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ABSTRACT. We discuss recent results on the study the inelastic homogeneous Boltz
mann equation for hard spheres, with a diffusive term representing a random back-
ground acceleration. We show that the initial value problem has unique solutions,
which become infinitely smooth and rapidly decaying after a short time, under the
assumption that the data is in L*(R*) N LI(R3) (has bounded mass and energy).
In addition the time-dependent solution converges, along a subsequence of times, to
a stationary solution. In addition we show that the high-velocity tails of both the
stationary and time-dependent particle distribution function are overpopulated with
respect to the Maxwellian distribution, and we estimate the solutions from below.

INTRODUCTION

Dynamics of granular systems has attracted a significant interest of physicists due to a
variety of complex phenomena displayed by such systems. In particular, granular systems
can form flows where particles move freely and exchange energy through binary collisions. An
analogy between granular particles and molecules of a rarefied gas then suggests a possibility
of using a kinetic theory approach [10]. Such an approach is particularly promising since it
could be used to clarify a connection between the particle dynamics and the hydrodynamic
description of a granular fluid.

In this paper we study a problem of formation of steady states in granular media subject
to external forcing. We study a model space-homogeneous case of a system of perfect hard
spheres which interact with each other by means of inelastic binary collisions. For such a
system the following model based on the Enskog-Boltzmann equation was suggested by van
Noije and Ernst [20]:

(1) Of — A f = Qa(f,f), veR, t>0

Here f is the unknown one-particle distribution function that depends on the particle velocity
v and time ¢, and Qq( f, f) is the inelastic collision operator, the details of which are presented
below. The term 9J,A, f, where 9, is a physical constant, is a Fokker-Planck type operator
which represents the effect of a heat bath of infinite temperature. Recent particle dynamics
simulations by Bizon et al [2], Brillantov et al [7] and Moon et al[16] indicate the existence of
states evolving to stationary ones which are not given by classical Maxwellian distributions.

The rigorous mathematical results obtained previously for the problem included construct-
ing approximate solutions by means of formal expansions [20] in the case of hard spheres
and, by different authors [8], under a simplifying assumption of pseudo-Maxwell collision op-
erator. The approach was initiated in a work by Bobylev, Carrillo and Gamba [4]. and was
used by Bobylev and Cercignani [5] to solve the pseudo-Mawell problem using the Fourier
representation of the equation [5] and to study the convergence and stability to station-
ary states. Previously, Cercignani, Illner and Stoica [9] had showed the existence of steady
weak solutions to the equation (1), for the pseudo-Maxwell collisions by means of functional
analysis and fix point arguments.
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Our aim here is to rigorously study the inelastic Boltzmann equation (1) and to find
qualitative properties of solutions that might aid our understanding of the stationary non-
equilibrium regime. We prove existence, uniqueness and regularity of time dependent solu-
tions under the assumption that the initial data is in L(R’) N L*(R*). We also prove that
the time-dependent solutions converge, along a sequence of times, to steady solutions, with
possibly different steady states along different sequences. Finally, we find lower bounds for
both stationary and transient solutions, showing that the high-velocity tails are overpopu-
lated with respect to Maxwellians. The lower bounds have the form K exp(—g|v|*/?), with
S = B(1—a?19,), which agrees with asymptotic high-velocity solution by Van Noije and
Emst [20]. Here K > 0 is a constant (in the time-dependent case K = K(t) is a function
that may decay with time).

Our methods rely on using the parabolicity of the diffusion operator in the equation,
combined with an analysis of the collision term. We extend the previously known estimates
of the moments for the Boltzmann equation (Povzner inequalities) and LP estimates due
to Gustafsson [15] to the inelastic case. We establish the results on the regularity of the
solutions using an approach similar to the one used by Desvillettes and Villani [12] for the
homogeneous Landau equation. Uniqueness for the time-dependent problem follows by using
Gronwall type of estimates, which is an approach utilized by several authors in the case of
the elastic Boltzmann equation (see [1], or more recently, [18]). The lower bound estimates
for the steady and time-dependent solutions are derived by classical comparison arguments
for second-order PDEs.

Finally, we point out that most of the results obtained here for the hard-sphere model
can be generalized in a straightforward way to the case of other “hard” interactions, which
includes the Maxwell molecules model introduced by Bobylev et al. [4].

