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We study nonlinear systems of ordinary differential equations that arise when
considering stationary one-dimensional systems of conservation laws with forcing
terms defined in a bounded interval. We construct weak entropy solutions of
bounded variation which are pointwise and #! limits of solutions of regularized,
i.e., viscous, systems, where the limit is taken in the viscosity parameter. In
particular, no oscillations occur either for the viscous solutions or for the inviscid
one. We also discuss the possible formation of boundary layers when boundary
values are prescribed for the viscous regularized equations. As applications, first
we show the existence of transonic solutions of bounded variation with strong
shocks for the equation of stationary gas flow in a duct of variable area as a
pointwise limit of artificial viscosity solutions. We analyze their properties depend-
ing on the kind of duct as well as on the boundary data of the regularized problem.
Second we show that the model applies to the hydrodynamic modeling for
semiconductor devices for some particular heat conduction terms and added
diffusion to the energy equation. In particular, we show that under the assumption
of bounds for the state variables, there exists a regular solution for that particular
viscous heat conducting model. Also, if the bounds for the state variables are
uniform in the vanishing parameters, we obtain the existence of an inviscid weak
entropy solution of bounded variation as a pointwise limit of the regular ones.

© 1994 Academic Press, Inc.

1. INTRODUCTION

We consider a system of stationary conservation laws with forcing terms

A(x)nv =j (1.1.1)
mj?
Fy(n,T), = (— +knT) =8/(n,T,x) (1.1.2)
n x
mj?
Fz(n,T)x = (-'n—z + aT)

= §,(n,T, x), x in the bounded interval [0, 1], (1.1.3)
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where j is a positive constant; n, v, T usually represent density, velocity,
and temperature, respectively, and m, k, and « are dimensionless physical
parameters depending on the fluxes of the model and their constitutive
relationships. We may allow m to depend on x; this is the case in nozzle
flow in a duct of variable area (See Section 5).

These are the steady state model of the equations of motion for a
one-dimensional fluid flow modified by the presence of external forces or
sources, arising, for example, from a collision term in statistical mechani-
cal theory, and /or coupling with external forces, or geometrical effects
produced by sources or drains.

Appendix 1 is dedicated to a simple introduction to gas dynamics and
their thermodynamic relations. Still, we mention here that the above
systems of equations model a compressible flow where the pressure
P = knT represents the perfect gas law and the temperature T is defined
through a differential relation between the internal energy and the en-
tropy state variable S.

Thus, system (1.1) would model stationary inviscid flows which may be
nonisentropic and admit moderate shocks so that the energy equation
cannot be “replaced” by a pressure—density relationship.

The aim of this paper is to construct admissible solutions of the system
(1.1) (“‘inviscid” solutions) as pointwise limits of solutions of the boundary
value problem associated with higher order regularized systems for (1.1)
(by adding viscosity or heat conduction) that are of uniform bounded
variation, In particular, the limiting solution has x-sided limits at any
point.

As an application, we prove existence of weak solutions of the inviscid
transonic stationary gas nozzle flow equations (5.1), as limits of solutions
to regularized ones.

It is well known that solutions of the system (1.1) will admit discontinu-
ities, but require an extra condition for uniqueness of the initial value
problem in the corresponding transient model. Here, we take the classical
entropy conditions; i.e., density increases across a discontinuity along the
particle path (see [CF, MP, ZR]). Indeed, we shall see, as expected, that
for polytropic gases the entropy state variable S will have a discontinuity
at the same value where the density n that solves system (1.1) is discontin-
uous.

We say that (n,T) is an admissible inviscid solution of (1.1) if it is a
generalized solution of the system of Egs. (1.1) and satisfies the entropy
condition.

We construct an inviscid solution of bounded total variation of system
(1.1) that arises as a pointwise limit of solutions to “viscous” systems
related to (1.1), with total variation bounded uniformly in viscosity. (By
viscosity we mean adding a “small” second-order factor.)
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For many examples it is an open question if the viscous systems we
introduce are physical ones. However, we may obtain an inviscid solution
as a pointwise limit of an “artificial viscosity” solution of the higher order
system of equations.

We shall present some of the conditions for admissible second-order
viscous terms such that the solutions of the viscous systems are uniformly
bounded in viscosity measure. These bounds also depend very strongly on
the behavior of the right-hand terms §, and S,.

In order to carry out our program, we present in Section 2 a change of
the state variables, the viscous system, and the related boundary value
problem. The new system in the new state variable will have decoupled the
flux functions and will be of a more manageable form

u,=S(u,w,x) (1.2.1)
F(w), = $y(u,w,x), x¢€l, (1.2.2)

where F'(w) = 0 for exactly one value of w. These new variables appear
to be the natural ones as the density n, expressed in terms of « and w, is
monotone in w and the value w = 0 is the equation of the sonic line in
terms of the original variables n and 7. Consequently, w will admit
discontinuities as a function of x. That means, as we shall see later that
the viscosity term that yields the increasing density condition must be the
one that makes w increase across a discontinuity, i.e., must jump from a
supersonic region (w < 0) to a subsonic region (w > 0) keeping F(w)
continuous as a function of x.

We construct a full solution of the viscous-regularized boundary value
problem associated with (1.2) for a mathematical model, where the
source-forcing terms §; and §, satisfy certain growth conditions.

In Section 3, we follow [G1] to show that we have existence and uniform
BV estimates for the viscous solution of the regularized equation corre-
sponding to (1.2.2) and so we obtain an inviscid entropy solution of
bounded variation as pointwise and L' limit of the viscous ones, as the
lateral limit exists at every point x.

In Section 4, a brief discussion of the possible boundary layer related to
a boundary value problem is included that is associated with system (1.1).
Boundary layers are admissible at both end points.

Assuming that the current flow constant j is positive and following the
characterization presented in the work of S. B. Hsu and T. L. Liu [HL],
solutions of the boundary value problem of the regularized system associ-
ated with (1.2) tend to inviscid solutions satisfying the corresponding
system for e = 0, except for possible discontinuities at the boundary. For
the stationary models, [HL] have analyzed the boundary layer for the case
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of singular nonlinear Sturm-Liouville problems with coupling effects as
the corresponding ones to transonic flow through a nozzle. There they
indicate the form of the boundary layer based on classical analysis of the
layer. However, for first-order quasilinear scalar equations with boundary
conditions, Bardoes et al. [BLN] give the correct way to write boundary
conditions for the evolution problem.

Thus, the conditions of the boundary layer are the following:

At the upstream boundary x = 0, (wg — wXF(w(x)) — F(wg)) > 0
for all w between w; and w, continuous in x.

At the downstream boundary x = 1, (w; — wXF(w(x)) — F(w)) <
0 for all w between w; and w,.
Such an inviscid solution is called an asymptotic state because it repre-
sents the large-time state of transient solutions of the time dependent
system with given end states at x = +

A proof of the condition on the boundary layer is presented in [G1, G2}
for a general forcing-source term, with different arguments of those of
classical layer analysis.

In Section 5 we show applications of this model to gas flow through a
nozzle duct of variable cross section and to hydrodynamic or energy
transport modeling of semiconductor devices.

In particular, we work out the corresponding regularized system associ-
ated with the stationary equation for gas dynamics in a nozzle duct with
varying area. It is remarkable that for the gas nozzle flow equations (see
(1.5)) the second equation (1.2.2) decouples completely from the first one
(1.2.1), so that S, = S,(w, x) and thus, system (1.2) is easily solvable,
allowing us to show the existence of a weak entropy solution as a limit of
solutions to viscous regularized systems.

2. CHANGE OF STATE VARIABLES AND REGULARIZATION

In order to carry out our program, we first rewrite system (1.1) in a new
set of state variables. So we consider the system

F(n,T,j),=8(n,T,x,j)

F(n,T,j),=8,(nT,x,j), (2.1)

where F, and F, are defined as in (1.1).
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The jacobian & F,, F,)/d(n, T) vanishes along the curve

0 —mjz 2k ——k T
= — + .
n? ( @) mjzan

The resulting curve anT = k;, with k; = (a — 2k)mk~'j?, is referred
as the “‘sonic line,” according to the interpretation given below, and will
be used to define one of the new variables as follows.

We take the following change of variables: Set

mj?
— + knT  (momentum flux)
n

N
Il

an’T — k; (sonic line equation). (2.2)

w j

Indeed the curve an’T = k; is referred to as the sonic line in the
following sense. Since the pressure P = knT, the curve w = an’T — k;=0
can be recast as

—k, =0.

J

—
[ ]
x| v

=R

)

[ad

Thus, if we define the thermodynamic variable ¢ as

aj’ P a P

57« 0~
kk; n m(a—2k)n’

then the curve w = 0 can be written as

c2
w=kj(F—1 = 0.

Therefore, we call the values of x, where w(x) = 0 or, equivalently,
(c?/v*)x) = 1, the sonic points. Regions where w < 0 are supersonic
ones and regions where w > 0 are subsonic ones.

In order to set up the equations in the variables defined by (2.2), we
write the energy flux in the new variables. From (1.1.3)

1 1 1 ((a=-k)
i2 2 _ 2 - :2
?(mj + an T) = nz (m] + kj + W) = nz k m©+wl.

(2.3)



134 IRENE MARTINEZ GAMBA

From the momentum flux (1.1.2) we have that

mj? 1 1k{ (a—k)
u=-—+knT=—(mj* + kn’T) = — —[2——mj2 + w|. (2.4)
n n naoa k

So replacing 1/n? from (2.4) into (2.3), we obtain that

(w + a,)a’u?

F n,T = ’
2 ) (w+ 2a/-)Zk2

(2.5)

where we call

a—k
a;= — mj* = mj> + k. (2.6)

Therefore Egs. (1.1) in the new variables, as defined in (2.2), become

u, =S (n(u,w), T(u,w), x) (2.7.1)
(F(w)u?), = Sy(n(u,w), T(u,w), x)(k*/a?), (2.7.2)
where
w+a;
F(w) = v+ 2a)
with density

and temperature
e (w+k) «a

= 21 2 2.8.2
(w+ 2aj)2 k? ( )

We note that the change of variables (n, T'): — (i, w) is an admissible
one as

P2

Wuww) | kT kn
=72 = —amj* — kan®T # 0,
d(n,T)
2anT an’

provided 7 = 0.
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We anticipate that u and F(w)u? will be Lipschitz functions of x in I
and, hence, will also be F(w). Therefore the jump condition [F(w)u?] = 0
is the same as [F(w)] = 0. That means that the change of variables
conserves momentum and energy.

Also, we remark here that » is monotone in w. This will be fundamental
in order to construct entropy solutions using the new system.

Using (2.7.1) to eliminate u, in (2.7.2) we obtain that the system (2.7) is
reduced to

u, =S (u,w, x) (2.9.1)
w+a; K2, (u,w,x) 2 w+a, .
F(w), = ( ! 2) = ) - - J 58 (u,w, x).
(w + 2a;) . a’u U (w+2a;)
(2.9.2)

Renaming the right-hand sides §, and §,, respectively, we have reduced
the system (2.1) to

u, = S(u,w,x) }

FOv). = S (ow, 5) 0<x<l. (2.10)

Since the physical problem does not allow negative temperatures, we
are interested in n°T > 0 and we want w = an®T — kj > —kj; that is,
from (2.6), w > —k; > —a,. Therefore we redefine F(w) to be zero if
w < —a, as well as §; and §,.

The new system (2.10) has a sonic line equation,

Hu, F(w
M FW) _p
u,w)
where
—w
F

v (w+ 2a}-)3 '
We show the graph of F(w) in Fig. 1.

Remark. In the case of gas through a nozzle duct (i.e., Egs. (5.14)) the
right-hand side §,(u,w, x) does not depend on u. So the second equation
uncouples from the first one.

A Viscous-Heat Conducting Boundary Value Problem; Existence and
Uniform Bounds

We regularize system (2.10) by adding a higher order term with a small
coefficient. The a priori estimates to the new problem are uniformly
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I /\
|
} 7 I ] > F'(a;)=0

Fic. 1. Graph of F(w).

independent of this coefficient provided the right-hand sides have a
particular growth condition.

