. They show in their paper that, for −3 ≤ γ < 0, there is no spectral gap for Fokker-Planck-Landau
type equations. Instead, when the initial condition is bounded by e−c|v|2 , for some c > 0, the rate of convergence to a
Maxwellian close to equilibrium is given by

e−ktp
, with p = −

2
γ

and some k > 0.

For Coulomb interactions, with γ = −3, this gives the law of two thirds. To verify this numerically, the natural log of
the relative entropy is plotted on a log-log scale against time. In particular, as the solution approaches equilibrium, it
should be that

log
(∣∣∣∣log

(∣∣∣H[ f |Meq]
∣∣∣)∣∣∣∣) ∼ 2

3
log(t).

In order to demonstrate this, an initial condition far from equilibrium is chosen. In particular, the initial condition
used is a sum of four Maxwellians with shifted centers, namely

f0(v) =
1
4

3∑
l=0

Mv

(
v +

(
(−1)b

l
2 c, (−1)l, (−1)l

))
, (11)

for the MaxwellianMv(v) = (2πT )−
3
2 e−

|v|2
2T . The marginal of this initial condition is plotted in Fig. 1(a), where it can

be seen that this has the form of four humps. The temperature used is T = 0.4; the Knudsen number is ε = 20; the
velocity domain has Lv = 5.25; N = 16 Fourier modes are chosen; and the time-stepsize used is ∆t = 0.01 (below the
upper bound of approximately 0.0646 calculated for stability with these parameters for γ = −3 in section 4).

The simulations are carried out with C++ code run on the Texas Advanced Computing Center’s Stampede2
supercomputer [17], utilizing all sixty eight cores on the Intel Xeon Phi 7250 1.4GHz Knights Landing processor
using OpenMP [18]. Any procedure that requires a loop over the grid-cells in velocity space distributes the cells
amongst the OpenMP threads then recombines the individual values calculated at the end of the loop. Table 1 records
the times taken for 100 time-steps of the current simulation with various numbers of threads (averaged over three
runs), which shows that the performance increase is almost linear in the number of threads.



TABLE 1: Average times after three runs of 100 time-steps with various number of OpenMP threads on
an Intel Xeon Phi 7250 1.4GHz Knights Landing processor in TACC’s Stampede2 supercomputer

No. of OpenMP threads 1 2 4 8 16 32 68

Average time for 100 time-steps (seconds) 18,259 9,656 4,741 2,371 1,188 598 288

Marginals of the approximation to the Landau equation starting at the initial condition (11) are plotted at mean-
free times t = 2.8, 20 and 100 in Fig. 1(b)-(d). This shows that the four humps merge together into one, before
eventually taking shape as the equilibrium MaxwellianMeq (see Fig. 1(d)) which, in this case with T = 0.4 in (11),
has equilibrium temperature Teq = 1.4 and is given by

Meq(v) =
1

(2.8π)
3
2

e−
|v|2
2.8 . (12)

(a) t = 0 (b) t = 2.8

(c) t = 20 (d) t = 100

FIGURE 1: Marginals of f in the variables v1 and v2 at various times during the simulation of the Landau equation
starting with the initial condition (11), with T = 0.4, ε = 20, Lv = 5.25, N = 16 and ∆t = 0.01, showing cells in the
domain where the solution is negative (in red, near the boundary) and positive (in blue, in the interior).

In Fig. 2, the relative entropy has been plotted. At this point, it should be noted that the numerical scheme does
not preserve positivity. There is potential for negativity to occur when conservation is enforced. The good news,
however, is that the negative parts of the solution only appear as a result of tiny oscillations near the tail. The negative
regions are shown underneath the marginal plots in Fig. 1, on the (v1, v2)-axes, as red cells which are indeed next to
the boundary near the tails. In these regions, the solution is negligible anyway and so the effects of the negative values
are not noticed. Obviously, calculating the natural log in expression (3) for the relative entropy requires only positive
values. Since the negative values are so tiny though (and the parts of the solution so close to zero give negligible
influence on any bulk quantities anyway), these are just discarded when calculating the entropy. More precisely, the
entropy is calculated through a quadrature method and any point for which f has a negative value is considered a zero
contribution to the overall sum.