PRELIMIN ARIES
The collision operator
The collision term in equation (1) can be written in the following form:
©) 0= [ / 1) (0.) = £(0) £(0.)) B(u,0) dor .,
R3 SQ o
where
1
B(u,0) = —|u|, w=v—u,,

A
o is a parameter vector on the unit sphere S?. Also, 0 < a < 1is a constant coefficient

of normal restitution, and the velocities » and ‘v, (pre-collisional velocities) are defined as
follows:

, w a—lu  a+1]y
v=— —
2

"0 27 20 27
, w a—1lu a+1|u|

(3)

TS T o0 27 T2a 27

Here w = v+ v, (5 is thereby the velocity of the center of mass).

Notice that if & = 1, the equation becomes the classical Boltzmann equation for elastic
particles. The factor & in (2) accounts for the change of the normal velocity and the Jacobian
of the transformation from v, v, to v, v,.

Properties of the inelastic collision operator

Using the transformations between pre- and post-collisional velocities we obtain the fol-
lowing weak form of the collision operator:

1 . .
(1) /RSQ(f,f)@bdv: 5/]@/1@ [ FE 0= 6= 0 Blua) dodo,do
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where 1) is a suitable test function that may depend on v and t. Here we have used the
common shorthand notations ¢ = ¥(v,t), ¥, = (v, t), V' = P(v',t), ¥, = (v, t). The
arguments v’ and v, which have the meaning of the post collisional velocities, are defined
as follows:
l—au N 1 +a |yl
— —o0
2 2 2 27
w l-au  1+alu
TR T T 2T T 27
Using the weak form (4), several important properties of the equations become clear. First,
it is easily checked that the mass and momentum are conserved:

(6) /Qf, oL} dv=0, i=1, .3

Next, we obtain the following relation for the dissipation of kinetic energy:

! w+
V= —
2

(5)

1—a?
™) QU.N o == [ [ pif i,
R3 16 R3
where we have computed the local energy dissipation as follows:
1—a?1— cos?
®) 2+ ol 2 = fol? = fo? = === Jul?

where 1} is the angle between u and o.
Using (6) and (7) we see that solutions of (1) formally satisfy

d
7 fdv— 0,
d

9) 7 fvdv 0,

/ﬂﬁd—61_“//fﬂﬁdd
dt s v v = 16 s S *| U Vs QU.

These relations will be the main source of a prior: bounds satisfied by the solutions. Notice
that the entropy decay condition, which produces an extra it a priori bound for the elastic
Boltzmann equation, 1s generally not available in the present inelastic case. A computation

of the dissipation of entropy [ flog f dv reveals the contribution of a nonnegative term

1— a?

72/ ff*|u| dv dvs.
R3

2c

which appears on the right-hand side of the equation. Thus, the entropy may generally
increase with time, although we can get uniform entropy bounds on every finite time interval.

Scaling

The conservation of mass and momentum imply that for every solution f(, v) the following
quantities do not depend on time:

(10) ft,v)dv=p, and f(t,v)vdo = v

R3 R3
Taking the function ¢(¢,v) so that

an) o= 2o (L1020,
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we find
(12) / g(t,v)dv=1, and / g(t,v)vdv =0.
R3 R3

The function g(t, v) will also satisfy the equation
Oy

1
(13) ~ 09— > Ayg = pBQIg, 9)-

Taking

B = p—1/319;/3 and o = P_2/3191:1/3

we find that g(t,v) satisfies the same equation as f but with ¢, = 1.

Thus, the solution of the problem (1) with arbitrary p, v and ¥, can always be reduced to
solving the equation

(14) atf_Af:Q(faf)a t>07 U€R3;

where f(¢,v) has unit mass and zero momentum (12). (We renamed ¢ (¢, v) back to f(¢,v).)

This equation will be the main object of study in this paper. We will study the Cauchy
problem with the initial data

(15) f(©,0) = fo(v),

such that fy(v) has unit mass and zero momentum; and also the equation satisfied by the
steady (time-independent) solutions

(16) —Af=Q(f.f), veR.
The solutions with arbitrary p, v and ¥, can then be obtained using (11).

ENERGY DISSIPATION AND MOMENTS

We state inequalities and bounds for the moments of transient and stationary solutions,

Ys(t):/RSf(t,v)(v)de, z= [ 100y

respectively, where (v) denotes the weight function (1 + |v|*)*? and s is a nonnegative real

number. We will assume the unit mass condition Yo(¢) = 1 which is a consequence of (12).

