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Abstract

We investigate a Boltzmann equation for inelastic scattering in which the rela-
tive velocity in the collision frequency is approximated by the thermal speed. The
inelasticity is given by a velocity variable restitution coefficient. This equation is
the analogous to the Boltzmann classical equation for Maxwellian molecules. We
study the homogeneous regime using Fourier analysis methods. We analyze the
existence and uniqueness questions, linearized operator around Dirac delta func-
tion, self-similar solutions and moment equations. We clarify the conditions under
which self-similar solutions describe the asymptotic behavior of the homogeneous
equation. We obtain formally a hydrodynamic description for near elastic particles
under the assumption of constant and variable restitution coefficient. We describe
the linear long-wave stability /instability for homogeneous cooling states.

1 Introduction

The aim of this paper is to clarify some questions concerning principal properties of
kinetic equations for granular media. We use the well-known and wide-accepted model
given by the generalized Boltzmann-Enskog equation for a dense gas of inelastic spheres
as the basis of our study. For the sake of reader’s convenience we describe a brief scheme
of its derivation in Section 2.

We use a velocity dependent restitution coefficient which characterizes the inelasticity
of collisions. The constant restitution coefficient case leads to well-known unrealistic
physical states in some applications. In fact, the restitution coefficient may depend on
relative velocity in such a way that collisions with small relative velocity are close to
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be elastic. This type of restitution coefficient is more realistic and it has been used in
molecular dynamics simulation of oscillated granular media [5]. Besides, it has been
proved that a dynamical model with the constant coefficient leads to inelastic collapse
2, 11]. On the other hand, the collapse does not occur for variable restitution coefficient
with appropriate behavior for small values of relative speed [14].

Dealing with dense gases of granular media we always assume (directly or indirectly)
that the mean free path is relatively small since we are outside of the Boltzmann-Grad
limit. This implies a transition to a certain hydrodynamic regime. At the formal (physi-
cal) level of description this transition can be made by different ways (Grad method [16],
Chapman-Enskog expansion [15], etc).

However, in all cases, we need to answer the following questions: (a) how to describe
large-time asymptotics of solutions to the spatially homogeneous equation; and (b) what
can be said about main properties of corresponding limit equations (hydrodynamics).
Our work can be considered as an attempt to partly clarify these questions, especially in
the case of variable restitution coefficient. In particular, Sections 3-6 are devoted to the
spatially homogeneous problem and Section 7-8 to some stability /instability properties
of the limit dissipative Euler equations.

An extensive survey of physical literature can be found in [13]. The existence theory
for the inelastic hard-sphere Boltzmann-Enskog equation was analyzed in [12]. A detail
theory of one-dimensional granular flows was recently developed in [2, 3, 4]. These and
other cited publications are only a small part of a huge literature related to flows of
inelastic granular materials. We refer to [9] and the references therein for a survey of
granular flow kinetic theory.

A key idea of our approach is to use a simplified (pseudo-maxwellian) version of the
Boltzmann-Enskog equation. Physical reasons for such a simplification are described in
detail at the end of Section 2. This simplification is especially effective in the spatially
homogeneous case. In order to analyze this spatially homogeneous equation we use the
Fourier transform method applied in the Boltzmann equation for Maxwellian molecules
by one of the authors [6, 7.

Here, the main difference is the absence of conservation of energy at the level of
the collision mechanism, and thus, at the level of the Boltzmann equation. In fact,
a Maxwellian distribution can not be a solution of the inelastic Boltzmann equation.
However, the Dirac delta distribution is obviously in the kernel of the collision operator.
Therefore, with the Fourier method, we can describe the spectrum of the linearized
homogeneous equation around the Dirac delta distribution.

In addition, we clarify the existence of self-similar solutions for this model. This type
of solutions have been considered before for the inelastic hard-sphere Boltzmann equation
8, 15]. They have been called homogeneous cooling states. The nearly elastic case was
studied in [15]. In the present model we state and prove the precise conditions under
which these self-similar solutions exist, and then describe the large-time behavior of the
system. These results are accomplished using eigenfunction expansion of the solutions in
the Fourier transformed equation. Finally, we study the moment equations for this sys-



tem. For constant fixed restitution coefficient the large-time asymptotics of the system
are given by the Dirac delta distribution. We analyze two cases under which self-similar
solutions are asymptotically relevant. These cases are: a) nearly elastic particles with
constant or variable restitution coefficient and b) small temperature. In both cases, the
self-similar solution is near a Maxwellian distribution for a specific asymptotics involv-
ing restitution coefficient and time (see section 6.1). Therefore, we can make a formal
transition to hydrodynamics in the spatially inhomogeneous simplified equation. The
resulting hydrodynamic description, valid for a) and b), is the usual Euler equations for
gas-dynamics with a dissipative term in the temperature equation due to the inelasticity.
Finally, we study the stability/instability of the homogeneous cooling state in the hydro-
dynamic description. In fact, in the constant restitution coefficient case the homogeneous
cooling state is unstable. In the variable case, we find that the system is linearly stable.