The method uses the concept of finding an “invariant region” in the
domain of the state variables, which is independent of the viscosity
parameter. Then, by classical comparison theorems of ordinary differential
equations, the solution cannot leave the invariant region. This method is
in the spirit of the work on invariant regions developed by Chueh, Conley,
and Smoller [CCS] and Weinberger [W} in order to find bounds for
solutions of systems of partial differential equations. Because of various
technical differences between our problem and the ones treated in
[W, CCS] (in particular, a survey on invariant regions can be found in
Smoller [S, Chap. 14] and references therein), we present the proofs,
which, as in the work of the above references, are dependent on the
higher order regularization, as well as on the form of the force-source
terms S, and §,.

Once the conditions on the right-hand sides S, and $, are imposed and
the uniform invariant region in the u,w plane is found, the remaining
estimates and convergence results are basically independent of the form of
the right-hand side, provided the graph of the new flux function F(w) has
the concavity near a single sonic value w = wg as the one shown in Fig. 1
near the sonic value w = 0.

The regularized boundary value problem we consider is

u, =S (u,w,x) (2.11.1)
E(u,w) = =F(w), + Sy(u,w, x) + e(B(w)w,), = 0,
xel=(0,1), (2.11.2)

w(0) = w,, w(l) = w,, u(0) = uy > 0.
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We assume wy,w, > —k;; and B a differentiable function of w, defined
for w > —a; satisfying B(w) > 0, B'(w) <0, for w > —a,.

Remark. System (2.11) might also be viewed as the transformed one,
corresponding to the boundary value problem

2
J

(m—— + knT) =8(n,T,x)
n P

J’ T S T i mit knT 2
— 4 = tel—| | — + .
2z o, T, x) E(k) n "

X

(B(anzT - kj)(anZT - kj)x) ,

where n and T are prescribed at x = 0 and x = 1.

In this section, we present a proof of how to obtain a priori uniform
bounds for solutions of (2.11) in the case where the growth on the forcing
term S, is prescribed, and w® has e-uniform upper and lower barrier
functions with respect to the operator E, in [0, 1]. We set up Assumption
&7 in order to provide for both of these conditions. First, let us define the
family of sets R, depending on one parameter by

Ry={(u,w): P <u <Py P! <w=<P/} (2.12)

R, form a continuous family in the parameter A of smooth rectangles
where R, is given by functions PA(x), i = 1,...,4, that vary continu-
ously with respect to A, uniformly in x, satisfying

P >k, >0, Py -

A _ A
Py > ky> —a, Pl - o

%

as A » », x € {0,1]. (2.12.1)

Hence, R, = U, 8,R,, where d.R, = PA(x), x € [0,1), i = 1,...,4.

Assumptions?/. let .#, be a nonempty continuous one-parameter
family of regions given by smooth rectangles R, defined as in (2.12)
satisfying the condition (2.12.1) such that the “edges” P of the rectangle
R, are given by functions independent of € and satisfy that P;* and Py
are “contracting” curves for S,(u%, w¢, x), respectively, and such that PZA
and P;* are sub and super solutions of w* with respect to E_ in [0, 1],
respectively, for A sufficiently large. That is, dropping € for the rest of the
assumption, there is an A* such that for all 4 > A*, the evaluation of the
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terms S, and E, on the boundaries given by P*(x), i = 2,...,4, become

S(Pfw,x)>0

S(P{',w,x) <0, forany wif Py <w < P/, (2.13)
E(u,Ps)>0
E(u,P) <0, for any u if P/ <u < P;.

Using the standard notation for invariant regions, condition (2.13) is
equivalent to

(Si(u,w), E(u,w)) v<0 ondR,;
S(P{ PAY>0,  S(Pf,PA) <0, fori=2,4, (214)

where v denotes the outer normal direction to dR, at (i, w), excluding
the “corner” values of the region R ,.

The next theorem will show that Assumption &/ provides a sufficient
condition to find the desired uniform bounds.

TrHeorEM 2.1 (A priori uniform bounds. Comparison theorem). Under
the assumption &7, there exists an © > A* > O such that if u® and w* solve
the boundary value problem (2.11) then (uf, w*) € R 4 with A* independent

of e.

Proof. First we recall that solutions w* of the second-order operator
E(u,w) =0 defined by (2.11.2), with prescribed boundary data are
bounded by a constant M*, where —a; < M® < =. Next, Assumption &
sets conditions on the equation so that all the functions P/(x) with
A > A* are a continuous family in the parameter 4 of upper and lower
barriers of the boundary value problem at any x € I, provided that P*
controls the boundary data for 4 > 4*. The continuity in the parameter
A is needed in order to find functions P,*'(x), i = 2,4, that have first-order
contact with w*® solution of E(u,w) =0 as well as to obtain the €
uniformity of the bounds. By first-order contact we mean that these
functions and their tangent planes must coincide at the contact point.

Indeed take A, as the first parameter that makes P;*(0) < u(0) < P;*(0)
and P(r) <w(r) <P(r), r=0,1, for all A >A,. Rename A* =
max{A4,, A*}.

Now let us see that if u® and w* are solutions (2.11) then they cannot
have a contact point with dR .

Since A* > A;, then (u<(0),w<(0)) = (uy,wy) and (u(0), we(1)) =
(uy, w)) are in the interior of R 4.
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Now, let x, € I be the value of x that makes the first contact point with
AR ,« by increasing x. This first contact could take place at any one of the
four edges of the rectangle. Namely, either

(1) (u(xg),we(xp)) € 9, R 4 or (ii) (u(x9),w(xg)) € R 4
or

(i) (u(x0),w(x9)) € R or  (iv) (u(x9),w(xy)) € 9, R 4.

We consider the four cases, one at a time.

() If (u(xy), we(x,)) € T, R 1; that is, u(x,) = P{""(x,) for the first
value of x (ie., us(x) # P (x,) for x in [0, x,) since u<(0) > P;*"(0).
Then u decreases toward P/*" at x,, so u<(x,) < 0. On the other hand,
us(x,) = S,(P, we, x,) > 0 which contradicts the previous statement. So,
us > P

(ii) Similarly if (u€(x,), w(x,)) € 33R o then u(x,) = Py for the
first value of x, so u¢(x,) > 0 which contradicts condition (2.14), u¢(x,) =
S(P",we, x4) < 0. So u¢ < P,

(iii) and (iv) If either we(x,) = Py (x,) or w(x,) = P{"(x,), on one
hand we have condition (2.14) which says

Ef(u’ P’A) = _F,(PiA(x()))})if(xO) + SZ(u1 RAa x())

+ e(B(P,."(xU))P,-f(xO))x{ 2o il @16

On the other hand, if the first contact is produced at x,, then x, is in
the interior of I, but it might not be a first-order contact, so we must look
for a parameter 4° = A(e) such that the contact between w€ and P;** will
be of first order. Indeed, since —a; < w* < =, so by condition (2.12.1), we
slide P continuously in A, i = 2,4, from P/ toward —a ; and o,
respectively, so that we can choose the first A€ such that P¢ and w*
coincide in first order at a point x; , so that, if x, is still not a point on

which (w¢ — P) (x,) = 0, i = 2,4, we can take an A° > 4* such that,

(iii) w¢ — P#'¢ has aminimum at x,,,  (w*—=P;")(x,,) =0;
(iv) w¢ — P{* has a maximum at x, (we = P5")(x,,) = 0.
(2.17)

Therefore, from (2.16) with x, replaced by x, | and (2.17) we obtain that
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in (iii), dropping e from u and w momentarily,

0 <E(u,w) — E(u, Py )(x,,)

= —F(w(x ) (w = P5¥) (x21)

— Sy(u,w, x5,) + Sy(u, Pi", x, )
— eB'(w(xp, ) (w2 = (PF).)(x2.0)
—€B(w(xy ) (w - P; ()xx(XZ,l)
—eB(w(xy ))(w = P*) (x5).

As B(w) is a positive function, then (w — P;*), (x, ) <0, A° > A%,
which contradicts (2.17) (ii).

Similarly, for (iv), one can obtain that (w — P;*€) (x, ) > 0, A€ > 4*
which contradicts (2.17) (iv).

Hence, no such contact can take place. Therefore,

(us,w) €int R, A > A*.

Finally, we need a result that gives the € uniformity of the bound. Here,
we also need that the family R, is continuous in A. Let w* = Pj*, 4* <
A < A, then w* is a continuous family of subsolutions of E (w*) = 0in I
such that w" < we€ in I and w?l;; < we|,, for all A* < A < A°. Then
w4 < we for all A* <A < A°. (This is a classical result for operators
satisfying a comparison principle as the one described before. A proof of
this result was written in [G1].) An equivalent result holds for w = P;* as a
continuous family of supersolutions of E_ = 0 and the corresponding
reversed inequalities. Hence, (u¢, w*) € int R 4, that is,

P& <we <P, P <ut<P{ in [ uniformlyine. (2.18)

Next, we need to find a bound for the derivative of we(x).

Lemma 2.2 (A priori bound for the first-order derivative of w). If we is
a differentiable solution of E (u¢,w¢) = 0 in I = (0,1) and we let K and C
be the constants such that K < w* and |\w¢||;= < C uniformly in €, then ew
is uniformly bounded in I by A(K, C).

Proof. We follow the same idea as in Lemma 4 in [G1]. The only
difference in this case with respect to the one in that paper is the viscous
term (B(w)w,),. Indeed, taking the rescaling ¢(x) = w(ex) the equation
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E (u,w®) = 0 is reduced to

0= F’(¢)¢x - €S21(u’ ¢,X) - (B(¢))xr’

where ' = B > 0, and min, , x8(¢ > B* > 0, for B(K) chosen positive.

Set o = B(¢). Since B is a monotone increasing positive function, then
B~ is well defined, and 8 and B~ ! preserve Lipschitz functions; that is, ¢
has a bounded derivative at a point iff ¢ has a bounded derivative at the
same point. Thus, we transform the above equation into an equation for
o, namely,

0=F(B~N(a))(B(0)) "o, — eSy(u, B~'(0), x) ~ 0.

Since ¢ is uniformly bounded and B(¢) is positive then o is positive
and uniformly bounded in I.

In addition, using the uniform bounds on ¢(x) we have that solutions of
the above equation are solutions of the elliptic differential inequality

o, < D(lo | + 1) (2.19)

inI'’=(0,¢ Yand D =D(K,C, B, B).
We take the following differentiable barrier functions for o,(x) at a

point x, € I', where o(x) is the solution of the differential inequality
(2.19). Let

C
b7 (x = xo) = = 53 ((x = x¢) = 8)’ + C + o(x,)

for an arbitrarily small §, defined in the interval [x,, x, + 8). If x; + 8 >
€', we do a symmetric construction in [x, — 8, x,].
Also define

b™(x —xg) = =b*(x —xq) in[xg, x, + 8).
First, we note that, since o > 0.

b™(0) = —o(xg) <o(xy) =b7(0),
b= (8) = —C —o0(xy) <o(xy+8) <C+a(xy) =b"(8). (2.20)
Then, we need to check that b* and b~ are super and subsolutions of

the elliptic inequality (2.19) in [x,, x, + 8], respectively. Indeed,

C
b:x=—? |bx+|s—5—|x—x0|<6.
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Hence,

2C 4c
b= D(Ibj1+ 1) = -~ —D(ﬁ(?) + 1) <0 (221.1)

if & is chosen small enough.
Then, b is a strict supersolution of (2.19) in [x,, x, + 8], for a value of
8(K, C). Analogously, b~ is a strict subsolution in the same interval as

2C 4C
by, —D(Ibil+1) = 57 D(ﬁ(?) + 1) >0 (2.21.2)

if & is small enough, where 8 depends on D, independent of e.
From (2.20) and (2.21), by the standard maximum principle applied to
the inequality (2.19),

b-<o<b* in [xg, xo + 8],

where 8 is independent of x; and e. Assuming that o is differentiable,
approaching the first derivatives at the point x;, we obtain

2C 2C
5 < odlx) < -

Thus, we have obtained that |B(¢)é,| < 2C /8. Hence

MC -
lews| < 5 independent of e, uniformly in 7, (2.22)

where M depends on the function B and 8 = 8(K, C, B, B).