The properties of the moments is an important source of information about the large-
velocity behavior of solutions, and play a crucial role in the subsequent regularity analysis.
For the proofs of the results stated here see [14].

The following lemma is an easy consequence of the energy dissipation relation.

Lemma 1. Assume that a nonnegative solution f to (14) satisfies (12). Then the following
differential inequality holds:

d
d_tY2 + koY3 < Ko,

where Ko =7 and ky = \/51122. Further, we have

2/3
Ya(t) < max {¥a(0), (K»/ks) "},
uniformly for t > 0. For the stationary equation (16) we obtain the a priori estimate

Za < Kz/kg.



The Povzner-type inequalities

Obtaining information about higher-order moments requires estimating the expressions of
the type

(17) e A e e N A

which appear in the weak form of the collision operator. In the case of elastic interactions
the well-known Povzner estimates [19] state that for s > 2 and |v| > |uv.|, the growth for
large |v], |v.| in (17) is controlled above by C|v|*72|v,|%. These estimates were subsequently

improved by several authors [13, 11, 18, 3, 17] and were used to get sharper versions of the
moment bounds.

To generalize this type of results to the case of inelastic interactions we look for estimates
of the expression

Clwl = (') + ¢ (ul*) — v (v?) = (jo.]),
where v’ and v/, are defined by (5). and 1 is a convex function that will also be assumed to
satisfy some extra conditions. Our aim is to treat the cases of
(18) Y(z) =", and (z) =(1+2) -1 p>1,

and also truncated versions of such functions that will be required in the rigorous analysis
of moments. Thus, we assume that in the general case the function 1 satisfies the following
list of conditions:

(19) Y(x) >0, x>0; ¥(0)=0;
(20) Y(z) is convex for x> 0;

(21) P'(ax) <m(a)Y'(x), >0, a>1;
(22) V' (az) < mola) V' (z), >0 a>1,

where 7, (a) and 1, (a) are functions of a only, bounded on every finite interval of ¢ > 0. The
above conditions are easily verified for the functions (18). To proceed with estimates of C[¢]
we will need the following lemma:

Lemma 2. Assume that ¢(x) is nonnegative, smooth, conver and satisfies (19)—(22). Then

(23) Y +y) —Y@) —vly) <A(zy'(y) +yi'(z))
and
(24) Y(z+y) —Y(x) —Yy) > bay " (x +y).

where A =1ny(2) and b= (21p(2))*.
Using the above Lemma we can estimate C[¢] as follows.
Lemma 3. We can represent C[¢)] as a sum of two terms,

Cly] = =Syl + Pyl
so that

Pl < A ([P ¢! ([o.?) + o P ' ([0]))
and
S[v] > k(A ) (fo|” + .52 9" (|0 + [u]?),

where A is the constant in estimate (23), and

KO ) = 2 X () (L= cos?p),

where b is the constant in estimate (24).

An integration with respect to the angular variable yields the following corollary:
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Corollary 1. Assume that the function ¢ (x) is as in Lemma 2. Then

[ €16 do < = (o + 0Py o + o)
B (o 0 (o) + el 01,

where K and k are nonnegative constants depending on the weight function 1, independent
on the restitution coefficient a.

Remark. In the case 1(zr) = 75/2, 5 > 2, we recover the usual form of the Povzner inequal-
ities for inelastic collisions:

[ Qe el = o) do
< kg (ol + fou ) + K (ol 2o P+ o o0]*2)

By considering v(z) = (1 + x)*/? — 1 we also get, for every s > 2,

[ @+ =t = () do
<y (0 + () K (@020 + (02) 20,

Here as above, the constants K and k, depend on s but not on «.

Estimates for higher-order moments

The Povzner-type inequalities established above allow us to obtain the moment inequalities
analogous to those obtained by Elmroth and Desvillettes [13, 11] for the classical Boltzmann
equation.

Lemma 4. Assume that f(t,v) a solution to (14) that has a moment of order s bounded
mitially. Then, for every s > 2,

d
%YQ + ksYs1 < Ks(Ys1 +Ys 2)

where Ks and ks are positive constants. Further,

sup Y;(t) < Y7 = max {Y;(0), (2K,/k,)’ },
>0

and for every T > 0

2K, m+1

/ Vg1 (t)dt < Y7
0 ks

Finally, for the stationary equation (16) we have an a priori estimate

K
Zs—l—l < k_(Zs—l + Zs—2)~

S

Remark. Notice that the condition on the integral of Yi41 implies that if Yi41(0) = 400,
then for every 7 > 0 there is ¢ < 7 such that Y, (f) < +o0o. Then, applying the lemma to
Y, 11 we see that for every ¢ > 0

sup Y;+1 (t) S C&,s:
t>e

so the propagation of the Y, ; moment holds.