2 Pseudo-Maxwellian model for dissipative
hard spheres

In this section we introduce the basic model we will treat in this paper. Our starting
point is the Boltzmann-Enskog equation for inelastic hard spheres neglecting rotational
degrees of freedom. For the sake of completeness and reader’s convenience we include
a short review of this model. A wider discussion can be found in [9] and the references
therein.

Assume that we are studying the dynamics of N perfect spheres of diameter o > 0
such that they perform inelastic collisions. If (z,v) and (z — on,w) are the states of
two particles before a collision, where n € S? is the unit vector along the center of both
spheres, the postcollisional velocities are found assuming that the total momentum is
preserved but we loose some part of the normal relative velocity, that is,

n-@w —w)=—e((v—w)-n)

where 0 < e < 1iscalled the restitution coefficient. Using both information we construct
the postcollisional velocities as

<

(v+w) + (2.1)

(v+w) — (2.2)
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where v/ =u — (1 +e)(u-n)n, u=v—w and v’ =v" —w'. Let us denote by v* and w*
the precollisional velocities corresponding to v and w. Let us remark that the coefficient
of restitution can be a function of the normal relative velocity |(v — w) - n|.
Following the standard procedures of kinetic theory [9, 10], we deduce the Boltzmann-
Enskog equation for inelastic hard spheres
af
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where the collision operator is given by

%JG(x,x + on|p)f(t,z,v*) f(t, x + on,w")

Qs(f ) = [ [, (=w)-n)
—G(x,x — onlp) f(t,z,v) f(t,z — on,w)| dn dw
and
p(t, x) = /IR?’f(t, z,v)dv .

Here, J is the Jacobian of the transformation (v, w) into (v*,w*) and G is the statistical
correlation function between the particles. We refer to [9] for a deeper discussion on
the meaning of the function G > 1. Let us only remark the function G is related to
corrections to the molecular chaos hypothesis for dense gases and its value is 1 for a
rarefied gas, i. e., the joint probability density of two particles f(*) is given by

£, ,0,50) =Gy | plt, ) ) 1(0,2,0) 1 (8, w). 2.4

We can write Qg(f, f) in a more convenient way. Since v',w’ can be written as

1 1 1—
Vo= S te) + = 2n(ue )+ —

1 1 1-—
w' = §(w+v)— Ze(u—Qn(u-n))— 4eu

then we can use the identity

[t ot mnan =5 [ o (S5 an

for any function ¢ to write Qp(f, f) as

o h = 1 [ [

—|v — w|G(x, x — owlp) f(t, z,v)f(t,z — ow, w)] dn dw

|v* — w*| JG (z,x + owlp) f(t,x,v")f(t,2 + ow, w")

where
u— |uln m-n .
w = = with m = —.
ju—luln|  |m—n| |4l

Here, v*,w* are the precollisional velocities associated to the collision mechanism

1 1—- 1

v o= —(U+w)+—€(v—w)+ +e|v—w|n (2.5)
2 4 4
1 1— 1

w' = i(v—l—w)— 46(v—w)— Ie|v—w|n (2.6)



In case of non-constant restitution coefficient e = e(u - n) in the initial equation, the
coefficient reads now as

|u — |u|n| 1] l—m-n
e=e|l——— ]| =e||u\/—=—
2 2

The equation (2.3) is often considered as the basic kinetic equation for granular me-
dia. On the other hand, this equation is a fairly rough mathematical model of a real
physical process. Even without mentioning rotational effects and deviations from spher-
ical shape of particles, one can realize that the formula (2.4) is very rough outside of the
Boltzmann-Gradlimit. This formula certainly does not account for non-Markovian effects
of repeating collisions. Moreover, the model of inelastic scattering based on empirical
restitution coefficient is also a very rough approximation. Thus, we have the equation
(2.3) which is (a) a very rough approximation from physical point of view and (b) quite
complicated equation from mathematical point of view. These obvious considerations
lead to the idea of using a simplified version of Eq. (2.3). In particular, the following
simplification seems reasonable.

Consider u(t,z) and (¢, x) the bulk velocity and temperature defined by f, that is,

plt, Dpu(t,z) = [

R

BdeU

and
3(t,2)0(t, 1) = / Jo—u(t,0)*f dv.

Therefore, let us take the approximation
|v —w| >~ S\/0(t,z) (2.7)

with certain constant S for the precollisional velocities. The constant can be chosen
in such a way that the Euler equations (Section 7) for the model are identical to the
Euler equations for the initial kinetic equation (2.3). Similarly, we assume now that
e = e(f) = é(/0), with an appropriate choice of the function é(v/@), and as a consequence
J=1.

T‘ilis assumption on the collision frequency as a function of the kinetic temperature
appear in the engineering literature on fluidization models of granular media [13].