When natural logarithms have been taken, the curve does indeed become a straight line when close to equilibrium.
It can be seen that, when t = 2.8 (corresponding to Fig. 1(b)), the curve is not yet straight but that is because the
solution is still far from a Maxwellian. At around t = 20 (corresponding to Fig. 1(c)), however, the four humps have
disappeared and the solution is becoming close to that of a Maxwellian. This is part of the entropy plot which is a
straight line, with a slope of approximately 0.634, which is fairly close to two thirds, as hoped.
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FIGURE 2: Plot of log
(∣∣∣∣log

(∣∣∣H[ f |Meq]
∣∣∣)∣∣∣∣) against log(t) for the numerical approximation f to the Landau equation,

given initial condition (11), with T = 0.4, ε = 20, Lv = 5.25, N = 16 and ∆t = 0.01, which has equilibrium solution
Meq given by (12). A straight line has been added to show that the slope near equilibrium is close to two thirds,
exhibiting the lack of spectral gap, but a degenerate spectrum corresponding to a stretch-time exponential decay given
by e−ktp

, with p = 2
3 and some k > 0. The labels correspond to the marginal plots in Fig. 1.

The importance of the conservation routine should also be noted here. The numerical scheme was run with the
same parameters as above but without enforcing conservation and the deviations of mass and kinetic energy from their
initial values during this simulation are plotted in Fig. 3(a). When the conservation routine is applied, to produce the
results of Fig. 1-2, the mass and energy were held constant to machine accuracy. Here, however, there is a significant
deviation of O(10−2) showing that there is no hope of convergence to the Maxwellian with the same moments as
the initial data. Nevertheless, a plot of the relative entropy has also been included in Fig. 3(b). Another problem
here is that the entropy in the simulation without conserved moments drops below that of the theoretical equilibrium
entropy, resulting in the spike around log(t) ≈ 4.35. There is still an exponential decay of relative entropy, however,
as demonstrated by the straight line with a slope of approximately 0.6119. As expected, this is not as accurate as the
slope of 0.634 when conservation is enforced.

5.2 The Hard Sphere Case (γ = 1)
Unlike when γ < 0, there is a spectral gap when γ = 1. This means the rate of convergence to a Maxwellian close to
equilibrium is in fact exponential, of the form e−kt, for some k > 0. Similar to the previous example, when close to
equilibrium, the relative entropy should behave like log

(∣∣∣∣log
(∣∣∣H[ f |Meq]

∣∣∣)∣∣∣∣) ∼ log(t).
Trying to simulate hard spheres introduced a fair amount of difficulty, which shed light on an issue that should

be considered for modeling hard potentials with the current spectral method. In particular, when choosing an initial
condition for which the bulk of the mass is supported in too small a region near the center of the domain, the tails of
the solution start to ripple after a small number of time-steps, causing an instability which leads to a blow-up. It is
believed that this problem stems from the fact that collisions are much more significant for hard potentials than soft
ones, with more weight being given to larger relative velocities. The relative velocity becomes larger when closer to
the tails in velocity-space.



(a) (b)

FIGURE 3: Results from a simulation without the conservation routine, starting with the initial condition (11), with
T = 0.4, ε = 20, Lv = 5.25, N = 16 and ∆t = 0.01. (a) Plots of the error in the mass and kinetic energy from the
initial values m0 = 1 and T0 = 1.4, respectively. (b) Plot of log

(∣∣∣∣log
(∣∣∣H[ f |Meq]

∣∣∣)∣∣∣∣) against log(t) for the numerical
approximation f , which has equilibrium solutionMeq given by (12). A straight line has been added to show that the
slope near equilibrium is approximately 0.6119, which is less than the slope 0.634 calculated when conservation is
enforced.

At first, it may seem like a more compactly supported initial solution may help. The problem, however, is that
collisions are computed in Fourier space. The Fourier transform will take a solution with small support in the original
space and spread it out in the Fourier domain (consider, for example, that a Gaussian with large peak and small variance
has a Gaussian with small peak and large variance as its Fourier transform). This means that the Fourier transform of
such an initial condition actually has tails with rather large magnitude near the boundaries. When multiplied by the
hard sphere weights calculated in section 3, this causes a problem computationally. This issue did not exist for γ = −3
as the weights near the tails for Coulomb interactions are smaller in magnitude. As a result, any part of the solution
that turns negative is emphasized, which introduces the ripples as the conservation routine attempts to compensate.