LP BOUNDS AND A PRIORI REGULARITY
Bounds for the collision operator
We establish bounds for Q,(f, f) and @~ in the following weighted P spaces:

Ly(R) = {f| f(v)(v)" € L' (R)},

where (v) = (1 + |[v|?)1/2. Our result extends the well-known LP estimates for the classical
Boltzmann equation [15] to the inelastic case.

Lemma 5. For everyl <p < oo and every k >0,

1Qalfs )z < C (IIflle2

k+1

lgller,, +11fllez, Nlglley

k+1 k+1 k+1) ’

where C' is a constant depending on p, k and N only.

H' regularity: Steady state equation
Here we use the results of Lemma 5 and the moment estimates of the preceding section
to derive a priori estimates for solutions to (16) in the spaces

Hy(R') = {f € Ly(R) | Vf € Ly(R") }.

The main tools are using the coercivity of the diffusion part, the estimates of the collision
operator in L?, and the standard interpolation theory on L? spaces combined with the
Sobolev’s embedding inequality. We begin with an estimate for the gradient.

Lemma 6. Assume that the function f € H'(R*) N Ly(R?), where 3 = g, is a solution of
(16). Then

IVAllze < CAB®,  where = A=||fll,s, B=Ilfll.;
and C s a constant depending on the dimension.

The result of the Lemma 6 implies that the solutions to (16) gain a priori H" regularity,
as soon as they are in L' and have the moment of order 3. To see this notice that by the
Sobolev embedding,

1 fllze < CABP,

from which an estimate in L? follows by Sobolev weighted interpolation inequality using the
L' bound, and, in fact, the solutions are in L? for all 1 < p < 6. In addition one establish a
priori estimates for the L? moments of the gradient.

Lemma 7. Assume that the solution f of equation (16) is in H (R*) N L1k+1),6 (R?), where

(
kZOandﬁz%. Then

IV (F o))l < C(A, AS ¢ ]ﬂAé—w/z),

where

5

A =111l =1

(kD8

Ay =fllex, o As= 1Sl

k—2/6"
and C s a constant depending on the dimension 3.

Remark. Using Lemma 7 it is easy to find bounds for f in H} for every k£ > 0. Indeed,
using the inequality

(V@) < COVF@F) [+ 1V ()" )
and estimating the second term by interpolation between L% and L; , /5 we find an estimate

for ||(V.f)(@)*||.>. Further, by Sobolev weighted interpolation, it follows:
£z < 1LANZs A1

n .
k/(1-X)
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The estimates of fin H} in terms of L' moments can then be obtained using Lemma 6. In
particular we can notice that if the solutions are shown to have finite ! moments of any
order, we gain apriori estimates in H} with any k.

C* regularity: Steady problem
Next, the following a priori bounds for solutions to (16) in the spaces
H ={feL}|V"fe L, 1<m<n}

was established for all 1 < n < oo and all 0 < k£ < co. We used induction on n, with the
base being given by Lemma 7. The induction step involves differentiating the equation in v.

In fact, for f and ¢ being smooth, rapidly decaying functions, the higher-order derivatives
of @ can be calculated using the following Leibniz formula (cf. [21]):

IQf.9)= ) (j) QI 1.0g),

0<I<j
where j and [ are multi-indices j = (j; ...J3), and l = (I1...13);
=0 ...00,

and ({) are the multinomial coefficients. Using this formula we obtain (formally) the following
equations for the higher-order derivatives:

(25) —AY =) (‘Z) QO f,0" ).

0<I<j
These equations are the key to the following lemma:
Lemma 8. Any stationary solution f to (16) that is in H,’;j’; (R3), wheren >0, k >0 and

p> 5

5, satisfies the estimate

IV flly <CA+E+ 1 flgp ) A+ 1V Fllzg,,).
where C is a constant depending on n and p only.