Therefore our pseudo-Maxwellian model is given by

af

EﬂL(U'VI)f:Q(f,f) (2-8)

where
Qrn = Ao [ ] 26, + 0wlp) {7, 07) (1.5 + 0w, )

-G,z —ow|p)f(t,z,v) f(t,z — ow,w)| dn dw



and
o2
At,x) = ZS 6(t,x)

with the collision mechanism given by (2.5)-(2.6). The collision operator can be written
as

QU = 4Aa) [ [ (w=w)-n)

—G(I|7j:£r|p)f(t,:L’,U)f(t,:lf — ow,w)| dndw

1G
L@z owld) vy o oy p(tyo + 0w, w?)
e vt —w

with the collision mechanism given by (2.1)-(2.2).

In this work we will study in detail the homogeneous case of equation (2.8). We call
(2.8) a pseudo-maxwellian model because of the analogy to the Maxwellian models in the
classical elastic case in which the cross-section does not depend on the relative velocity.
From the point of view of the applications this approximation is as rough as the equation
(2.3), so we prefer (2.8) because it is a more simplified model.

The homogeneous equation corresponding to (2.8) is

i
o = BOQULP 2.9
where 1 1
QLN =1 [ [ [Ftv) ) = fenf o] dnaw — (210)
and

B(t) = 50 [0(0) Glp) = ByJo(®) Glo) = B\fa(e) (211)

The corresponding weak form of Q(f, f) is given by the integral

_ 1
T A4r

Q)= 1= [, | e f(to)[() =) dodwdn

where 1) € C°(IR?) and v’ is computed by

1—6( )+1+e
v— W
4 4

1
v = §(v+w)+ lv —w|n (2.12)

and e = e(A(t)). In the next section, we will study the initial value problem for (2.9).

3 Initial value problem

Let us consider equation (2.9) with the collision term given by (2.10)-(2.11) and v given
by (2.12). First, we rescale in time by defining

dr = B\/6(t) dt, (3.1)
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then o
:B/ JoF) d7
T A (7)d7

Thus, we obtain the equation

of
5 = QUL ), (3.2)
where Q(f, f) acts in weak form as
Q)= [ O ) ()] dodwdn 3.3
T J R3XIR3 x 52

with ¢’ given by (2.12) and e = e(#). Let us remark that equation (3.3) contains the gain
and the loss term together. From now on, we will denote again by ¢ the time variable,
and since

Jou. o= [vQ(,f)dv=

then it is assumed, without loss of generality, that

/Rsf(t,v)dvzl, /Rgvf(t,y)dvzo

for any t > 0. The temperature 0(¢) is defined as usual by

1
=3 [ o) av

We will denote by f, the initial data for equation (3.2).

A detailed analytic theory of the classical elastic (e = 1) case was developed in [6, 7].
We use here the same approach based in Fourier transform method. For the sake of
simplicity, we will skip the time dependence of the functions in some of the equations
below. Let us introduce the characteristic function

olt, k) :/RS F(t,v) exp(—i(k-v))dv,  keRR®

then, using (3.2)-(3.3) we obtain

% —(Qexp(-ilk- ) = L(p,)

Llod = 3= [, FWf@)esp{ ~ ith-U) -

e(k ~u)}F(k,u)dvdw :

U= 3(v+w),u=(v—w) and

1+e 1+e

exp{— i(k-n)|u|}—exp{— z(ku)}] dn . (3.4)

F(k,u) :[92



It is easy to see that the product (k- |u|n) can be replaced by (u-|k|n) in the first term of
(3.4) because the function F'(k, u) is isotropic and only depends on the values of |k, |u|
and k-u (see [6, 7]). Proceeding with the replacement and interchanging the order of
integration we obtain

»C(QO, 90) = E+(g0,g0) - £_(807g0)

where
L_(p,90) =(t,0)p(t, k)
and )
Li(p,p0) = e /S2X]RSXR3f(v)f(w) exp{H (k,v, w) } dv dw dn
with
H(k,v,w) =—iv <§+ L ;€k+ 1Ie|k|n> +iw (—% + 1;€k+ L Ie|k|n>

Therefore, the Fourier transformed gain operator is given by

1 3—e 1+e 1+e
Lo d) = 1= [ (S = ki) ¢ (5= k) ) dn

In particular, we have proved the following lemma.

Lemma 3.1 The Fourier transformed equation corresponding to (3.2) is given by

20 = [ At k)t k) — (6, 0)e(t, ) 3.5)
with

ho= Ie(k— kln),  ke=k—k_,  o(t,0)=1,

Velt0) =0, e=e(d(n) . 0(1) = —s[Aw(t.0)

and  (0,k) = polk) = |

IR

exp(=i(k o)) fo(v)do.

Remark 3.2 Assuming that f(v) < Aexp(—alv|?), the complex Fourier variable k = ik
(two-side Laplace transform) can be used in order to obtain the same equation for the
positive function ¢(k) = ¢(ik).

We see from Lemma 3.1 that our simplification of the model leads to a very simplified
homogeneous equation that can be completely described in Fourier transform formu-
lation. The rest of this section is devoted to review, very quickly, the existence and
uniqueness theory for the Fourier transformed equation (3.5).