We finish this section by showing that the problem (2.11) is solvable
under Assumption 7. We make use of a special case of the
Leray-Schauder fixed point theorem combined with classical theorems of
ordinary differential equations.

THEOREM 2. Let T be a compact mapping of a Banach space # into
itself and suppose there exists a constant M such that |lx||lg < M, for all
x € # and o € [0, 1], satisfying x = 0 Tx; then T has a fixed point.

A proof of this theorem can be found in [GT, Sec. 10.2}.

In order to apply this theorem we construct the operator Ts(v): C*(1)
— C*1(1) for & < wy,w,, in the following way.

Given v € C%'(J), for & = (v + a;)*, we solve first

u,=8(u,i,x), u(0) = u,. (2.23)
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We assume S (u,#(x), x) to be a continuous_function in the variables
(#(x), x) over the region R = [P{'*, P;'*] X I and uniformly Lipschitz
continuous with respect to u over [P;", P{']. Let M = supgS$,
(M depends on P‘-A*, i=1,...,4, from Theorem 1, and on j). Then (2.23)
has a unique solution ¥ = u(x) on [0, x + «], where & = min(1, P;'*/M).

This 1s the classical Picard—Lindelof theorem and if @ < 1, one can use
extension theorems to have the solution defined over a maximal interval of
existence which will contain I. For details we refer to Hartman [H].

Having solved (2.23), we solve

eB(w)w,, = F3(0), — S,(u, i, x) — eB'(5)(5,)"
w(0) = w,, w(l) = w,, (2.24)

where
F(v), v>8

Sy =
F) =\re), o<,
and we define w = Ts(v). Then the following theorem holds.

Tueorem 3 (Existence of a viscous regular solution). T; defined as
above has a fixed point.

Proof. T, is compact mapping of & = C%!(1). Indeed, from Eq. (2.24)
”W”C"‘(l) <K(e, 8, M), whenever “U“CO"(I-) <M,

where K(e, 8, M) is a constant depending on ¢,8, M and on the form of
Eq. (2.24).

Next, let w* = o T;(w*), o € [0, 1]. It follows from Theorem 2.1 and
Lemma 2.2 that

P <w* <P
and
a
w¥| sK(—,a).
€

Then ||Wllco1 sy < M. The proof of continuity of T is a standard one and
can be found in [GT], so the Leray—Schauder theorem says that there is a
w € C% (1) such that

u, =8S(u,w,x)
eB(W)W,, = F3(W), — Sy(u,w, x) — eB'(w)(W,)’

in I, w(0) = w,, and w(l) = w,.
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Now, taking —a; < 8 < P;", where P;'" is the uniform lower bound for
w (from (2.18)), we have that F®(#%) = F(w). Therefore w is a solution of

u, =S (u,w,x)
F(w), = 8,(u,w,x) +e(B(w)w,),, xel=1(0,1),
u(0) = u,, w(0), w(l) = w,, (2.25)

which is the original system.

Before getting into the limiting process in Section 3 we present two
examples where there exists an e-uniformly bounded regular solution for
the regularized boundary value problem.

The first one is a mathematical model with an appropriate growth
condition on &, and §, which satisfies Assumption 7.

The second and more interesting one is the existence of an e-uniformly
bounded regular solution of the boundary value problem for the stationary
e~(artificial) viscous model of gas nozzle flow corresponding to the inviscid
model described by Eq. (5.1) or, equivalently, (5.3).

Although Assumption & will not be satisfied for the nozzle flow model,
still we have a comparison theorem and, consequently, the desired e-uni-
form bounds, due to the very useful fact that the nozzle flow equations in
the new state variables (u«,w) decouple the nonlinear flux equation in
(2.10) from the variable u.

This will result in a transformation from the nozzle flow viscous bound-
ary value problem associated with system (5.3) to a boundary value
problem (2.25), where S, = S,(w, x), so that the e-uniform bounds will
follows from a simple modification of the comparison Theorem 2.1. We
devote Section S to working out the details of the nozzle flow equations.

ExampLE 1. Consider a mathematical model where the transformed
source-force terms .4 = #(u,w) and ./, = #(u, w) satisfy a condition
that the family of “rectangles” defined by (2.12) and (2.12.1) becomes a
family of “straight edge contracting” rectangles for the vector field
(A, ). That is, Assumption 7 is satisfied by a family of 4R ,, where
PA(x)=PA i=1,...,4, are constant functions satisfying condition
(2.12.1) and

(A, %) v(u,v) <0 on dR,,
(P, PA) > 0, AP, P <0, i=2ord4, (2.26)

i H

holds for all 4 > A*.
Indeed, condition (2.26) means that each rectangle dR , is an “attractor”
for the vector field (., ./,). In particular, it implies that condition (2.13)



VISCOSITY APPROXIMATING SOLUTIONS 145

holds (as each P, is constant). Therefore, Assumption & holds indepen-
dently of the form of the “flux” function F(w), and consequently, the
comparison Theorem 2.1, the estimate of the derivatives from Lemma 2.2,
hold as well as the existence theorem 3. Hence, a boundary value problem
given by (2.11), where the terms ., and ., satisfy condition (2.26),
where R is defined as in (2.12) with the family P4, i = 1,...,4, satisfy
(2.12.1), has a solution (1%, w*) in C"'(1), where llu,w,u ., ew ;= <k, k
independent of €, but depending on the boundary data and the physical
parameters involved in Egs. (2.11).

3. THe ExXisTENCE OF A WEAK ENTROPY SOLUTION OF THE
LiMITING PROBLEM

In this section we use the vanishing viscosity method to prove the
existence of a solution (u,w) of problem (2.10), where u is a strong
classical solution and w is a weak solution in the sense of the integral
identity,

fI(F(w).p,+S(u,w,x)¢)dx=0 (3.1)

which is valid for any ¢ € C2(1).
Also we show that the function

H'(w) = (F(0) — F(w))signw
satisfies the condition that
#(w)(x) + Cx is monotone increasing, (3.2)

where C = sup, A(u¢, w, x). That is, (#(w)), is a measure bounded
below by — C. Actually, condition (3.2) or, equivalently,

[I(;f(w) +C)p, 20

for all ¢ € C3(I) a positive test function, represents the classical “entropy
condition” for the “transonic case” in the sense of Olienik [O], Vol'pert
[V], and Kruzkov [K] for first-order quasilinear equations. Also see Bar-
dos, Leroux, and Nedelec [BLN] for the problem with boundary condi-
tions.

In particular, condition (3.2) will imply that the weak solution w of (3.1)
can be written as a sum of a Holder- 3+ continuous function plus a
monotone increasing function.
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We stress here that the sign of the added e viscosity in Eq. (2.11) is
fundamental to obtain condition (3.2). If € were chosen negative, the
monotonicity property of (3.2) would reverse.

In order to obtain a convergence result for the e-viscosity solutions we
proceed very similarly as in [G1] due to the similarity of the system under
consideration. Indeed, the “flux” function F(w) is not one to one and has
just one extreme point in the domain where w¢, so, solution of (2.25) is
uniformly bounded. Therefore, we define

H(w*) = (F(w*) — F(0))sign( ~w)

= (Zla_, - F(wf))sign w. (3.3)

Now #(w€) is a monotone increasing function of its argument well
defined in {w > —a}.

We show that #(w<)x) is a function of bounded variation in /, with a
TV-norm bounded independently of e. In fact, multiplying (2.25) by
Hy(w) = —signs(w), a 8-regularization of sign(—w) and integrating with
respect to x, & (w* X x) satisfies the equation

(H(w)). = Ot + (HyS)(w) + | [H,B(w) |

— e(H;B(w))(ws)” (34)

with #5(wXx) = (F(0) — F(w ) Hy(wXx).
Hence, since the TV-norm is defined as

TV, (H5(w)) = [[1#5(w). dr,

we need to see that the integral on the right-hand side of (3.2) is uniformly
bounded in e.

Now, in order to estimate this integral, we use the following lemma
which gives an estimate of the integral in I of the last term in (3.4), which
is nonnegative as B(w*) > 0 and Hy(w*®) < 0.

Lemma 3.1, For each fixed e, there exists a 8, = 8,(¢€) such that

fol — e(H;B(wo))(ws)" <K,

where K is a constant independent of € and 8 for 8 < §,.
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A proof for this lemma can be found in [GL, Lemma 5]. The indepen-
dence of € for the bound K relies on the e-independent bounds obtained
for u®,w*, and ew; obtained in Theorem 2.1 and Lemma 2.2 from Sec-
tion 2.

The next “key” lemma gives an e-uniform estimate for (3.4). We sketch
a proof for it, although it is proven in detail in [G1, Lemma 6].

LemMma 3.2, For each fixed € there exists a 8, = 8,(€) such that
TV, (H#5(w*)) < K
for 8 < 8, and K a constant independent of € and 8.

Proof. By the existence theorem 2.3 we know that w* is regular so
H#5(we) is of bounded variation. We want to compute the variation and
see that it is bounded independently of € and §.

In order to analyze this estimate, we compute

(Fde= L [I(H(w)),lax

O<n=<k 1,

in any number of intervals /,,0 < u < k, where w; does not change sign
(i.e., the end points of I, are local extreme points of w¢). Since H5(w*) is
a monotone function of w* then J#;(w*¢) does not change sign in I, either,
and then

(FS.e)k= Z

O<n<k

f(%(w*))xdxl-

lﬁ

Then replacing the integrand in the above expression by Equation (3.3),
(Fs ), is estimated by the sum over n of the absolute value of the integral
of each term over I,

The three first resulting sums are ¢, 6-uniformly controlled by using the
e-uniform estimates over w* u*, and ew; and the quadratic behavior of
F(w) about w = 0. The last resulting term is given by

r

O<n<k

Therefore, by Lemma 3.1,

)»

O<n<k

j;A(w‘)(x)dx . where A(w®) = —e(H,B)(w)(wf)’ = 0.

€ —_ € 1 €
[A(w)dx = Y /A(w)dxstA(w)dxsK

1, O<n<k 1n

with K independent of § and e.



148 IRENE MARTINEZ GAMBA

Tueorem 3.3 (Passing to the limits). (i) The functions #(wXx) as
defined in (3.3) are of bounded variation in I and their total variation norm
is independent of e.

(ii) The family {#(w)} has a sequence {H(w*)}, €, = 0 as n — =,
that converges pointwise and in every Lp(I ), 1 <p <o, to a function
Hy(w) of bounded variation.

The proof of Theorem 3.3 is very much like the proofs of Theorems 2
and 3 in [G1]. Part (i) follows by taking the limit as § — 0 to the family
{H#5(w)5 <5, This limit exists as the family is of §-uniform bounded
variation and S#(w*) is continuous in x. Thus, F(w*) = lim, _, ,H#5(w*)
uniformly in I, and TV(H#'(w*)} < K, K independent of e.

Part (ii) follows from applying Helly’s theorem and Kolmogorov’s com-
pactness condition (see [N, XVII, Sect. 3] to the family of e-uniform
bound variation function {#(w*)}.

Therefore, it follows that

TV(H(w)(x)) <K  uniformlyin e (3.5)
and there exists a function #(x) such that
lin})a’t’(w‘)(x) = Hy(x) pointwise and in L,(/),1 < p < o,
- (3.6)

and also that
TV(%O(x)) <K.

Thus, #(wXx) is a uniformly bounded family of L'(7) functions con-
verging to #y(x) in L'(1). Since 2# '(w) is a continuous function of w,
then we define

w(x) = lim #7(H(w))(x) = #7(H(x), ()

and so wé — w pointwise and in L(I). Also, we must take care of the
equation u¢ = §(u€, w*, x). Here it is easy to see that TV,(u) = [}|u¢|dx
= [J1S(u, we, x)| < K, where K is a constant depending on the bounds
for u€ and w*, which are e-independent.

