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GLOBAL WELL-POSEDNESS OF A BINARY-TERNARY BOLTZMANN

EQUATION

IOAKEIM AMPATZOGLOU, IRENE M. GAMBA, NATAŠA PAVLOVIĆ, AND MAJA TASKOVIĆ

Abstract. In this paper we show global well-posedness near vacuum for the binary-ternary
Boltzmann equation. The binary-ternary Boltzmann equation provides a correction term to the
classical Boltzmann equation, taking into account both binary and ternary interactions of par-
ticles, and may serve as a more accurate description model for denser gases in non-equilibrium.
Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltz-
mann equation follow as special cases. To prove global well-posedness, we use a Kaniel-Shinbrot
iteration and related work to approximate the solution of the nonlinear equation by monotone
sequences of supersolutions and subsolutions. This analysis required establishing new convolution
type estimates to control the contribution of the ternary collisional operator to the model. We
show that the ternary operator allows consideration of softer potentials than the one binary op-
erator, consequently our solution to the ternary correction of the Boltzmann equation preserves
all the properties of the binary interactions solution. These results are novel for collisional opera-
tors of monoatomic gases with either hard or soft potentials that model both binary and ternary
interactions.

1. Introduction

We study global in time well-posedness near vacuum of the Cauchy problem for an extension of
the classical Boltzmann transport equation (BTE) for monoatomic binary interactions gases that
includes ternary interactions. This equation, which can be viewed as a model of a denser gas
dynamics, has been recently introduced by two of the authors in [5], who rigorously derived, from
finitely many particle dynamics, the purely ternary model for the case of hard potential interactions
zone for short times. Moreover, it is seen in [3] that the ternary collisional operator derived in [5] has
the same conservation laws and entropy production properties as the classical binary operator, which
justifies that the introduced ternary term can serve as a higher order correction to the Boltzmann
equation. Such rigorous derivation of the full binary-ternary model is a work in progress [4]. Let us
also mention that Maxwell models with multiple particle interactions have been studied in [7, 8],
for the space homogeneous case via Fourier Transform methods.

In this paper, we provide the first rigorous analytical result that shows global in time existence
and uniqueness of mild solutions near vacuum to the binary-ternary model and the purely ternary
model on its own. By mild solutions we mean that the x-space dependence of the solution is
evaluated along the characteristic curves given by the Hamiltonian evolution of the particle system
in between collisions (denoted by f#, being introduced in Subsection 2.2). The analytical techniques
we use are inspired by the works [14, 13, 6, 19, 20, 16] and the more recent work of [1, 2]. These
techniques rely on finding convergent supersolutions and subsolutions to the strong form of (1.1)
in the associated strong topology of space-velocity Maxwellian weighted in L∞-functions.

The binary-ternary Boltzmann transport equation we focus on is given by
{
∂tf + v · ∇xf = Q2(f, f) +Q3(f, f, f), (t, x, v) ∈ (0,∞)× R

d × R
d,

f(0) = f0, (x, v) ∈ R
d × R

d,
(1.1)

and describes the evolution of the probability density f of a dilute gas in non-equilibrium in R
d,

d ≥ 2, given an initial condition f0 : R
d × R

d → R, when both binary and ternary interactions
among particles can occur. The operator Q2(f, f) is the classical binary collisional operator, which
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expresses binary elastic interactions between particles, and is of quadratic order, while the operator
Q3(f, f, f) is the ternary collisional operator which expresses ternary interactions among particles,
and is of cubic order. For the exact forms of the operators Q2(f, f), Q3(f, f, f) used in this paper,
see (2.1), (2.14) respectively. We should mention that the purely ternary model, rigorously derived
for short times in [5], is given by

{
∂tf + v · ∇xf = Q3(f, f, f), (t, x, v) ∈ (0,∞)× R

d × R
d,

f(0) = f0, (x, v) ∈ R
d × R

d,
(1.2)

We refer to (1.2) as the ternary Boltzmann transport equation.

For the classical Boltzmann transport equation

{
∂tf + v · ∇xf = Q2(f, f), (t, x, v) ∈ (0,∞)× R

d × R
d,

f(0) = f0, (x, v) ∈ R
d × R

d,
(1.3)

one way to obtain global well-posedness near vacuum is by utilizing an iterative scheme which con-
structs monotone sequences of supersolutions and subsolutions that converge to the global solution
of (1.3). This has been carried out for the first time by Illner and Shinbrot [13], who were motivated
by the work of Kaniel and Shinbrot [14], who in turn showed local in time well-posedness for (1.3)
following this program. Later, this work was extended to include wider range of potentials and
to relax assumptions on initial data by Bellomo and Toscani [6] , Toscani [19, 20] and Palczewski
and Toscani [16]. Alonso and Gamba [2] used Kaniel-Shinbrot iteration to derive distributional
and classical solutions to (1.3) for soft potentials for large initial data near two sufficiently close
Maxwellians in position and velocity space, while Alonso [1] used this technique to study the in-
elastic Boltzmann equation for hard spheres. Strain [18] remarks that the estimates he derives can
be combined with the Kaniel-Shinbrot iteration to obtain existence of unique mild solution for the
relativistic Boltzmann equation.

Kaniel-Shinbrot iteration is also an important tool for proving non-negativity of solutions, see
for example [17, 10, 9]. Also, when initial data has decay in the direction of x− v as opposed to x

and v separately, Kaniel-Shinbrot iteration can be used to construct solutions with infinite energy,
see for example [15, 24, 23].