The existence theorems for the classical elastic case (e = 1) were proved by Mor-
genstern, Wild and others (see [6] and references therein). These results can be easily
generalized to the inelastic case. Consider a change in time variable of the type

T=1-—exp(—t), p(t, k) = exp(—t)®(r, k),

then (3.5) leads to

0
E - ‘C+(CI)7(I))

with ®(k,0) = @o(k). Solutions in power series expansion of the type

oo
(1, k) =D @, (k)"
n=0
are given by a simple recurrent sequence of equalities

Qy = o
1 n

k=0

(I)n—i— 1

Noting that || <1, we obtain |®,| <1 for any n > 0. Then the series (3.6) converges
uniformly on 7 € [0,1). This series is usually called the Wild’s sum in the Fourier
representation.

Using the same ideas as in [6] section 13, we can obtain the following result. Let us
define f(t,v) to be a solution of (3.2) if its Fourier transform is a characteristic function
for any ¢ > 0 and solves (3.5).

Proposition 3.3 Problem (3.5) with fo € L'(IR?)
fo>0, / fo(v)dv=1 and / [v]? fo(v) dv = 36 < oo,
R3 IR3

has a unique classical solution p(t,k) fort > 0. Moreover, there exists a unique function
f(t,v) > 0 such that

f € L0, 00; L'(IR?)) and o(t,v) = Asf(t,v)exp(—i(k - v)) dv.

Therefore, the function f(t,v) defines a unique solution of (3.2) satisfying the initial
condition f(0,v) = fo(v).

Remark 3.4 The uniqueness is related to the explicit form that we have for (¢, k) in
terms of a series. More details can be found in section 13 of [6].



4 Linearized equation

First of all, let us write £, (¢, ¢) in a different way. Equation (3.5) can be written as

1 kln—k
Li(p,p)= E/Sﬂ:(%) dn

where

F(u) =¢p(—zu)p(k +2u) and z= 1;€ ,
The identity
1 kln—k\ 1 ¢
E[;f( 5 )dn—2wk|A36(25-k+|§|2)f<2> de (4.1)

can be verified by completing the square in the delta Dirac function, taking polar co-
ordinates & = rn and performing the change of variables 7> = s. Meanwhile, applying
directly polar coordinates £ = rn and changing variables r(r+2k-n) = s +2k-n we have

| o k+|gP)F <§> de = [, [T o6t + 2k F () 1 drdn
= 2/52|(/€ -n)_|F(—=(k-n)n)dn
= [, Ik nlF(~ (k- n)n) dn

Therefore,

1 |k|ln — k 1
47r/52f< S > dn = 2Tr|/~f|[92 k- | F(=(k - n)n)dn .

Using this formula in (3.5), we have proved the following identity.

Lemma 4.1 Equation (3.5) can be written as

dp 1

oxt g/sz{w(z(k.n)n)<p(k_ (k- n)n) — @(0)@(k)}|k.n|

| K]

dn=L(g,p)  (4.2)

l+e

where z = 5

Previous formula for £ (g, ¢) implies the following property of the Fourier transformed
operator,

L(exp(i(k-w)),exp(i(k-u))) =0 for any u € R?
L(exp(i(k - u))p,exp(i(k - u))p) = exp(i(k - u))L(p, o)  forany u € R® (4.3)

e
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Next, let us study equation (4.2) near the fixed point ¢, = 1. Because of property
(4.3) the behavior of the solutions near any other exp(i(k - u)) for any u € IR?, |u| # 0,
is quite similar to the case |u| = 0. In fact, (4.3) is the equivalent of the translational
invariance of equation (2.9). Let us remark that linearizing the Fourier transformed
equation around the state ¢« = 1 is like linearizing our original equation around the
Delta Dirac distribution.

Thus, let us consider perturbations of ¢, = 1in equation (4.2) of the form

p(t k) =1+t k); vl <1

with || - || is the continuous norm. We obtain the linearized equation

o= = g [ S [oteh ) 40k = (k- mn) = 0(0) = o)

We can prove the following result.

Theorem 4.2 Polynomial eigenfunctions and corresponding eigenvalues of Lo are given
by

LQ(pnlm(k) = _)‘nlgonlm(k)

rtm (k) = [k Vi ()

n=0,1,...; (=0,1,...; m=-—l...,1

where Yy, (u) are the spherical harmonics with

1
)‘nl = 1 +5n05l0 - 2{22n+l/ OéQn-H—HPl(Oé) do +
0

— "Rl ———— ] d
+z(2—z) /1za "V (2-2)a e

where Py are the Legendre polynomials. Moreover, A\, > 0 except two values
Ao =M1 =0 (4.4)

In particular,

1 1_ 1_Z2(TL+1)
M= A = 1+5n0——[22n+ ( ) -
n+1

1 n
— _ 2n N2k
= 14 dno n+1[z + > (1-2) ]

We refer to [6, 7] for all the details of the derivation since the proof is identical with
minor changes. Also we refer to [17] for properties of the spherical harmonics.