Again, making use of Helly’s theorems, there exists a function u(x) such
that

u(x) = lim u*(x), as m — «. (3.8)
€, 0

m
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Next, we see that these u and w are inviscid weak solutions of problem
(2.10) in I

THeoREM 3.4. The pair (u,w) defined by (3.7) and (3.8), respectively,
are a solution of problem (2.10), where u is a classical solution and w is a
weak solution. Also, H#(wXx) = (F(0) — F(w))signw is a function of
bounded variation, with TV, (#(wXe)) < K, K independent of € and
therefore w has bounded variation independent of e.

Proof. Let ¢ and ¢ be a pair of test functions in CZ(I), multiplying
equations (2.11) and integrating by parts,

fu‘qu + fSl(u"",w"", xX)$ =0 (3.9.1)
7 1

and
JEwey, + [Sy(usn,wen, )i — €, [B(w)y,, = 0, (39.2)
7 7 !

where B'(w®) = B(w*). Using that S, and S, are continuous functions of
uc and we in I, as well as that F is a continuous function of w*® in I, then
wen = w, utm - u, S usn, wen x) - S(u,w, x), and  S(usr, we, x) —
Sy(u,w, x), all limits as €,,€,, — 0, converge in L'(/).

Finally, it can also be shown that

H(w)(x) = (F(0) — F(w))signw,

where w is the weak solution (2.10) defined above, is also a function of
bounded variation with TV(Z#(wXx)) < K uniformly in 7 and K inde-
pendent of €, and therefore, w is a function of bounded variation indepen-
dent of €. Also, from (3.10.2) it can be shown that F(w)} x) is a Lipschitz
function of x in /1.

The Entropy Condition

We prove in detail the following theorem. This result assures us that the
weak solution we have found in the limiting process satisfies the compati-
ble entropy condition for the density n as n = n(u, w) is monotone in w.

THEOREM 3.5. Let w be the weak solution defined in (3.7) of problem
(2.11.2) for € = 0; then there is a constant C > 0 such that the function
H(wX x) defined above satisfies

(H(w)), +C>0 (3.10)

in the sense of the distributions.
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Proof. Following [G1], let ¢ € CZ(I) be any positive test function.
Multiply (3.4) by ¢ and integrate; then

~ [Hi(w)d, + [O(8)wid
1 7
- [(Hs )8 + e f [ [ B o,
— e [Hy(we) B(w*)(w) " (3.11)
Now let C = sup S,(w¢); C is independent of €. Then
0= fl(de))x - j;de)x + fngb. (3.12)
Subtracting (3.11) from (3.12) we obtain
~ [(Hiw) + Cx)9,
= [(HySy(w®) + C)¢ + [O(8)wsd
I 7
b ef([HwIBO) o, - e [H v B (50)’s

A, + A, + A+ A,

First, A, = [,((H;S;Xw*) + C)p = 0 as |Hz| < 1. Next, A4, =
—e[H}(w)B(wXw)p = 0, as Hj = —signg(w) <0 and B(w<) > 0.
Next, | 4,| < O(8)e 'K where K depends only on the bound of the family
{ew:} and the function ¢. Then A, — 0 uniformly in [ as 8 — 0 for each
fixed e.

Finally,

Ay = o f([Hv)BO) o =0 ase—o,

since Hy(w*)B(w*) are uniformly bounded in / independently of & and e.
Therefore, one obtains

_fl(%(wf) + Cx ), = A,(8) + Ay(e);
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thus taking the limit first as 8 — 0 and then as € — 0, we obtain that
[ —(H(w) + Cx)¢, dx 20 (3.13)

for any positive test function ¢, where w is the weak solution defined in
3.7).
Hence

(K (w)+Cx), =HFw),+C=0 (3.14)

in the sense of the distributions. In particular, #(w(x)) is a Lipschitz
function of x plus a monotone increasing function. Since #(w) is a
monotone increasing function of w. Then we obtain that w(x) =
H U H#(w(x))) is the sum of a monotone increasing function plus a
3-Holder continuous function, as the behavior of F(w) is quadratic near w
equals zero. Thus, we set the regularity of the weak solution w in the
following lemma.

LemMA 3.6. (a) Let w be the weak solution defined in (3.7) and let u
defined in (3.8) be the solution of the problem (2.11) for € = 0. Then,

(@) w(x) = G(x) + a(x), where G(x) € CV*(I) and a(x) is a mono-
tone increasing function in I with at most a countable number of discontinu-
ities.

(b) u(x) is a C*'(I) function (Lipschitz).

(¢c) F(wXx) is a Lipschitz function in I.

(¢) w(x) is a Lipschitz function in I'; a closed subinterval of I, where
w(x) < 0 (or w(x) > 0) for every x € I'. Thus, w(x) is continuous in the
supersonic (subsonic) region. Here w,,. = 0. w(x) can have discontinuities
only at subsets I' C I such that w takes values above and below w,,. in

subsets of I' with positive measure. This indicates that I’ is a transonic region
of Eq. (2.10).

(e) No oscillations are admissible, as the lateral limit exists at every
point of the interval 1. That is, solution w cannot have oscillations with wave
length going to zero as € goes to zero. In other words, w has a lateral
derivative almost everywhere.

The proof of (a) was developed prior to the statement of the lemma.
Statement (b) is a classical result of regularity of ordinary differential
equations as S,(u,w, x) is a locally bounded function of its arguments.
Statement (c) is a classical observation of the differentiation theorem in
L'(I) and therefore (d) and (e) come as a trivial conclusion of the form of
F(w) and the Lipschitz continuity of F(w) with respect to x.
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We conclude by pointing out that (n,7) is an admissible inviscid
solution of (1.1) given by the change of variables (2.8) and that it satisfies
the expected regularity:

(a) the momentum flux, conserved as

P2

(% +knT)(x) = u(x), (3.15)

is a Lipschitz continuous function, so that the Rankine-Hugoniot jump
condition is satisfied for the momentum equation.

(b) From (1.1) and (2.7.2), the energy flux, conserved as

-2 2
(5 e (e

is a Lipschitz continuous function, so the Rankine—Hugoniot jump condi-
tion is also satisfied for the energy equation.

(¢) The entropy condition on

w=an’T — k;
indicates that #°T is the sum of a C'/?(I) plus a monotone increasing
function, where the discontinuities are from values (n =, 77) to (n*, T™),
where (n7)*T (x) < k; < (n*)*T*(x). This last inequality, along with
the jump condition for the momentum flux,

mj? mj?
—+hkn T | = —T+kn+T+ ,
n n

imply that
n~<n® and kn~T < kn*T* (3.17)

across a discontinuity. Hence the density n(x) and the pressure p(x) =
knT(x) satisfy the classical entropy condition.

It is worth mentioning that another way to see that the classical entropy
condition is satisfied is by looking at the density n as a function of « and
w. Indeed, as u(x) is continuous throughout the domain and n = n(u, w)
is monotone in w, then n increases across a discontinuity whenever w
jumps from w~ < 0 < w™ satisfying the jump condition for the momentum
and energy flux.

Also, from (2.8) T = (a/k*u*(w + k;)/(w + 2a))*; then it can be
shown that T increases across a discontinuity whenever w becomes
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discontinuous. An argument similar to the one in Lemma 3.7 below will
prove this result.

Finally, we want to remark that the same analysis done to the system of
Eqgs. (1.1) could have been done to system (A.6) which corresponds to the
equations of motion for an ideal gas with constant specific heat expressed
in terms of the density n(x) and entropy S(x).

Here the change of state variables that lead us to the same analysis is

i i
u=—+(vy—-lHn” exp{S/cL,}(= — + knT)
n n

w=qyn" lexp(S/c,} — k(= yn’T - k}), (3.18)
where k; = j*((2 - y)/(y — 1)). (Here the temperature becomes T =
n*"'exp{S/c.).)

Remark. Here, for simplicity of notation, m = m(x) is assumed to be
the constant value 1. For m nonconstant the change of state variable is
slightly modified to one very similar to the one corresponding to gas flow
in a nozzle with variable cross section A(x), as will be done in Section 5.

Consequently, Eq. (A.6) in the new state variables becomes

u, = Au,w, x)

2
jr— —Fw)| = Au,w, x) (3.19)
(r-1 .

with F(w) = (w + a;))/(w + 2a,)%, a; = k; + j*.

These equations differ from Eqs. (2.7) just by a constant. Therefore, all
the analyses and results obtained in the last two sections would apply
accordingly to system (3.16).

Hence, expressing the density and entropy in the new state variables,

1 (-1
n= Z‘-——"Y—(Zaj-i-w)

N
Il

! “M( Y )7 Wtk 3.20
¢, log G- \G-D (2aj+w)y+l ) (3.20)

then if w has a discontinuity at a value of x,, from values w™ to w* such
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that F(w ™ Xx,) = F(w*Xx,) and w™< 0 < w™, as u is continuous every-
where, we immediately obtain that the density n becomes discontinuous
and that n~(x) <(y — Da;/u(xy)y < n*(x,). The entropy § also is
discontinuous, as (w + k,;)/Qa; + w)*1 is discontinuous, satisfying that
$7(xy) < ST (xy).

This last statement is proved in the following lemma.

LemMMA 3.7.  Let S be the entropy state variable defined by (3.20). Let x,,

be a point of discontinuity in I for w. Then S discontinuous at x, and
S7(xy) < 8t (xp).

Proof. —k; <w™(xy) <0 <w¥(xy), with F(w™Xxy) = F(wXx,). §
is discontinuous at x,, if and only if A (w) = (w + k,)/(w + 2a;)"*! is
discontinuous at x, and S(w™ Xx,) < S(w™Xx,) if and only if
Aw™ Nxy) < A (w* Nxp). So it is enough to show this last inequality. In
fact, it can be shown that R(w) = #(w)/F?(w) is monotone in w, so that,
since w™<w* with F(w™) = F(w"), then A (w Nx,) < Aw"Nx,).
Therefore the proof is completed by showing that

d
— log R(w) > 0,
dw

as the log is a monotone function. Indeed,

! ’

d .
e log R(w) = 7(w) - yF(w). (3.21)

Using that a; = k; +j* = j?/(y — 1) and that a, + j* = ya,, we compute
the right-hand side of (3.21) and obtain

Y aj+j2
-~ +
(w + 2a;) (w+2aj)(w+aj—j2)

1 a;

+
w+2a)  (w+ 2a)(w+a)

-1~

B a; +j* ~ ya; -0
(w+2aj)(w+aj—j2) (w+ 2a;)(w + a;) '

Remark. This theory does not predict the location of the discontinu-
ities of the state variables, but finds inviscid solutions as the limit of some
(real or artificial) viscous-heat conducting ones.
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4, BoUNDARY LAYER ANALYSIS

In this section we investigate what the boundary layer looks like near
the ends for the viscous boundary value problem,

u = A (u,we, x), (4.1.1)
—F(w), + A(u,w, x) + e(B(w)ws), =0, x in (0,1)
we(0) = wy, w(l) = w, us(0) =u, > 0. (4.1.2)

A boundary layer may develop at both endpoints of the boundary, only
for the w* solution of (4.1). This suggests that the inviscid limiting solution
of (4.1) for € = 0 might not solve the initial value problem for system
(2.10) corresponding to the inviscid transonic model, i.e., when boundary
data is prescribed at the inflow (or upstream) boundary.

For first-order quasilinear scalar equations with boundary conditions,
[BLN] give the correct way to write the boundary conditions for the
evolution problem,

For the stationary models, [HL] have analyzed the boundary layer for
the case of singular nonlinear Sturm-Liouville problems with coupling
effects as the corresponding ones to transonic flow through a nozzle.
There, they also indicate the form of the boundary layer based on classical
analysis of the layer.

Recalling that the current flow constant j is positive and following the
characterization presented in [HL], the solutions of system (4.1) tend to
inviscid solutions satisfying the corresponding system for € = 0, except for
possible discontinuities.