For the hard sphere simulation, a very similar initial condition was chosen, namely

f0(v) =
1
4

3∑
l=0

Mv

(
v + 0.02

(
(−1)b

l
2 c, (−1)l, (−1)l

))
, (13)

for the MaxwellianMv(v) = (2πT )−
3
2 e−

|v|2
2T , with a smaller temperature of T = 0.00025 than for the Coulomb inter-

actions example. Again, the Knudsen number is ε = 20 and N = 16 Fourier modes are used, but a much smaller
velocity domain is chosen here, with boundary Lv = 0.1. This allows the time-stepsize to be increased slightly, as
the stability results from section 4 show that a larger value of Lv requires a smaller time-stepsize for stability. Still, a
smaller time-stepsize than for the Coulomb interaction example is used, namely ∆t = 0.0001 (below the upper bound
of approximately 0.00447 calculated for stability with these parameters for γ = 1 in section 4). The marginal plots are
not included for this example, as they look almost identical to those in Fig. 1 from the Coulomb interactions example.

A plot of the relative entropy for hard spheres is shown in Fig. 4. When logarithms are taken, the curve is close to
a straight line with slope 0.71742 which is less than the slope of one that is expected for a spectral gap. Nevertheless,
this is still larger than the slope of two thirds for Coulomb interactions and the slope of one is merely an upper bound,
so this result is still relatively satisfactory.

One final point to mention here is that the hard sphere simulations do not need to run for quite as long. This can
be seen by noticing that the time axis is shorter in Fig. 4 than in Fig. 2. The shorter time is a consequence of the fact
that the decay toward equilibrium with hard potentials is exponential, thanks to the existence of the spectral gap, which
is faster than the stretch-time exponential decay for soft potentials. This is due to the collision frequency increasing as
the relative velocity grows in the hard sphere model, giving a faster decay rate to equilibrium. Indeed, this simulation
is under different conditions to the true Landau equation modeled in section 5.1, but the larger temperature in that
initial condition should not influence the time taken to reach equilibrium. This is a result of the fact that, for Coulomb
interaction with γ = −3, collisions are much weaker as the relative velocity increases and so larger temperatures will
have very little influence.
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FIGURE 4: Plot of log
(∣∣∣∣log

(∣∣∣H[ f |Meq]
∣∣∣)∣∣∣∣) against log(t) for the numerical approximation f to the Fokker-Planck-

Landau type equation with γ = 1 and weights calculated by the exact formulae in section 3, given initial condition
(13), with T = 0.00025, ε = 20, Lv = 0.1, N = 16 and ∆t = 0.0001, which has equilibrium solution given by a
Maxwellian with temperature Teq = 0.0009750. A straight line has been added to show that the slope near equilibrium
is now approximately 0.71742, slightly below the value of one expected for the existence of a spectral gap.

6 Conclusion

In this work, the conservative spectral method for solving space-homogeneous Fokker-Planck-Landau type equations
was expanded upon by extending the calculations to hard spheres and Maxwell molecules. Conditions for stability
were then derived for each of the three cases. Finally, examples of the numerical method for Coulomb interactions and
hard spheres were given to show the power of the scheme. In particular, the relative entropy during a simulation was
shown to decay close to the correct rate for Coulomb interactions, in accordance with the rate of two thirds predicted
by Strain and Guo, which shows that this code is an excellent model for the Landau equation. When the model is
applied to the Fokker-Planck-Landau type equation with hard spheres interactions, the existence of the spectral gap
is less evident but it is believed that this result can be improved upon by altering the parameters. The importance of
the conservation routine was also demonstrated by showing that the decay rate without it is less accurate. Indeed, the
method does not preserve positivity but the regions in which the solution falls below zero are always near the tails and
the solution is negligible there anyway. Clearly this is true as dropping those values in calculation of the entropy did
not detract too much from the result.

The code is easily expandable to the space-inhomogeneous case by use of a discontinuous Galerkin method and
time-splitting. The simulations behave just as expected, also with negligible effects resulting from negative points in
the distribution, and similar decay rates to equilibrium are observed. These results will be featured in an upcoming
manuscript [15]. In addition, work is currently underway to implement the present method in a multi-species setting,
based on the calculations by Gamba et al. [19] to develop an asymptotic preserving explicit-implicit numerical scheme
for species with disparate masses.
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