11



Remark 4.3 As a consequence, when e is constant, 0 < e < 1 the spectrum of the
linearized operator consists of two zero eigenvalues (4.4), they corresponds to the two
conservation laws (mass and momentum), and a sequence of isolate points on the negative
part of the real axis. It is clear that \,; — 1 as (2n+1[) — oo, and in particular we have
An — 1 as n — 0o0. Note that the spectrum is given by the values —\;.

In particular,

)‘nlzl_

(1 _ a)2n+1 1 a 1 — g2+ N 1 1= g2(nt2)
n+2 l14a|n+1 1—a2 n+2 1-—a?

n > 0, where @ = 1 — z. Thus, A\y; = 0 for any value 0 < a < 1/2. Finally, we
recover in the case z = 1 well-known formula for the eigenvalues of the linearized classical
Boltzmann equation for Maxwell-molecules given by

1
Ay = 1+ 6,000 — 4[) P () da

The main difference from the elastic case (z = 1) is that we obtain a small eigenvalue
)\10 = Z(l — Z)

as a result of perturbation of the value \;; =0 for z =1, that is, the elastic case.

5 Isotropic equation and its self-similar solutions

Let us come back for a while to the original Boltzmann equation (2.9). We can try to
look for solutions of self-similar type, that is,

Ft,0) = pf(t)*g(0(t) (v — u)) (5.1)

where p,u,0(t) are the mass, momentum and temperature of f. These states are called
homogeneous cooling states.
Therefore, g must satisfy

/gdwzl; /wgdwzo; /|w|2gdw:3
IR3 IR3 R3

Computing the derivative of 6(¢) and taking into account (3.3) for ¢» = |v — u|* we find,
after some computations, that

2
l—e p20(t)3/2.

d -
%KRS lv—ul*fdv=3pf(t) =3B

Simplifying we deduce ,
1— .
0'() = — 46 pBO(t)*2, (5.2)

12



Substituting (5.1) into (2.9) we deduce the following equation for ¢:

=000 divy(wg) = 0*BO(0 Qg ) (5.3)

where

Q09 = [ | ryattate) — otoigtw)| v

Substituting (5.2) into (5.3) and simplifying we have

Qg,9) — 51— €) divi (wg) =0 6.4

Since 6(¢) depends on ¢ the only possibility for (2.9) to have a solution of the form (5.1) is
that e does not depend on 6(t), therefore e constant. This point clarifies some discussion
in [15]. When e is constant we can have solutions of the form (5.1) since in (5.4) we have
a closed equation for g and then we solve the equation for #(t).

The rest of this section is devoted to prove rigorously that these states exist and to
study conditions for their existence.

First, let us consider the equation for isotropic solutions, that is, solutions of the form
©(t,n) where n = @ We are going to have

|k,|2 2221—;§|k’|2, = kk| : 5= 142re ,
k-k =31-C[k* and ko2 = kP [1- 5522 - 2)] .

Now, we can evaluate equation (3.5) in spherical coordinates with polar axis directed
along k£ and we obtain

we's ) =2 L () e (15 (=ott) ) oo () o

where 3= 2(2 — 2). Fixingn = W and s = 15¢ we have
% = [ oG- pon) - e(0)p(n)} ds 5.5

where 3 =1— U;fﬁ. Now, the temperature () is given by
o(t) = ¢t _,

provided ¢(t,0) = 1.

So if # = constan, then equation (5.5) is invariant under dilations n — an with
a € R*. Therefore, similar to the elastic case 3 = 1 [6, 7], we can prove that the
equation (5.5) admits self-similar solutions

o(t,n) = @lexp(—put)n)

13



with 1 € IR to be chosen and where ¢ satisfies the equation

%+ [ (B s el (L= Bs)n) = (005} ds =0

Looking for series solutions of the form

. = (=D, -
am) =2 %%n . po=1 (5.6)
n=0 :
we obtain a recurrent formula for ¢,, n > 1;
n—1
@n[_ﬂn+ )‘n] = Z H(k,n - k)@k@n—k
k=1
where the right-hand side is 0 for n =1, and
1
/\n:)\noz/[1—22"5"—(1—55)”]615; n>1
’ 1 (5.7)
n
H(k,n—k):22k<k>/sk(l—ﬂs)”_kds, 1<k<n-1
0

As we shall see later, the only interesting case for possible applications is the case y =
Since we can choose an arbitrary value ¢, = 6, > 0, then ¢, = 6ju, where u, is
defined recursively by
U, = (/\n—n)\l)_IZH(k,n—k)ukun_k , n>2 (5.8)
wm =1

The convergence of the Taylor series (?7) on the whole axis 7 € IR can be proved similarly
o [6] provided A, # nA; for all n > 2. Let us remark that

B=z202-2)=z2+1—-2)z>z>2,
and thus,

/Oln_1< > 22gk(1 — By H ds
< /0[1—(5) — (1 Bs)")ds < A,

Therefore, taking into account that A, — 1 as n — oo (Remark 4.3) and considering

b= max/\—
Cnx2 |\, —n)|

one can easily prove by induction that u, satisfies |u,| < "=, n > 1 and then we have
the convergence. We have proved the following result

14



Theorem 5.1 The equation (3.5) has the self similar solution

) = 2(500) 000 = 00)expl )
where j = 1_482 =z1—-2)=X and yg=u; = 1
o) = 3 S

with u,, given by (5.8), provided N, # nAy for alln > 2.