The interior discontinuities must keep the function F(w(x)). At the
upstream boundary x =0, (wg§ — wlF(w(x)) — F(w§)) > 0 for all w
between w; and w, continuous in x. At the downstream boundary x = 1,
(wi — wlF(w(x)) — F(w;)) <0 for all w between w; and w,. Such an
inviscid solution is called an asymptotic state because it represents the
large-time state of transient solutions of the time-dependent system with
given end states at x = + o (see Liu [L2]).

These boundary conditions can also be expressed in the following terms:
if the prescribed values of w, and w, are subsonic, i.e., w, and w, > 0, a
“subsonic” boundary layer may be formed in the upstream boundary,
which in our problem is at x = 0, and a “shock boundary layer” may be
formed in the downstream boundary at x = 1. That is, let w be the
limiting inviscid solution defined by (3.7); then the upstream boundary
limiting value

wy = leO w( x) must stay subsonic, ie,wy > 0. (4.2)

x>0
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On the other hand, the downstream limiting value w; = lim, _,, , . ,w(x)
satisfies either

W = w,;
or

wi <wf <0  with F(w[) < F(w}) = F(w,). (4.3)

That is, w|, if different from w, not only must become supersonic but,
further, stay below the conjugate value of w, by F(w).

A proof of this statement is given in [G1] with different arguments from
classical analysis of the layer. Indeed, as discussed in [G2], a discontinuity
which does not necessarily form at a distance € from the boundary is
undetectable with standard boundary layer analyses.

Similarly, for supersonic data, i.e., w, or w, < 0, we can state that at the
upstream boundary either

wg = lim w(x) = w,
x—0
x>0
or
wg >wi >0 with F(wg) < F(w{) = F(wy), (4.4)
and at the downstream boundary
wy = lim w(x) < 0. (4.5)
<l
Finally, we see that «¢ will have no boundary layer as
uy = lim u(x) = u(0) = u,, (4.6)
>0

where u is the limiting solution corresponding to the inviscid problem to
(4.1).

Next, we shall present a sketch of the proof of the above statement. For
complete details see [G1]. We use the formula obtained by integrating
Eq. (4.1.2),

F(we(b)) — F(w<(a%))
- fa’fi/z(“"wix) dr + e[(B(w)ws)(b) — (B(we)ws)a®)],

for points b¢ and a® at “both sides” of the forming layer, so that the
difference F(w;) — F(w)) is of order F(w*(b¢)) — F(w*(a*)), whose sign



VISCOSITY APPROXIMATING SOLUTIONS 157

can be controlled by choosing @ and b° carefully, depending on the
difference w; — w, (resp. wy — w,), so we can make the sign of the
right-hand side of

F(wy) — F(w))
- fi’i/z(u‘,w‘, x) dx + e( B(we)we)(b) — e( B(w)we)(a)
+[F(wy) — F(ws(w))] + [F(w(a%)) — F(w9)] (4.7)

either positive or negative.

The solution of the boundary layer points a¢ and b€ is done closer to w,
and w,, respectively, in the layer neighborhood of x = 1 (resp. with w,
and wgy at x = 0), keeping in mind that we want to estimate the sign of
F(w;) — F(w,) when w; — w, is assumed positive, or w; — w, is as-
sumed negative.

In fact, the factor [%.7(u,w€, x)dx is not essential since ./, is
uniformly bounded in e. The last two terms can be estimated by |#(w[)
— F(we(b9))| and | H#(w(a®) — H(w')|, so we must carefully see how to
control the sign of w; at the selected points a and b¢. Thus, the selection
of the point a° near w; is done after using the following lemma that
indicates how to control |#(w(a®)) — F(w;)l and e(B(wIwXa®)
jointly in a boundary layer region controlling how close a® can be to the
boundary value x = 1 so that, we still can choose b€ to the right of a¢ (i.e.,
close to x = 1) such that we can estimate the two remaining terms at
x = b".

We state the following lemma, whose proof can be found in [G1].

Lemma 4.1, Let w be the weak solution of problem (4.1) for e =0
defined as in (3.5) and let wi = lim, _, — w(x) (resp. wg =lim,_, +
w(x)). Then for every & > O there exists a positive number o5 = o(8) such
that, for any o < o; fixed there is €, = (), where the following holds: for
each € < ¢, there is x{ =x(e) € (1 — 0,1 —a/2) (resp. x{ = x4(e) €
(a/2, 0)) such that the pair (e, x5) (resp. (e, x§)) satisfies

0 1AW (xS — F(w ) <8/2 (resp. [H(w(xg)) — Flwi)l <
8/2) and

(i) either (BWHOWNxE) < c(8'2/a) (resp. KBwIwXxH)| <
c(8'/%/a)) or we can choose the sign of w at xf (resp. at x§); i.e.,

(B(w)yws)(x) >0  or  (B(w)wg)(x5) <0  (resp.at x§).

Remark. The role of o5 in this lemma is crucial, as a“ is chosen x{ for
€ < €y(0), 0 < o; means that each a° is in the boundary layer, but at a
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distance not less than o/2 from the boundary, so that the estimate of
wi(a®) is kept under control uniformly in € < €,(c), and then, either the
term e(B(w)wfXa€) converges to zero as € — 0 or we can choose its sign.

In addition to choosing a¢ = x5, € < €,(o, ) from the above lemma, b*
is chosen in (1 — o /2, 1] satisfying that w*(b) = w, (so it takes care of
the term F(w<(b)) — F(w,) and depending on the initial assumption of
the difference w, — wi and on the fact that #(w¢) is monotone in w*
and has a limit at any point x in [0, 1], we than have a given sign for
ws(b*). Therefore we are able to estimate the sign of the difference
F(w;) — F(w,) by estimating the equality (4.7).

Therefore (4.3) and (4.5) hold. With similar arguments it can be shown
(4.2) and (4.4) hold. Finally, it is easy to see by simple integration near the
boundary that (4.6) holds, as .~ (w<, w, x) is uniformly bounded in e.

We conclude this section by recalling that

w=n’T — k;

J

and

mj?
u=——+knT,
n

so if w¢ is producing a boundary layer downstream then w; < 0 with
Fwy) < F(w,) = F((n,,T,)), where n{T, — k,; > 0, then the resulting
inviscid solution (n, T) will have the property that

(n7 )Ty~ k, < (n¥)’ T¥ - k; <0, (4.8)

where (n},T}") are the supersonic conjugate values of (n,,T;) by the
momentum and energy fluxes satisfying

F((n;,T7)) < F((n},T7)) = F((n,,T))) (4.9)
and
mj? mj?
— +kn Ty = — + knT,. (4.10)
n, n,

That is, (4.8) says n; corresponds to a supersonic density and the shock
layer is characterized by (4.8)-(4.10). Similar results may be obtained at
the upstream boundary, and also the corresponding ones for supersonic
prescribed data.
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5. APPLICATIONS
Examples of systems of this kind of systems are

(i) Gas Flow Through a Nozzle Duct of Variable Cross Sections

This is a very well analyzed classical model in gas dynamics in a duct of
slow varying area that can be found in Courant and Friedrichs [CF] and
Liepmann and Roshko [LR]. The stationary model can be written as

A(x)
(nv), = - ) nv (5.1.1)
(n?+P),= - j((;:)) nv? (5.1.2)
(n(%—vz-f-e)u-{»PU) = —::I((‘:)) (n(%l)z'l'e)l}'{'PU), (51.3)

where A(x) is the duct cross section and n, v, P, and ¢ denote respectively
the density, velocity, pressure, and internal energy per unit mass of the
gas. The gas is assumed to be polytropic, i.e., P = (y — 1)ne.

It is easy to see that system (5.1) is a special case of system (1.1) when
the temperature T state variable is replaced by the internal energy e state.
In this case, m = (A(x))"%, k =y — 1 and a = y, where ¥ is the adia-
batic constant.

The transport problem for which these equations represent its station-
ary state have been extensively studied by Liu [L1], where he analyzes
nonlinear stability and instability, and Liu and Glaz [LG], where local
interactions of nonlinear waves are resolved through asymptotic analysis
and it is then used to construct a numerical calculation of the transonic
flow in the nozzle. Other numerical simulations and discussions have been
done by Glimm, Marshall, and Plohr [GMP] and references therein.

Since Eqgs. (5.1) imply that smooth flow remains isentropic along the
particle path (see Appendix), the weak shock (or relatively small sized
discontinuities for the pressure) model is given by a solution of a scalar
equation depending on the current j parameter, where then the pressure
is a given power of the density (P = (y — 1)n”). This case has been
treated analytically by Hsu and Liu [HL], where they study properties of
the solutions for the corresponding viscous regularized equation of the
form

ew' =f(u) —c(x)h(u), xe€]0,1]
u(0) = u,, u(l) =u,, (5.2)
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where f is convex, f(0) = f'(0) = 0. The function A(u) represents the
coupling of the source due to the geometry and gas flow, and c(x)
represents the strength of the source. There, they analyze the number of
solutions, their asymptotic shape for small e, and their stability and
instability when viewed as stationary solutions of the corresponding time
evolution equation. A small variation in the arguments used by the author
[G1, G2] shows that a solution u® of (5.2) converges pointwise and in L'(/)
to an admissible entropy solution with bounded variation of the inviscid
problem associated with (5.2) that arises at e = 0. It is also proven that the
solution (5.2) might form an upstream boundary layer and a downstream
shock layer, depending on the boundary data.

Strong Shock Stationary Transonic Solutions

In this section we prove the existence of solutions for the stationary
nozzle flow equations, associated with system (5.1), as a pointwise and
L'(I) limit of (artificial) viscous-heat conducting regular solutions of a
higher order system with appropriate boundary data.

Thus from (5.1) we obtain the system of equations,

A(x)nv = j = const (5.3.1)
Fi(n,e), = () +(y — 1)"6)
—A(x) j?
= A(x) A(x)n =S(n,e, x), (5.3.2)
2
Fy(n,e), = (;1-7(1-;)?+ye) =0=8,(n,e,x), (533)

where n and e denote density and internal energy per unit mass, respec-
tively, A(x) is the duct cross section, 1 < y < 3 is the adiabatic constant
and j is a constant parameter for the current flow.

We follow the steps developed in Section 2. First, we compute the
equation of the line where the jacobian d(F,, F,)/d(n, e) vanishes,

(y-1 | A2-v)
TSy R + yA*n’e|. (54)
As 1 <y < 3, denoted by
2-y
ML Clulk ) SO (55)

y—1
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the set of new state variables is
2
u= m + (y — Dne (momentum flux),
w = yA*(x)n’e — k; (sonic line equation). (5.6)

Therefore, proceeding as in Section 2, we express Egs. (5.3) in the new
state variables, for which we need to express the energy flux in terms of u
and w, that is, from

- — i2
Az(x)nu=j2+g-y—2(w+kj)=(y 1)(2 S

Y y—1
So
1 y—1
n=m( ” )[2aj+w] (5.7)
with
j2
@ =7 =kt (5.8)
and
2
Fy(n,e) =A2(x)u2—(——-—1—)—2(2aj + w)z(aj + w). (5.9)
y —

Hence, denoted by

F(w) = — % (5.10)
w) = —L—, .
(w + 2a,)
system (5.3) becomes
, u
ux= —(ln A)yajm (5.11.1)
y 2
{(-y—_—lA(x)) uzF(w)} = (. (5.11.2)

Next, we see that the system uncouples as the equation of conservation of
energy becomes independent of the momentum flux variable u. Since
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(5.11.2) can be written as
(F(w)),u?A(x) = —2F(w)[u?A(x) A (x) —uu,], (5.12)

then, replacing the value of u, in (5.12) by Eq. (5.11.1) and dividing by
u?4%(x), (5.12) becomes

(F(w)).

~2(In A)'F(w)[l - "27}%]

2aj+w

w+k;
—2(In A)'F(w)(m--’—).

Finally, in order to obtain a physically consistent model we define

2(In AYF (JZ"_)
Sy(w.x) =1 (In AVFC) 20, — +w | T (5.13)

0, w < —kj.

