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Abstract

In this work we present preliminary results of a high order WENO scheme applied
to a new formulation of the Boltzmann equation (BTE) describing electron transport
in semiconductor devices with a spherical coordinate system for the phase velocity
space. The problem is two dimensional in the phase velocity space and one dimen-
sional in the physical space, plus the time variable driving to steady states. The new
formulation avoids the singularity due to the spherical coordinate system.
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1 Introduction

The Boltzmann equation (BTE) describes electron transport in semiconductor devices.
Solving it numerically is not an easy task because the BTE is an integro-differential equation
with six dimensions (three in the phase velocity space and three in the physical space) and
one additional dimension in time. Actually, one of the most popular method to model
charge transport in such devices is the Monte Carlo method. However, it could be very
noisy at extreme regimes. Fatemi and Odeh [1] developed a finite difference scheme for
solving the Boltzmann-Poisson system. They used a spherical coordinate system for the
phase velocity space and a first order upwind scheme to discretize the differential terms in
the BTE. However, their approach introduces a singularity in the free streaming operator,

the treatment of which in [1] is ad hoc.

Recently Majorana and Pidatella [3] introduced a new solver for the BTE based on
the finite difference box method. A new formulation is introduced to avoid the above
singularity. In this paper, we apply the high order non-oscillatory finite difference WENO
schemes [2] to this formulation, resulting in a solver which is high order accurate regardless
of the irregularity of the distribution function near the junctions of the device. Preliminary

numerical results are shown to demonstrate the capability of this solver.

2 Basic equations

We consider an electron gas, which interacts with a bath of phonons assumed to be in

thermal equilibrium. In this case the Boltzmann equation is

o Ve VB = Q). (21)

The unknown f is the electron distribution function, which depends on time ¢, space co-
ordinates x and phase velocity vector k. The parameters A and e are the Planck constant
divided by 27 and the positive electric charge, respectively. The symbol V, stands for the

gradient with respect to the variables k and V, that with respect to the space coordinates



x. The particle energy ¢ is an assigned nonnegative continuous function. If the Kane model

is assumed, then

1 K2

e(k) = k[ (22)
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where m”* is the effective mass and & is the nonparabolicity factor. The widely used

parabolic approximation is obtained from Eq. (2.2) by putting & = 0.

In Eq. (2.1) the electric field E satisfies the Poisson equation

AV = Z [n(t,x) — Np(x)], (2.3)
E=-V,V, (2.4)

where € is the permittivity, n(t,x) = [paf(%,x,k)dk is the electron density, Np(x) is the
doping and V' is the electric potential. Eqs. (2.1)-(2.3)-(2.4) give the Boltzmann-Poisson

system.

We follow a semi-classical approach for the collision term Q(f), so that, in the low

density regime, it is

QU ExI0 = [, SIS (txK) = S(k,K)F(t:x W] i (25)

The kernel S, which takes into account the scattering processes between electrons and

phonons, is defined by

S(k k') = Ko(k, k)3 ((K) — e (k) + K(k, k)

X [(ng +1)d(e(k") — e(k) +hw) + nyd(e(K) — (k) — hw)] . (2.6)

Here, we have included intra-valley acoustic phonon scattering in the elastic approximation
and intra-valley optical non-polar phonon scattering with one frequency. These scattering
mechanisms are chosen because of their importance in Si. The constant n, is the occupation

number of phonons and is given by




where w is the constant phonon frequency, kg is the Boltzmann constant and 77, is the

lattice temperature. The symbol ¢ indicates the usual Dirac distribution.

We are looking for a solution of the BTE, which depends only on one spatial coordinate,
denoted by z. It is useful to introduce dimensionless equations, and to use the following

coordinate transformation

k:ﬂ%\/ﬁ\/l—i—a[(w(\/l—uzcosd),\/1 — p2sing, p) (2.7)

where ay = kg1 and w is a dimensionless energy.

Eq. (2.7) is equivalent to the spherical coordinate transformation when the parabolic
band approximation is used. The main advantage of the new coordinates is the easy treat-

ment of the § function. In fact, it is simple to check that
£ = kBTLw,

so that the integrals with respect to w in the collision operator can be solved exactly by
using the properties of the § function. The use of a new dimensionless unknown ® instead
of the distribution function f allows us to write the Boltzmann equation in the following

conservative form:

od 0 0 0
—+ — (a1P) + — (a,® — (a3P) = C(® 2.8

where
D(t, z,w, 1) = s(w) f(t, z,w, p)

except multiplication of dimensional constants with s(w) = (1+ 2aKw)\/m. The
functions a; depend on the variables w, p and the electric field. The operator C' replaces
the collision operator Q(f). More precisely after taking suitable dimensionless variables,
they are given by

B 1 ps(w)
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as = as(t, z,w, ) = —



and
E(t,2) (1= p2)(1+ 20k w)
t. s(w) '

The new collision operator is given by mere evaluations and one dimensional integrals of

a3 = a3(t7 Z,UJ,M) = -

the new unknown &:

C(®)(k) = %10) {% /_ll[ﬁcb(t,z,w,u') +a®(t, z,w+ a,p1’) + Ot, z,w — o, p')|dp
_5(11;) [Bs(w) + as(w — a) + s(w + a)]@(t,z,w,u)} ,

where t,, o and  depend on the physical constants in the scattering mechanisms. Let us
remark that the flux coefficients a; and a, are completely smooth in the variables w and p,
assuming F is smooth. The flux coefficient a3 is singular for zero energy w = 0, however
when multiplied with @ it should form a smooth flux as ® contains a factor s(w) to cancel

the denominator in as.