As a consequence we obtain the following corollary for equation (2.9) by changing to
the original time variable (3.1).

Corollary 5.2 The equation (2.9) with constant e has the self-similar solution

F(t,v) = pB(t)"*29(6(0) (v — )

where p,u are the density and momentum and 0(t) is the temperature that verifies

0'(t) = ———pBo(H)*?
provided nA; # N, for alln > 2.

Remark 5.3 Theorem 5.1 is not valid for those values of 0 < e < 1 such that \,(e) =
nljl—"ﬁ for some n > 2. This condition may be violated for a numerable number of values
of e, {e,} with {e,,} — 1 as n — oo. This comes from the explicit formula for A,,.

Remark 5.4 The coefficients u,, have the same sign as the moments (|v[**) of the dis-
tribution function (see next section). It follows from (5.8) that for any 0 < e < 1 there
exists a number N = N(e) such that uy < 0. Therefore the self-similar solution “distri-
bution function” can not be non-negative. Anyway as we shall see in next section this
self-similar solution controls the asymptotic behavior in some cases.

6 General solution and moment equations

We recall here a connection between the moments of f(¢,v) and the derivatives of (¢, k).
For simplicity, we consider only isotropic functions and by now we omit the dependence

on time. Since ¢ = p(n), n= @ and f = f(|v]) then

B 00 sin /N7
ol =4n [ F)=2Lr dr
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Then, we formally obtain

(%) - S5 (%) o - S

where m,, is the nth moment of f and

n 0
Pn = m4ﬂ/ 2050 £ () dr.
Thus, we have
p(n) = i) CU s o= (=119 (0)
where ©™(0) is the nth-derivative of ¢ at 0 and finally
" (0) = %mn : n>0. (6.1)

Once we have seen the relation between the derivatives at 0 of ¢ and the moments

of f, let us obtain the moment equations. We consider the equation (5.5) and look for

solutions in the form
n

n=% (_n!) ()" -

n=0

Assuming that

A0 =l = > S0

By substituting into (5.5) we obtain the following recursive definition for ¢, (%)

d
wo=1, g?—i-)\lgol—O
d@n n—1

where the notation in (5.7) is used. Thus, using (6.1) we have
p1(t) = @1(0) exp(=As (1)) =0(2) , ©1(0) =0(0) ,
Pn(t) = @n(0) exp(—=An (£))+ 6.2)

7;2_:1 /Ot QDk(T)(pn—k(T)[H(k, n — k)](,]_) eXP{—(An(t) . An(T))} Ir

where A, (t) is given by



Remember that our original time variable is different. But we will work with this time
scale and we will write the final results in the original time (3.1).
To make formula (6.2) explicit we need to find 6(t). () solves

0'(t) = -\ 0 = _1-e40)

We have two cases.

6.1 Constant restitution coefficient

In this case, we obtain {\,} are constants, and then ¢1 = 6 exp(—Mit). For p2(t) we

find . o
pa(t) = l%(o) - )\2_702)\1] exp(—Aqt) + ﬁ )

Remark that the second term is a contribution of the similarity solution (5.7), theo-
rem 5.1. The general formula for ¢,,(t) looks like

on(t) = Ay exp(—nAit) + -+ + By exp(—A,t) . (6.3)

The terms in the expression in dots are linear combination of functions of the type

exp {—t Z Tk)\k} with Z krp =nand r, >0 .
k=1 k=1

Since A, > 0 we deduce that ¢,(t) — 0 as t — oo for any n > 1. As a first
consequence, we obtain that for fixed constant restitution coefficient e the asymptotic
behavior t — oo is given by ¢, =1 and in terms of the distribution function by the delta
Dirac centered at zero. In terms of the model this is correct because we do not have any
external energy source to compensate the loss of energy through collisions. Therefore,
for e fixed we have

f(t,v) = d,(v) ast — oo

in the weak topology of measures.
The self-similar solution includes only the first term in (6.3). These terms dominate
as t — oo if and only if

1 n n

A < —min {Zrk)\k ; Zkrk:nand rkz()} (6.4)
n k=1 k=1

provided there are no resonances, i.e.,

m—1

m—1
Am F Zrk/\k with Z krp, =mand r, > 0.
k=1 k=1
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Otherwise we obtain additional terms in (6.3). The resonances are absent in the elastic
case e = 1 [6] and they appear only for special values of e.

Finally, let us clarify that the self-similar solution can dominate in the limit t — oo
when Ay — 0 (e — 1) due to (6.4). So, finally in the asymptotics ¢ — oo, Ay — 0 we
obtain

pn(t) = 0(1)" {1 +0 (A1) + O(exp{—(An —nA1)})}

and 0(t) = Oy exp(— A\ t).