The reason behind this cutoff term comes from the consideration that the
equations of motion are defined for physical state variables p and e
nonnegative, so that p%e > 0. In particular the relationships given for the
source terms, as well as the flux F(w), written in the new variables (5.6),
are not defined for w < —k,.

Therefore, S,(w, x), defined in (5.13), continuous for all w, is consistent
with the physical problem under consideration. Thus, system (5.3) be-
comes

u, = —(In Ay u=35(u,w,x) (5.14.1)

Y
(2a.+w)

/

F(w), = 83(w,x) (5.14.2)

through the change of state variables defined by (5.6), with F(w) given by
(5.10), Sy(w,x) by (5.3), and k; =j*((2 - y)/(y — 1) and a, =k, +
=ity =,

Note that system (5.14) has exactly the same fluxes as the one used
throughout Sections 2 and 3, as well as the property that the density n,
given in terms of the new variable u and w by (5.7), is monotone in w. See
that the graph of F(w) is the same as the one pictured in Fig. 1. Hence,
we have a system with the same characteristics and properties as the one
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we worked out through Sections 2 and 3. This motivates us to choose a
class of viscosity-heat conducting terms of the form e(B(w)w,), satisfying
B(w) > 0, B'(w) < 0. Indeed we shall see immediately that the boundary
value problem

Ya;

u, = —(ln A) —(-2—411-4-—1;)—”

(5.15.1)

E‘(w) = —F(w), + S)(w,x) +e(B(w)w,), =0 (5.15.2)
u(0) = uy, w(0) = wy, w(l) = w,, € >0, (5.15.3)

with the particular choice B(w) =< w8 B > , 1, as w becomes large, has a
solution w*, u¢ such that

lus, us,we, ewell. < &
and

0 < U, <us, —k; <w, uniformly in /,

where « and U, depend on ug, wy, w,, A(x), and v, independently of the
viscosity measure e.

Once this bound is obtained, we can use the existence Leray-
Schauder-type theorem 3 and, consequently, the limiting process devel-
oped in Section 2 to find an “inviscid” solution pair (u,w) of problem
(5.15), where u is a classical regular solution and w is a function with
bounded variation and a generalized solution satisfying the entropy condi-
tion that makes w increase across a discontinuity in the open interval (0, 1)
so w is a weak entropy solution. However, w might cavitate; i.e., there
might exist an x, € I, where w(x,) = k; (note that the value —k; is a
stationary point for the first-order ordinary differential equation (5.14.2)).
Also, the limiting process is expected to develop boundary layers when
solving a boundary value problem, as discussed in Section 4.

e-Uniform Bounds for the Gas Nozzle Flow Equations

Thus, all we need to show is that we can find a e-uniform invariant
region by proving a result equivalent to the comparison theorem 1.
Actually, due to the decoupling of the system in (u, w) variables Assump-
tion & can be replaced easily by having a priori bounds on u which will
depend on w and on finding e-uniform super- and sub-solutions for the
scalar equation E€(w) = 0, so that a comparison theorem will follow
immediately. We shall restrict ourselves to duct models where either
A'(x) > 0 or A'(x) < 0 throughout the interval [0, 1].
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Lemma 5.1 (A priori bound for u¢). Let (u¢,w) be a solution of the
boundary value problem (5.15), where —a; <m <w® <M < » in [ for all
€, then

IfA'(x) > 0, then u® is monotone decreasing and
0 < uy( A(0) /A1) < u <uyinl. (5.16.1)
If A(x) <0, then u® is monotone
increasing and 0 < ug < u® < ug( A(0) /A(T))? inI. (5.16.2)
Proof. From (4.13), u* is a solution of
A(x) yq

Inu), = - :
(NS = = 45) 2a, + v

u(0) = u,.

Since —a; <m <w* <M and ya {A(x)2a; + w*)} > 0 in I, the mono-
tonicity of u as a function of x depends on the sign of A'(x). Therefore, if
A{x) > 0in I, u is decreasing and

A@y AW ve o A) e,
Ax) 25 7 A(x) 2a, 4 m = I0H)eS

A(x) 2, + M’

Integrating in x and taking exponentials, the bound

v/2 /2 va;/Qa;+M)
UO( A0 ) < uo( 40(0) ) <uf(x) < uo( A0) ) < u,

A(1) A(x) A(x)
(5.17)
holds uniformly in 7 and in € as A(0) < A(x),
Similarly, if A'(x) < 01in I, u is increasing and u has the bound
uy < u(x) < uy( A(0)/A(1))""? (5.18)

as A(x) < A(0), uniformly in / and in e.

Next, we want to find e-uniform upper and lower bounds for the w*
solution of the boundary value problem, taken from (5.15.2), rewritten as

E(w) = - S(w,x) +e(B(w)w,), =0, x€l,

—_— W,
2a; + w)3
—k; <w(0) =wy, w(l) =w, <B (5.19)

with S,(w, x) given by (5.13).
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In fact, due to the form of S,{w, x), we find that a lower bound is given
by the value —k;, which is the first stationary point of S,(w, x) to the left
of the min{w,,w,}. The lower bound is e-independent and does not
depend on the sign of A'(x) (that is, if the duct is convergent or
divergent).

LEmMMA 5.2 (e-uniform lower bound for w€). Let w® be a regular
solution of EAw) = 0 in I, with boundary data satisfying —k; < w(0) =
wo, w(1) = w,. Then

we> —k.. (5.20)

J

Proof. Assume that min,w* = w*(x,) < —k;. First, x, cannot be on
a1, as the prescribed data is bigger than —k;. Next, if x, is an interior
point, then wi(x;) = 0. So, let us denote m = w*(x,) and v* = w{, and
rewrite the second-order equation E (w®) = 0 as an initial value problem
at x, for the ODE system

wx=Lv

Ve = eB(w) {F,(W)L" - B'(w)v? - Sz(w,x)} (5.21)

with initial data w(x,;) = m and v(x,) = 0.

Then, by the classical unicontinuation ODE theorems (5.21) has a
unique solution in [x,, 1]. Since w® = m and v€ = 0 solve (5.21), they must
be the unique solution, in particular, w<(1) = m < —k j» which contradicts
that w¢ is a solution of the boundary value problem E (w)=0,
w(D,w(0) > —k,.

Next we look for e-uniform upper bounds. First, we need to find a
one-parameter family of upper barrier functions to the solution w¢ of the
boundary value problem (5.19). They will depend on the sign of 4'(x).

Afterwards, we prove a comparison theorem, equivalent to Theorem 1,
from Section 2, so that we obtain the desired uniform bounds for the
solution pair (1€, w¢) of problem (5.15).

Lemma 5.3 (Divergent duct, 4A'(x) > 0). Let w® be a solution of the
boundary value problem (5.19). Any constant function Py(x) =M >
max{w, w,} > —k; is an upper barrier function to w*.

Proof. The constant function P,,(x) = M in I is a supersolution of the
operator E (w) = 0, since A'(x) > 0and M > —k; imply §,(Py,(x), x) <
0 throughout the interval /. In particular, E(Py) < 0forall M > —k;, so
that P,,(x) is an upper barrier function to w¢ if M > max{w,,w,}.



166 IRENE MARTINEZ GAMBA

Next, we analyze for A'(x) < 0. In this case the constant functions are
not supersolutions any longer; nevertheless we find an e-uniform one-
parameter family of variable dependent supersolutions for the equations
E_(w) = 0, where the family of viscosity terms e(B(w)w,), satisfies B(w)
< w P B =1, as w became large (5,(w, x) as defined in (4.11)).

This particular choice is related to the asympototic behavior of the flux
function F(w) and the source term S,(w, - ) at infinity.

LemMMma 5.4 (Convergent duct, A'(x) < 0). Let w® be a solution of the
boundary value problem (5.17), where B(w) < w™f B > 1, as w becomes
large. There is a positive constant M* such that PM(x) = Me M1 js an
upper barrier function for we in [0, 1], for all M > M*.

Proof. Since we need to control the solution w¢ from above, we look at
the asymptotic order at infinity of each term of the operator E_(w).
Indeed, F(w) = (w + a))/(w + 2a;)" < 1/w, F'(w) =< —1/w?, and
S, (w, x) = —2A(x)/A(x)1/w), as w becomes large. (S,(w, x) is as
defined in (4.11).) Therefore, we shall see that, for a sufficiently large M,

£ PM( < Eo( pM )) PXM A(x) 1 + PXM <o
< X = - 7
e( X)) e( ( (PM)2 A(x) PM € (PM)ﬂ )
(5.22)

and PM(0) > wy, PM(1) > w,.

Construction of P™(x). First we need to find a supersolution w to
EZ(w) defined in (5.22). We try with

W=Me Bs-D> M  inf0,1],

where M and B positive are to be chosen appropriately. Since w, =
—~MBe 5~ and w,, = MB%e~8~D_evaluating on E’(w), we obtain

MBe—B(x—l)
- M2e-2BG:—1)

—A'(x)
A(x)

E*(W) = +2

)MeB(x- 1)

~ €B(Me~Bx=0) Pl MBe 8-y

+ e(Me By P prp2e-Bx—n
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Then EX(w) < 0 if and only if wAE?(w) < 0, so that

- —-A'(x) -
—Brag =y _ _ ~B(x—1))B ! —B(x—1)yB~1
wPES (W) (Me ) B+2( A0 )(Me )
— €BB*Me P~ 4 eMB?e~ PP
- —-A(x)
= (Me=Be-0)P7Y _p ol -T2
(Me ) (1)
+ €[l — B]MB*Me 3D,
Now, since A'(x) < 0, we choose
Msmax<sup{—(ln A(x))x};w(O);w(l)}. (5.23)
1

Thus, since 1 — B8 <0,
Es(w) < (Me~ 80" [_p 1+ 2M] <0
if B > 2M. In particular,
W= Me 3Mx—D = pM(y)

is a supersolution of E?.

Now, we take M* large enough such that E(PM") < EX(PM") < 0.
Since PM(x) > M, by (5.23) we have that PM(x), with M >
max{M*, max{sup,{ —(In 4) .}, w(0),w(1)}} is a one-parameter e-uniform
upper barrier family of functions of E (w), and, in addition,

PM(x) > =  as M — o uniformly in [0, 1]. (5.24)

Property (5.24) (similar to condition (2.12.1) for P(x)) is fundamental to
deriving the comparison result.

Finally, we present the comparison theorem in order to obtain the
uniform bounds for the boundary value problem (5.15), the viscous regular
approximation to the gas nozzle flow equations.

THEOREM 5.5 (e-uniform bounds). Let (u,w¢) be a solution of the
boundary value problem (5.15); then

0<lU;,<su <k

—k; <w <k uniformly in [0, 1], (5.25)

where U, and k depend on uy,wy,w,, A(x), and vy, but are independent
on e.
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Proof. Due to the nice decoupling of the nozzle duct equations, first
we show that w* is uniformly bounded. The argument to find the upper
bound for we is exactly the same as that used in Theorem 1, case (iv), in
Section 2, since by Lemmas 5.3 and 5.4 we have a one-parameter family of
functions P™(x) supersolutions of E<(w) for either divergent or conver-
gent ducts, such that P¥(x) — « as M becomes large uniformly in [0, 1].
Therefore, there exists an A* large enough with

we < P4*  uniformly in [0,1],

and P**(x) depends on wy,w,, A(x).
Adding the result obtained in Lemma 5.2,

—k; <w<<P*  uniformly in [0, 1], (5.26)

independently of €.
Now, we are in condition to apply Lemma 5.1, the a priori bound for u¢,
so that

0<Uy<u*<U, uniformlyin [0,1] (5.27)

where U, and U, depend on u,, A(x), v, independently of e. In particular,
(5.25) holds, taking x = max{P“",U,}.

Remark. Neither the upper uniform bounds nor the lower bound of u¢
depend on the current parameter j. This observation would facilitate
showing the expected behavior of the flow; as the current parameter goes
to zero the flow would remain subsonic (as w¢ would remain bounded by
0 < w*€ < k), so that the inviscid limiting solution would not admit discon-
tinuities.