3 WENO schemes

We apply the fifth order weighted ENO (WENO) schemes developed in [2] to the conser-
vation law equation (2.8). WENO schemes are designed for hyperbolic conservation laws
or other problems containing either discontinuous solutions or solutions with sharp gra-
dients. The guiding principle is an adaptive usage of a nonlinear convex combination of
contributions from local stencils, so that contributions from stencils containing a possi-
ble discontinuity or other unpleasant features (e.g., a high gradient) are assigned a nearly
zero weight (hence the term weighted essentially non-oscillatory, or WENO). In doing this,
uniform high order accuracy can be achieved without introducing any oscillations near dis-
continuities or sharp gradient regions. Steady state is achieved by a time accurate marching,
allowing us to use the same code to simulate time accurate solutions. The high order accu-
racy of these algorithms allows us to use relatively coarse grids and still get very accurate
results. The algorithms have been successfully applied to many applications in various areas
of computational physics, such as gas dynamics, astrophysics, etc. For a review of these

algorithms, we refer to the lecture notes [4].



4 Numerical results

We consider a Si n™-n-n" diode of a total length of 0.25m, with a 50nm channel located in
the middle of the device. The dimensional doping is given by N =5 x 10®¥cm ™ in the n

3

region and Np = 10®cem ™ in the n region. The input parameters are time in picoseconds

ps, length in microns pum and Vias in Volt V.

Our computational parameters for the integral operator C'(®) are characteristic time
t, =~ 3.58923 ps, dimensionless Kane constant a g = 0.012926, scattering mechanism con-
stants 3 ~ 5.986, o ~ 2.43694, a = exp (o) ~ 11.438 and ¢, = 1.10822 x 10° is the

dimensionless constant for the rescaled Poisson equation. See [3] for details.

In the following sequel we include the plots of the modified electron distribution function
O (t, z,w,u) = s(w)f(t,z,w,p) of the Kane (non-parabolic band) model, in Figure 1, left,
in spherical coordinates for a potential bias of Vj;,, = 1V localized at the point z = 2, =
0.125pm in the middle of the channel. A sharp anisotropy can be observed in the angular
component y, with a drifted mode localized at the scale of the mean velocity corresponding
at zo. In addition, the tail is grossly overpopulated with respect to a shifted Maxwellian
distribution. The computation corresponds to time ¢ = 2ps. Also, our numerical output
indicates that the total current (momentum) flux has not stabilized yet near the junctions
for that time scale, Figure 1, right. There is a fluctuation up to 7% still unsettled near the

left junction. This may indicate more work is needed for the numerical scheme.

Figure 1 should be put here

We also compare theresults at the same V};,s and spatiallocalization zg, for the parabolic

band approximation model and their respective momentum, in Figure 2.

Figure 2 should be put here

We compare the IV-curves for the parabolic and non-parabolic (Kane model) band case



for this device for Vj;,s ranging from 0 to 3 V, in Figure 3. Notice that the non-parabolic

Kane model produces lower current for the same V.

Figure 3 should be put here

Finally we present the comparison of the first thermodynamic quantities of f, namely
the concentration n, the mean velocity v, and the kinetic energy W, for both parabolic and
non-parabolic (Kane) bands models on this device at Vj;,, =1 V, in Figure 4. The electric
field £ = @'(2) is also plotted in Figure 4. We can see that the non-parabolic Kane model

produces a significantly lower velocity v.

Figure 4 should be put here

5 Conclusions

Our computational method provides a direct deterministic simulation for the electron distri-
bution function that is accurate and considerably more computationally efficient for channel
geometries than a Monte Carlo solver. Monte Carlo solver tends to give a more noisy, and
not so reliable result for shorter channels that have more singular solutions, and needs
more CPU time than our code to get comparable resolution. Also, since our code is time

accurate, it can be used to capture transients in time dependent devices.

In our preliminary numerical simulation, we have observed a lower IV curve for the
Kane model than for the parabolic band approximation one. Comparisons with Monte
Carlo simulations and with various moment models such as hydrodynamic and energy

transport models, and experiments on other devices, will be performed in future work.
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Figure 1: For the Kane model. Left: the stationary distribution function ®, at the middle
of the channel zy = 0.125um; Right: the stabilization of the momentum.
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Figure 2: For the parabolic band model. Left: the stationary distribution function ®, at
the middle of the channel zy; = 0.125um; Right: the stabilization of the momentum.
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Figure 3: Comparison between the Kane and the parabolic band models for the Si n*-n-n*
50 nm device. IV-curves (current I in em=2sec™ vs V4, in Volt). Solid line: the parabolic
band model; dashed line: the Kane model.
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Figure 4: Comparison between the Kane and the parabolic band models for the Si n™-n-n*
1V. Top left: the charge density n in cm ?; top right: the (mean)
velocity v in em/sec; bottom left: the energy W in eV; bottom right: the electric field F
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in 103V/em. Solid line: the parabolic band model; dashed line: the Kane model.
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