Hence, the self-similar solution in corollary 5.2 describes the large time asymptotics
of ¢, (t) only if A\, > nA;. This condition is satisfied for large n only if \; < A,. In
such a case e is close to 1 and then the self-similar solution is close to the Maxwellian
distribution with accuracy O (A;). Therefore the leading asymptotic term of ¢(t, z) reads
as

o(t,x) =~ exp(—z6(t)) ; B(t) = 6o exp(—A1 t)

as \1 — 0, t — 0o, A1t = constant.
We can now return to the initial time scale (3.1) and we have that

d—e — —)\19
dt
corresponds to ,
db ~1—e
— =-B 0(t)%?
dt 4 (*)
and thus, .
(1) = _ ., t>0
0 (1 +B52V0,t)? -
and

k|2
o(t, k) ~exp (—%9@)) as t— o0, e =1, (1 —¢€’)t = constant

or equivalently

f(t,v) ~ (27m6(t)) 3/ exp <_2|;}(|t)>

ast — 0o, e = 1, (1 — e?)t = constant.

6.2 Non-constant restitution coefficient

Let us now assume that e(6) and that the behavior of e(#) for small energy collisions is
more elastic. Consider that e(f) is a decreasing continuous function of ¢ that tends to
some 0 < ey < 1 as @ — oo and that e(0) = 1. We will assume that

.1 —e(0)
ST

—1 (6.5)
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with 0 < o < 1. If we compute the equation for #(¢) we obtain

A9 1—e*0) 5, 50
= - Bo) / (6.6)

therefore, at the first stage of relaxation #(¢) decreases with the same rate as other
moments ¢, (t), n > 2. The separation of time scales begins when the temperature 6(¢)
is so small that 0(¢) < 1 and (6.5) plays an important role. Then, when 0(t) is small,
equation (6.6) reads as

SIS

~ Be(t)(a+3)/2
and hence

2
o(t, k) ~ exp (— %0(15)) for small 6 .

Also, we have another possibility, that is, to have e — 1 as we did for the constant
case. Doing this we obtain that

2
o(t, k) ~ exp (—@9@)) as t — 00, €y — 1

in such a way that ¢(1 — e3) = constant, where

do -1—€%(0) -
— = —B=———2%? = —_Bh(9)9?/?
dt 4 )

and

f(t,v) =~ (276(t)) ">/ exp (- 2';’(|t)>

ep — 1, t — 00, (1 — €3)t = constant.

7 Euler equations. Hydrodynamic limit.

On the basis of the previous considerations, we assume the Maxwellian form of the

distribution function, provided that the mean free path
1
€= —

B

is small enough. Then, we obtain formally the following dissipative Euler equations for
density p(t,z), bulk velocity u(t,z) and temperature 6(t,z) as

@—i-div(pu) =0

ot
u 1
E%—(u-V)u#—;Vp =0 (7.1)
o0 2, .. 11—e()? - /2
T (u- V)0 + 39d1vu = —-—2 pG(p) &
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where p = pf and G > 1 related to the function G in (2.4). The equations differ from
the usual gas-dynamics Euler equations because of the dissipative term in the equation
for the temperature.

Remark 7.1 The system (7.1) is formally obtained from our pseudo-maxwellian model
Boltzmann-Enskog equation. It is clear however that the Enskog shift does not play
any role for ¢ — 0. Moreover, exactly the same dissipative Euler equations can be
obtained directly from the initial inelastic hard sphere kinetic equation (2.3) provided
an appropriate value of the constant S in our approximation (2.7) is chosen. Thus,
the material of this section relates not only to our model, but to the dissipative Euler
equations derived directly from the initial inelastic hard sphere model without pseudo-
maxwellian simplifications (2.3).

Remark 7.2 The equations (7.1) with constant e were briefly considered before by sev-
eral authors (see [1, 8]). Our aim is to stress some qualitative differences between constant
and temperature dependent restitution coefficients

7.1 Constant restitution coefficient

If e is constant our Maxwellian form for the distribution function only makes sense for

1_462 small. Rigorously speaking, the set of equations (7.1) represents formal asy mptotics
of the inelastic scattering Boltzmann equation as 1’462 — 0, € = 0 in such a way that

% = A remains constant. In this case, the third equation reads as

06 2 .

ET + (u-V)0+ gﬁdivu = — G (p)0*? (7.2)
and the functions p, u and @ are well-defined on the time interval [0,t*] where the set
of equations (7.1) has a unique solution. This is the only case, small inelasticity of the

order of the Knudsen number, in which the hydrodynamic approximation makes sense.