Inherited Properties for the Inviscid Solution

First, as stated before, using the existence results of Section 2 and the
limiting process of Section 3 we can have an admissible solution (u, w) to
the inviscid (5.14) in (0, 1); that is, w is a weak solution of (5.14.2) that
satisfies the entropy condition, as stated in Section 3, which is a pointwise
and L'(I) limit of w¢, solution of the boundary value problem (5.15),
where w*® is a family of e-uniform bounded variation; that is, w* has
derivatives e-uniformly bounded in L!'(I) and in particular, the limit
function w has derivatives bounded in L* and L'-norm. In particular, u
and w inherit the bounds of u® and w*.

Therefore, using the change of variables given by (5.6), we obtain that
the pair (7, ¢) is a weak solution of the stationary inviscid nozzle gas flow
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(5.3), where n and e are given by

"=A2—(lx)_u(l;_l)(w+2yj—1) (5.28.1)

ezmuz((w+&:ﬂ)/(w+ 2" )) (5.28.2)
(r=1) vl vl

In particular, (n, ), defined as above, satisfies the entropy and jump
conditions across the discontinuities, as is shown in (3.12), (3.13), and
(3.14). Therefore, (n, e) is an admissible inviscid stationary solution of
nozzle gas flow system (5.3).

Finally, we state the following theorem regarding the regularity of the
inviscid solution (n, €), defined as above, and the formation of boundary
layers, depending on the kind of boundary data.

and

TueoreM 5.6 (Divergent duct; A'(x) > 0). Let n and e be the inviscid
density and internal energy (resp. solutions) of (5.3) given by the transfor-
mation (5.28), where (n,w) is the limit solution of problem (5.15) for e = 0,
as defined in Section 3 and the theorems therein:

(i) If the boundary data n,, n, and e,, e, is such that w(0), w(1) < 0,
with w(x) = yA%(x)n’e — j%(2 — y)/y — 1 (i.e., supersonic data). Then n
and e are continuous functions of x and 0 <n < N and 0 < e < E, with
yAX(x)n%e <j22 — y)/(y — 1) in I. So, that n is a supersonic continu-
ous solution and no shocks are admissible, there is no upstream boundary
layer for the viscous solution, but an downstream supersonic layer might
develop.

(ii) if either boundary conditions on n and e at x = 0 or 1 is such
that w(0) or w(1) > 0, then n and e might be a shock solution, and
O<n <N and 0 <e <E, and a boundary layer may develop at the
upstream boundary and a shock layer, at the downstream one.

Proof. Let (uf,w*¢) be the solution of the boundary value problem
(5.15), where the data is given by u(0) = j2/A*(0)ny + (y — Dngye, = uy,
and

we(0) = yA2(0)nje, _jz_y 1 Wo»

L2
wé(1) = yA%(1)nle, —ﬂ——y —1 =W
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then (u¢,v€) converges pointwise and in L!({) to (u,w) there is an
admissible solution of (5.14), so that (n,e), as defined by (5.28) is an
admissible solution of (5.3).

First, using Theorem 5.5 we have that (u€, w¢) is e-uniformly bounded
as in (5.25), where the form of the bounds are given in Lemmas 5.1, 5.2,
5.3, and 5.4, respectively. These bounds are inherited to (i, w) straightfor-
ward and to (n, e) through the relation (5.28).

Since A'(x) > 0 (divergent duct model), by inequality (5.16.1) on Lemma
5.1, u monotone decreasing and controlled by

A(0)

v/2
m) <u(x) <u, inp[0,1].

(5.29) 0< uo(

By Lemma 5.2, we know that w® > —k; for all €, so at most we can state
that w > —k . This particular, lower bound says that n%e > 0, so that the
inviscid solution might have a point x, in (0, 1) on which it cavitates by
either n(x,) = 0 or e(x,) = 0. Actually, this effect can happen in either
form of duct.

Next, from Lemma 5.3 we have that M = max{w ,w/) gives an upper
bound for w¢ and also for w(x).

At this point we break the analysis into case (i) with supersonic data and

case (ii) with subsonic data at least in one of the end points.

(i) If w, and w, are negative then w® and w satisfy
—k; <ws, w<M<0 in [0,1)uniformlyine. (5.30)

In particular, F(w) is monotone increasing as a function of w in[—k;, M],
and a Lipschitz function of x on [0, 1], therefore, is invertible and the
inverse is also a continuous function of x. So w(x) must coincide with
F~ Y F(w)Xx); hence, w(x) is a continuous function of x. As an immediate
consequence, by relationship (5.28) we obtain that the density n and
internal energy ¢ are a continuous function of the space variable in [0, 1],
and the bounds

¥/2 _ -2
0<n<dD)_ -1 (M+ 2 ) N (5.30.1)
y(A(0)) v Uy y—1
and
2 2n
0<ex< A,z(l)uo(M + M) =FE (5.30.2)
iy y—1

hold, where M = max{w,,w,} < 0.
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Also, from (5.26) n and e satisfy
.2 2 _
0 < y(n?e)(x)A*(x) < ]—(———y—)
Y

— (5.31)

for x €[0,1], so (n,e) is a supersonic continuous inviscid solution. In
particufar, applying the results from Section 4, this solution cannot have
an upstream shock boundary layer, but it might develop a downstream
boundary layer that would remain always supersonic.

(ii) If either w, or w, is bigger than zero (i.e., are subsonic values)
then we obtain that

-k;<ws<M inf0,1],

but M is not necessarily negative, then F(w) loses monotonicity on
[—k,, M]. Hence w might admit a jump discontinuity, making the density
jump, increasing its value across the jump. Therefore bounds from (5.30)
for n and e still hold, but no longer (5.31). In particular, the boundary
layer is admissible at both boundary points. At the upstream boundary the
layer is supersonic or subsonic depending on the sign of wg, and at the
downstream boundary a shock layer might develop, as described in Section
4, as classified from (4.2) through (4.6).

ThHeoREM 5.7 (Convergent duct, A'(x) < 0). Let (n,e) be given as in
Theorem 5.6. Then for any kind of boundary data ng, n,, e, and e, given,
(n, e) might admit shock discontinuities (satisfying the entropy conditions)
and are bounded by

y—1
< ——
7A2(1)u0

(PM(x)+2 4 1) (5.31.1)

y -

and

A0 (AN Ly, P2
OSES*?E;—uO(m) (P (x)+T—1——) (5.31.2)

As in Theorem 5.6(ii), boundary layers might develop at both endpoints, as
clarified therein.

Proof. The proof differs from that in Theorem 5.6 only in the upper
bound for w and the formula for n. We use here Lemma 5.1 and
inequality (5.18), so that u is bounded by

A©

v/2
A(l)) , in [0,1].

0 <uyg<u(x) Suﬂ(
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Now, from Lemma 5.4, if M > M* (M* from that lemma), then
—k; <w(x) <PM(x) = Me M < MM,

Therefore, using relationship (5.28) with the above bounds for u and w,
(5.31) holds, and u and e might become transonic.

We pass to the next application.

(ii) Energy Transport or Hydrodynamic Models for
Semiconductor Devices

These models treat the propagation of electrons in a semiconductor as
the flow of a charged, heat conducting gas in an electric field. This electric
field E is given by the Poisson equation

(ed,), = —a(C(x) —n), E=-¢, (532)

where ¢ is the electrostatic potential, £ the permitivity of the medium, g
the space charge, and C(x) represents the given “doping profile” function
(usually the model as a piecewise constant time independent function).
System (1.1) would model a stationary electron gas flow in a device
where the constitutive relations are characterized by the isotropic/para-
bolic energy band assumption and the heat conduction and viscosity /dif-
fusion effects are neglected, coupled with the Poisson equation through an
external force term contained in S,(n, T, x) and S,(n, T, x) given by

qnu = j
m {on
F(n,T),=8(n,T,x) = —gqnE — ——(—) (5.33.1)
q\aot],
ow
F,(n,T),=S8,(n,T,x) = —Ej - (a_t) , (5.33.2)

where (dn /dt), and (dw /3t), represent the contributions of the collision
terms which are usually approximated in terms of momentum and energy
relaxation times, and A(x) = g, the space charge constant in Eq. (1.1.1).

The hydrodynamic model (5.33) for semiconductor devices was first
proposed by Blotekjaer [B], where he obtains the transport equations as
the first three moments of the Boltzmann equation. There, the moment
expansion is closed at three moments by assuming the Fourier law for heat
conduction q = —«x VT, where « depends on the state variables and
physical constants. Actually, in semiconductor device modeling there is no
agreement on how the term q, which corresponds to a nonconvective
energyflow coming from the third moment expansion of the Boltzmann
equation, should be modeled. For some references regarding work done
on this model see Baccarani and Woderman [BW], Fatemi, Jerome, and
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Osher [FJO], Gnudi, Odeh, and Rudan [GOR], Gardner [Grl, Gr2],
Jerome and Shu [JS], Odeh and Rudan [OR], where several numerical
simulations and discussions have been carried out. These numerical simu-
lations show that the model produces undesirable velocity “overshoots”
(i.e., peaks in the velocity state variable ¢v) which are very sensitive to the
change of some constants on the factor x (see [GOR, JS] for a detailed
discussion on the matter.)

Energy transport models that do not neglect convection terms differ
from the hydrodynamic one in the formulation of the constitutive relation-
ships for the state variables. They have the fluxes F(n,T) and Fy(n,T)
defined differently from (1.1), but they might be treated in a similar way as
a nonlinear system of ordinary differential equations that admit shock
solutions of the same kind of system (5.32), (5.33) (see [SOTG)).

However, no analytical results over existence and well posedness on any
of these models have been presented so far regarding the full system of
Egs. (5.32)-(5.33), with a heat conduction term modifying (5.33.2) and
appropriate boundary data.

In the case of autonomous systems (i.e., no dependence on x), for
instance, a case of constant doping profile and collisionless model without
heat conduction, a phase portrait analysis was carried out by Markowich
and Pietra [MrPr]. However, elementary examples show that these solu-
tions may differ from those obtained by a vanishing viscosity method.

We show here that for the system (1.1)-(5.32)-(5.33) with an appropri-
ate term B added to (5.33.2), along with the appropriate boundary data,
the resulting boundary value problem will have a regular solution provided
L™ bounds are found for all state variables. Such a B will depend on n and
T and its first and second derivatives, so the term B will be a diffusion—heat
conducting second-order term.

The L~ bounds of the state variables will depend very strongly on the
form of this second-order term as well as how the force-collision terms §,
and S, are modeled.

Nevertheless, these models have been treated analytically in the case
when the collision terms satisfy that

(%)C—u(i—?)csom [0,1]. (5.34)

Relationship (5.34) is a sufficient condition to have the property that
smooth flow becomes isentropic along a particle path. In particular,
collisionless models would correspond to smooth isentropic gas flow mod-
els reducing the system (5.33) to a scalar equation for weak shock models
(see Appendix 1). Again, as in the previous example of gas flow in a nozzle
duct, a reduced system from (5.32)-(5.33) to an inviscid scalar equation for
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the density n, with the pressure modeled as a function of the density only,
including collision effects and neglecting heat conduction, coupled with
the Poisson equation, would be an appropriate model for solutions that
admit weak shocks, that is, discontinuities in pressure and density with a
relatively very small jump in size. Such a system has been treated analyti-
cally by Degond and Markowich [DM] and the author [G1, G2], for the
prescribed boundary data. In [DM] an existence and uniqueness result is
obtained under the assumption of smallness in size of the data which must
result in a small current flow j/g and low velocities that keep the flow
subsonic in the whole interval. In {G1] an existence result is obtained
without any assumption on the size of the data, hence, allowing the flow to
become transonic in different regions of the interval [0, 1]. There, the
solution pair (n, ¢), depending on the parameter j, is found as a pointwise
limit of the diffusion-regularized boundary value problem when en,, is
added to the corresponding scalar equation (¢ being the “diffusion”
measure). The limiting “inviscid” solution is an admissible entropy solu-
tion in the classical sense.