Lemma 8 gives us a way to estimate higher-order derivatives of the solutions in terms
of lower-order ones. Starting with an H]} bound of Lemma 7, we can obtain by induction

bounds in the spaces H,?(RS), with any n, in terms of L' moments. Thus, we get apriori
bounds that are enough to claim that

fe (N H
n>1, k>0
or in the Schwartz class S of rapidly decaying smooth functions.
Regularity for the time-dependent problem

In this section we apply the methods developed for the steady state solutions to the
problem with time-dependence. Our first lemma is an analog of Lemma 6.

Lemma 9. Let f be a solution to (14) with initial data fo € L?*(R3), such that f has a
moment of order 8 = % bounded uniformly in time. Then

IfE )< C, 0<t<oo,
and

IV )|z o,mxrey < Cr
for every 0 <T < o0.

Similar conclusions can be made about the time-dependence of L?*-moments.
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Lemma 10. Let [ be a solution to (14) with initial data fo € Li(R?) where k > 0, such
that f has a moment of order B(k + 1), where f = %, bounded uniformly in time. Then
1f ()l <C, 0<t< oo,
and
||Vf(t, ')||Li([0,T]xR3) < Cr,
for every 0 <T < o0.

Lemma 11. Let [ be a solution to (14) with initial data fy € HP(R?) where k > 0 and
n > 0, such that f has a moment of order B(2"(k + p) — 2u+ 1), where 3 = 2 and

w> 3;“2, bounded uniformly in time. Then

1t ey <€ 0 << 00,

and
||f||L2([0,T},HZ+1(R3)) < Cr,
Jor every 0 <T' < 0.

EXISTENCE AND UNIQUENESS

We establish the existence in the class of nonnegative functions from L' N L?, with the
bounded second L' moment. For the uniqueness we require an additional moment from the
initial data. The results can be formulated as follows.

Theorem 12. The Cauchy problem for the equation (14) with the initial data (15) admits
a nonnegatiwe solution
f € L>([0, ), Ly N L*(R?))

for every nonnegative fy € LN L*(R®). We also have, for every ty > 0,

f € C®([ty,00) x R?)
and

f € L*([to,00),S(R?)),
where S is the Schwartz class of rapidly decaying smooth functions.

Theorem 13. Assume fy € Li(R3); then the equation (25) with the initial condition f(0,v) =
fo(v) has at most one solution.

LOWER BOUNDS WITH OVERPOPULATED HIGH ENERGY TAILS

The lower bounds for both the stationary and time dependent problem can be constructed
by choosing lower barrier functions for the semi-linear operator resulting from neglecting the
gain term Q. The proof of the lower bound make use that the loss operator Q™ (f, f) is
pointwise bounded by a local function of the velocity times f, i.e. the inelastic Boltzmann-
diffusive operator is bounded below by a linear elliptic operator, which evaluated on the
positive solution f, satisfies the maximum principle. The proof works for the time-dependent
equation as well as the steady one.

The next Lemma is the comparison result.
Lemma 14. Assume f > 0 is a smooth solution to (16) with bounded mass p and energy

Uy respectively. Then, there are constants a, satisfying the condition above for the stationary
barrier for m = p, the constant density, and 9, the bound for the enerqy, respectively, and

K= 006*2“‘”()'3/2, with cy, vy and ry depending on with p such that

(26) flv) = Ke >

|3/2
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With a corresponding maximum principle for parabolic operator, we can we show, in a
similar way, the lower bound control for the time dependent problem.

Lemma 15. Assume f > 0 is a smooth solution to (14) with bounded mass and energy,
uniformly in time, also denoted by p and Uy respectively. Then, there are positive constants
K >0,a> 0 and b>0 depending on p and V¢, such that

f(v, t) > Ke—bt—a(1+|v|2)
Further, if there exist a constant c¢o and a ball B(vg,1q), such that
f(v,t) > ¢y, if v € B(vg,70),
for all t, then we can obtain a lower bound
flu,t) > Ke*‘””‘w,

uniformly in time, where now K > 0, a >0 and b > 0 will depend on cq,vq and rg.

3/4

Remark. Obtaining a pointwise upper bound using some form of maximum principle entails
much more significant difficulties. Here we only notice that under the (admittedly too
restrictive) assumption

QY (f.H<kQ (f.f), for | >R

with kK < 1 and R > 0, we can prove that

Fl) < Le P
where L and b are positive constants which can be computed explicitly using the conditions
on the barrier functions.

Another method based on using moment bounds yields an integral bound of the form
f(v)e WP qy
RS
for the steady solution. We refer to our forthcoming work [6] for the details.
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