7.2 Non-constant restitution coefficient

In this case A\ () = l’iﬂ tends to 0 as # — 0, is a continuous increasing function, and
1—€2
4

tends to a constant
in two situations:

as # — oo. In this case, the hydrodynamic description is valid

1. As in the constant case, take e, — 1, € — 0 in such a way that 1’680 = )\ constant,
then one obtain as third equation
00 2 -
5 (u-V)§+ §9divu = —\pG (p) ()6
where h(0) = 1 — ¢(f). For instance, taking h(d) = CO* near 0 and later on

constant.
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2. The second possibility is for small temperature. We considered that equation (6.6)
makes sense only for § — 0, € — 0 in such a way that g = A constant. Then, we
consider p = %pe and thus we obtain the set of equations

0
Ly div(pu) = 0

ot
AR IS (7.3)
gt V)ut Vp = .
0 5 ~
3_1105 +(u-V)p+ gpdivu = —cG(p)p*

for the case e(f) ~ 1 — ¢y as § — 0. Thus, the formal asymptotics for small
temperature is given by conservation of mass and a Burgers-type equation for the
momentum with a small term proportional to the pressure.

8 Small perturbations of the homogeneous solution

We consider the dissipative Euler system given by (7.1) with G(p) = 1. We analyze, as in
the previous section the constant and the non-constant restitution coefficient separately.

8.1 Constant restitution coefficient

Taking e constant, then the temperature equation takes the form of (7.2). Clearly, there
are spatially homogeneous solutions with constant density and velocity and temperature
of the type 6,(t) = Ct=2. Due to scaling arguments, without loss of generality, we may
choose the solution p, = 1, u, = 0 and 6,(t) = (3¢)72 as the solution to be perturbed.
Therefore, setting }

P=po+p, u=u,+u , 0=0,+0,

linearizing the system (7.1) around this state and dropping the tildes, we obtain the
following linear system for (p,u,6)

ap
ot

% +VO0+6,t)Vp = 0

+dive = 0

0 2 , 32, 3 2]
5 T 390(t)d1vu+/\ po= + 2990(25) =0

Therefore, looking for solutions which are long wave perturbations of the homogeneous
one, we search for solutions of the form

p=p(t)exp(i(k-z)) , uw=u(t)exp(i(k-z)) , 0=0()exp(i(k-x)),
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Thus, (p, u, #) must satisfy the system of ODE’s given by

ap .
E—l—z(lﬂu) =0

%Hk(ewo(t)p) = 0 (8.1)

o0 2, 1/2[ 3 ] _
o " 37,(k w)f,(t) + A6, p00+29 =0

Finally, we look for explicit solutions of (8.1) of the form
p(t) =pit” , u(t) =w ", 0(t) = 6,472

with constant (pi1, u1,601). A simple computation shows that this is a solution if the
following linear algebraic equations are satisfied,

yp1 +i(k-uy) = 0
| 4
(v = 1)uy + ik (91 v ﬁpl) — 0

8 8

Eyell
This system has non-trivial solutions provided its determinant is zero, i. e.,
=D =2+ 0) + bk} +elk* {(y =2+ a) —d} = 0

with some constants a,b, ¢,d. Searching for roots of the polynomial in v as a functions
of k and A we find that for |k| small (small long wave perturbations) there is a root
close to 1. Precisely, there exists v = 1 4 O(|k|?) root of this polynomial. Therefore,
we have found a solution of the system (8.1) that diverges as t — 00, so the system is
unstable with respect to small long wave perturbations. The instability was mentioned
in [8] without proof.

8.2 Non-constant restitution coefficient

Here, we consider only the case in which the restitution coefficient is e(f) = 1 — ¢v/8 for
small temperature. Then, the stability analysis is performed for the system (7.3) with
G(p) =1 in terms of density, velocity and pressure.

After the rescaling given by ¢ = %tN and x = 2%, system (7.3) reduces to the case
¢ = 2. Omitting the tildes and denoting by

vt = p(t,x)
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system (7.3) becomes

dp . _
a—i—dlv(pu) =0
u
P ot
%4

54— (UV)w— gwdivu =1

Now, considering small perturbations of the equilibrium solutions

1
+p(u-V)u+eVa =0

p=1+p , u=ad , Y="t+1p,

and assuming for brevity that the space dependence of the perturbation is only on the
first component of x and u, that we denote the same for simplicity, omitting the tildes
yields the linear system

pr +u, = 0
6 _
Uy — t_zqvba: =0 (82)
)

djt - gt ug = 0
From the last two equations we have

€

%(tlwt)t = Uy = t_2

Next, we search for solutions of (8.3) of the form

b(t, ) = y(t)exp(i(k - x))
then, y(¢) must satisfy the equation

V- (8.3)

3/ € 9
g(t yt)t = —zkv
or equivalently,
5
ty —y' = —gekzy. (8.4)

A long time asymptotics is given by the function y., = exp(av/t), where « is found by
plugging into (8.4) and matching it, obtaining

o? 5
I— —gék .

Therefore, the linear waves solutions of system (8.3) are asymptotically given by
¥(t,x) = exp (ik(z — 26,V/e))
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where & = ,/5/3 on the background of the spatially homogeneous solution, that is,
substituting ¢ in (8.2) and solving for p and w. Thus, in this case we obtain linear

stability of the homogeneous solutions which is another difference with respect to the
constant case.
Finally, we remark that the asymptotic phase velocity of the waves is given by

c) — 26,2 v - @ ~ 280

and coincides with the time dependent speed of sound in the usual Euler gas.
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