In particular, the density n is found to be bounded away from cavitation
and away from infinity, and hence, the corresponding velocity is also
bounded away from zero and from infinity.

In [G1] and {G2] the boundary layer is analyzed when the prescribed
data is given by the value of the density n at both end points and the
electric field £ = —¢, is prescribed inflow. It is shown that the corre-
sponding boundary value problem might not be well posed, if the flow is
allowed to become transonic (i.e., if the parameter j is not sufficiently
small).

Assumption of an L*-Bound; existence Result of a Regular
“Viscous” Solution

We consider the system given by the Possion equation (5.32) and the
motion equations in steady state (5.33), where a second-order term has
been added to (5.33.2).

We transform this system into a new one by the transformation given by
the change of state variables (2.2), so that the associated boundary value
problem becomes

(ed,), = —q(c(x) — n(u,w)) (5.35.1)

u, =S (u,w, E, x) (5.35.2)
F(w), — S,(u,w,E, x) —e(B(w)w,), =0, xe&l=(0,1),

(5.35.3)

$(0) = ¢, o(1) = ¢, u(0) = uy, w(0) = wy, w(l) = wq.
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where the term (e Z(w)w,), is the one corresponding to the one trans-
formed from B and which accounts for the diffusion and heat conduction
effects, so that ¢ is the measure of diffusivity and heat conductivity. The
constant current flow j is a constant parameter involved in this system.

Here the argument developed in Section 2 as Assumption & and the
comparison theorem 2.1 must be modified. Still we anticipate that once a
result on how to bound the solution E*, u®, and w*® of the above boundary
value problem is achieved, then Lemma 2.2 and the existence theorem
follow. Therefore, we assume that the boundary value problem (5.35) has
L”-bounds.

Assumption B (A priori bounds; existence of an invariant region.). Let
Q:;, i =1,...,6, be differentiable functions of x defined in /. Let E*, u®,
and w® be solutions of problem (5.35). Then

—e<Q, <E*<Q, < (5.36.1)
0<Q;=su <0, < (5.36.2)
—k; < Qs <wf < Q¢ <o, (5.36.3)

E

Tueorem 5.8. Under Assumption B, there exists a solution E*, u®, and
w® in C%'(I) of Egs. (5.35) with prescribed boundary data E*(0) = E,,
u(0) = uy, wo(0) = wy, and w(1) = w, with Ey, u,, w, in the range of the
bounds from (5.36), such that E*, u*, w* satisfy (5.36) and llew?|| ;- < Q,, O,
a positive finite constant.

Proof. Assumption B provides the a priori L*-bound to use Lemma 2.2
and a fixed point theorem argument.

Indeed, Lemma 2.2, Theorems 2.2 and 2.3 are valid, with a simple
modification that consists in adding Eq. {(3.5.1) in the construction of the
operator T;(¢) in Theorem 3.2, so that for each &, there exist functions
E®, uf, and we in C®Y(]) (i.e., with at least bounded first derivatives) such
that they solve system (5.35) and have bounds (5.36), which do not need to
be e-independent in order to grant the existence of a regular diffusion
heat conducting solution.

As an immediate consequence of Assumption B and Theorem 5.8, there
is an existence result for solutions of a regularized system associated to
(5.32)—(5.33). We state this result as a theorem.

THEOREM 5.9. The system (5.32)—(5.33), where (5.33.2) is replaced by
Foy(n,T),=S,(n,T,E,x) + e(B(w(n, T)w(n,t),), (5.37)

with boundary data prescribed for ¢ (0) = E;, (1) = ¢, n(0) = ny, n(1)
=n,, T(0) = Ty and T(1) = T, has a solution ¢, n, T in C*(I) (i.e., with
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at least bounded first derivatives), with ¢(x) = [ “E(x)dx + ¢,, and the
bounds for ¢, n, and T will depend on the bounds Q,,i = 1,...,6, and the
transformation of the state variables (2.2) satisfving

Ky

IA

—d < K,

0<Ky<n<K,<x

0<K;<T< K <.

Remark. The bounds solution ¢, n,T depend on the measure of the
diffusion-heat conducting parameter ¢ of the higher order term in (5.37).

It is not clear, from the theory of semiconductor device modeling, that
there is an interest in the behavior of inviscid not heat conducting
solutions. However, it might be not very difficult to find bounds for the
solution of the regularized problem Q;,i = 1,..., 6, from (5.36) which are
independent on ¢ and ultimately if the interest in inviscid solutions
becomes relevant, then it is necessary that the bounds in Assumption B
are uniform in the measure of the diffusion—heat conduction parameter ¢.

We stress that achieving a physical meaningful bound for E¢, «*, and
w*, either uniform or not, in ¢, would result in the impossibility of velocity
“overshoots” coming from the model, with a viscous-heat conducting term
that satisfies the above equations after the change of state variables has
been performed, as the bounds for # and w* should lead to a bound for
n® away from cavitation.

Still, if the inviscid limit is taken, the weak admissible solution could
produce shocks in density and temperature, but a velocity overshoot is not
admissible (by velocity overshoot we mean that the velocity becomes
unbounded at a value x, in the interval of definition 7).

Finally, under Assumption B we set the conditions for existence of an
inviscid solution to problem (5.32), (5.33).

THeorEM 5.10 (Existence of an inviscid admissible solution). In addi-
tion to Assumption B, let Q,,i = 1,...,6, be c-independent as well as Q,
from Theorem 5.8. Then there exists an “inviscid” solution ¢, n, and T to
system (5.32)-(5.33) which can admit shocks in n and T satisfying the
condition that n and T increase across the discontinuity in the direction of
the particle path (i.e., n and T are admissible entropy solutions).

Proof. Under Assumption B, Theorem 5.8 and the e-uniformity of the
bounds, all theorems and results of Section 3 can apply, with the minor
correction of adding the transformed equation from (5.32), or equivalently
E, = So(u,w, x) to problem (2.10). Then, the regularity of E is the same
as the regularity of u in Theorem 3.4, the existence theorem of an inviscid
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solution. Theorem 3.5 (the entropy condition) also follows immediately, as
well as Lemma 3.6 and the conclusion (3.15), (3.16), and (3.17).

APPENDIX

The equations of motion for a one-dimensional fluid flow modified by
the presence of external forces or sources arising, for example, from a
collision term in statistical mechanical theory, read

Pt (pv), = A (A.1.1)
(pv), + (pv? + P), = S (A.12)
(3pv% + pe), + {(3pv? + pe + P)v}, = A, (A.1.3)

where p denotes density, v is velocity, P is the scalar pressure, and
e = e(P, p) in the internal energy. The first equation is conservation of
mass. The second and third represent the conservation of momentum and
energy, respectively.

The force-source terms ./, /%, and 3 are functions depending on
the state variables p, v, P, and e, on the space variable x and on the
physical parameters involved in the model of flow equations (A.1) repre-
sent, but do not depend on any gradients.

Taking into consideration the thermodynamic relations, we assume that,
for smooth changes of pressure, the absolute temperature T = T(P, p),
and the entropy S = S(P, p) are states defined by the differential relation

TdS = de + Pdr (A2)

with r = 1/p the specific volume. In particular, for smooth flows the
system of equations (A.1) and relation (A.2) lead to a differential equation
for the entropy state variable S that reads

DS v? P
pTBt-'=—(/q —?+e+; —UL/Q‘F../S. (A3)

Hence, whenever the right-hand side of (A.3) vanishes along the interval
of definition (in particular, in the absence of force-source terms) or is a
function of § with at least one zero, Eq. (A.3) says that the entropy
remains constant along the particle path whenever the state variables are
smooth functions of the space variable x, if the initial data is a stationary
point of (A.3).
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Remark. (i) We note here that the transport equations of nozzle gas
flow associated with (5.1), as given in [CF, LP], have source effects mod-
eled such that they make the right-hand side of (A.3) vanish. So, smooth
gas flow in nozzles is isentropic along the particle path. In particular,
stationary nozzle flow, modeled as in (5.1), must satisfy that the entropy
state variable is a piecewise constant function of the space variable x.

(i) In the semiconductor device model that arises from taking mo-
ments of the Boltzmann equations (.e., Eqgs. (1.1), (5.32), (5.33), the term
- = 0 and the terms ., and . include the external force induced by
the electric field and the effects of collisions (see (5.33)).

It is easy to verify the collisionless models of the above type have
smooth isentropic flow as the force exerted by the contribution of the

electric field in the momentum and energy equation always satisfy that
U./E = Lﬂ

For those points (x, t) where the flow will not be smooth, the second
law of thermodynamics states that the entropy (or, equivalently, the
pressure or density) must increase along the particle path. Hence, the
system under consideration involves p, P, e, T, and § state variables of
which only two of them are independent and the rest can be expressed as
functions of these two.

It can be shown, from Egs. (A.1) and (A.2), that the changes of entropy
at dicontinuities are of third order with respect to changes in pressure or
density. This result is due to Lax [Lx] for any general system of conserva-
tion laws. Hence, a change in pressure relatively small in size at a
discontinuity from values P~ to P* would make the entropy almost
constant throughout the flow.

Therefore, the pressure P would be modeled as a nonlinear function of
the density only, reducing the one space dimensional system of equations
of motion (A.1) to a 2 X 2 system model for velocity and density state
variables (well known as a P-system). In particular, an appropriate model
for stationary flow becomes the scalar equation

mj? )
5 TP =S(p.J).
Therefore, for those gases that obey the ideal gas law

P =kpT, (A4)
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where k is a constant, it follows from (A.2) that the internal energy e must
be a function of T alone, i.e., e = e(T).

In fact, for an ideal gas e is a function of P/p. The form of this function
could be left open, but we take a formula that arises in considerations of
the specific heats which covers a wide range of phenomena in gas dynam-
ics. That is,

P
e=c,T and h = (e+——) =c,T,
p

where ¢, and c, are the specific heat at constant volume and pressure,
respectively. In particular the quantity 4 is the enthalpy. The motivation of
the present paper is to find steady state solutions for the stationary system
associated with system (A.1) for a gas that obeys an ideal gas law with
constant specific heat and for some particular force-source terms which, in
addition, are time independent. These considerations lead to a system of
the form

(A(x)pr)=Jjx =0

mj?

—- +keT| = A(p.T.4 %) (AS5)
j(mj? )
3 —p7+h = A(p,T,J,x),

where h = aT, with « constant and m = m(x). This is the system we have
considered in (1.1).

However, an equivalent system would arise for a different pressure law
and /or different constitutive relationships among the state variables. That
might be the case of different energy transport models. In such a case the
momentum and energy fluxes appearing in (A.5) might be different func-
tions of two independent state variables, in which case there is a possibility
that the methodology of the present paper might work, depending on how
the equation of the “sonic line” is, and, if the fluxes can be decoupled in a
new set of state variables,

Before concluding this appendix, we want to point out that for an ideal
gas with constant specific heat, using the thermodynamic differential
relation (A.2) we can express the pressure in terms of the density and the
entropy, that is,

P = kp? exp{S/c.},
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known as the polytropic gas law. Thus, the enthalpy A becomes
h=vyp" 'exp{S/c,}.

Hence the stationary one-dimensional equations of motion, expressed as
in cases considered under system (A.5) become

(A(x)pr),=j, =0
-2
(m% + kp” exp{S/c,‘}) = A(p,exp{S/c.},J, x) (A.6)

. .2
J J .
5 (m;i + yp? ! exp{S/c,,}) = A(p,exp{S/c,}, i, x).

We use system (A.6) at the end of Section 3 to show, by a similar analysis
to that for system (A.5) in Sections 2 and 3, that admissible inviscid
solutions of (A.6) might have the entropy given by

P
S=c, logk—p:’- + Sy, (A7)

is discontinuous at some values of the domain, where the density p (and
pressure P) are discontinuous.

For references on this appendix see Courant and Friedrichs [CF],
Menikoff and Phlor [MP], Zel’dovich and Raizer [ZR], and Liepmann and
Roshko [LR] for a complete survey on gas dynamics.
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