Certain problems have been solved by considering modifications of the Kaniel-Shinbrot iteration.
For example, Bellomo and Toscani [21] adapted the iteration to the Boltzmann-Enskog equation.
Ha, Noh and Yun [12] and Ha and Noh [11] also modified the iteration to prove global existence
of mild solutions to the Boltzmann system for gas mixtures in the elastic and the inelastic cases
respectively. Also, Wei and Zhang [22] used another modified iteration to obtain eternal solutions
for the Boltzmann equation.

The goal of this paper is to establish global existence and uniqueness of a mild solution near
vacuum to the binary-ternary Boltzmann equation (1.1) in spaces of non-negative functions bounded
by a Maxwellian. Moreover, solution of (1.2) follows as a special case. Inspired by [13, 14, 2], we
devise an iterative scheme which constructs monotone sequences of supersolutions and subsolutions
to (1.1). For small enough initial data, the beginning condition of the iteration holds globally in
time and the two sequences can be shown to converge to the same limit, namely a function f which
solves equation (1.1) in a mild sense. This strategy requires new ideas given the fact that ternary
interactions are also taken into account in (1.1).
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In particular, due to the presence of the ternary correction term, one needs to properly adapt
the iteration, so that the corresponding supersolutions and subsolutions remain monotone and
convergent. One of the main tools is stated in Lemma 3.2 which provides important exponentially
weighted convolution estimates. This Lemma not only recovers the estimates developed in [2]
for the binary interaction case, but also develops a new approach in order to treat the ternary
interaction case. Lemma 3.2 is crucially used to obtain uniform in time, space-velocity L1-bounds
that control the ternary gain and loss terms (L∞L1 estimates). In fact, using Lemma 3.2 one first
obtains asymmetric estimates (see Lemma 3.3) because of the asymmetry introduced by the ternary
collisional operator which is not present in the binary case. However, to obtain convergence, it is
essential to have symmetry with respect to the inputs of the gain and loss operators. We were
able to achieve this symmetrization in Proposition 3.4. Finally, we also use Lemma 3.2 to prove a
global estimate for the time average of the gain and loss operators along the characteristics of the
Hamiltonian, see Proposition 3.7. With this, we were able to extend the argument for controlling
the binary time integrals of both, gain and loss terms, (see [2]), to the ternary case by invoking
properties of ternary interactions and a 2d-analog of the time integration bound for a traveling
Maxwellian.

With these tools in hand, for small initial data, the constructed iteration scheme is proved to
converge to the unique, global in time mild solution of (1.1). For more details see Section 4 and
Section 5.

Organization of the paper. In Section 2, we review the binary and ternary collisional operators
and decompose them into gain and loss forms. We then introduce some necessary notation and
state our main result (Theorem 2.10). In Section 3, we prove the convolution estimate and derive
essential bounds for the gain and loss operators. In Section 4, we inductively construct monotone
sequences of supersolutions and subsolutions which are shown to converge to a common limit which
solves the binary-ternary Boltzmann equation (1.1), as long as a beginning condition is satisfied.
Finally, in Section 5 we provide the proof of our main result (Theorem 2.10).

Acknowledgements. I.A. acknowledges support from NSF grants DMS-1516228, DMS-1840314,
DMS-2009549 and the Simons Collaboration on Wave Turbulence. I.M.G. acknowledges support
from NSF grants DMS-1107465 and DMS-1715515. N.P. acknowledges support from NSF grants
DMS-1516228, DMS-1840314 and DMS-2009549. M.T. acknowledges support from NSF grant
DMS-1107465 and an AMS-Simons Travel Grant.

2. Towards the statement of the main result

The goal of this section is to present the precise statement of the main result of this paper. In
order to do so, we first review the collisional operators and decompose them to gain and loss form
in Subsection 2.1, introduce necessary notation and the notion of a solution in Subsection 2.2, and
then state the main result in Subsection 2.3 (Theorem 2.10).

2.1. Collisional operators.

2.1.1. Binary collisional operator. The binary collisional operator is given by

Q2(f, f)(t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)
(
f(t, x, v′)f(t, x, v′1)− f(t, x, v)f(t, x, v1)

)
dω dv1, (2.1)
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where

u := v1 − v, (2.2)

is the relative velocity of a pair of interacting particles centered at x, x1 ∈ R
d, with velocities

v, v1 ∈ R
d before the binary interaction with respect to the impact direction

ω :=
x1 − x

|x− x1|
∈ S

d−1
, (2.3)

and

v
′ := v + (ω · u)ω, v

′
1 := v1 − (ω · u)ω, (2.4)

are the outgoing velocities after the binary interaction.

One can easily verify the binary energy-momentum conservation system is satisfied

v
′ + v

′
1 = v + v1, (2.5)

|v′|2 + |v′1|2 = |v|2 + |v1|2. (2.6)

Either (2.4) or (2.5)-(2.6) imply

|u′| = |u|, where u
′ := v

′
1 − v

′
. (2.7)

In addition, equation (2.4) yields the specular reflection with respect to the impact direction ω

ω · u′ = −ω · u. (2.8)

In fact it is not hard to show that, given v, v1 ∈ R
d, expression (2.4) gives the general solution of the

system (2.5)-(2.6), parametrized by ω ∈ S
d−1. The factor B2 in the integrand of (2.1) is referred as

the binary interaction differential cross-section which depends on relative velocity u and the impact
direction ω. It expresses the transition probability of binary interactions, and we assume it is of
the form

B2(u, ω) = |u|γ2b2(û · ω), γ2 ∈ (−d+ 1, 1], (2.9)

where û =
u

|u| ∈ S
d−1 is the relative velocity direction and b2 : [−1, 1] → [0,∞) is the binary angular

transition probability density. It is worth mentioning that the case γ2 ∈ (0, 1] corresponds to hard
potentials, the case γ2 ∈ (−d + 1, 0) corresponds to soft potentials and the case γ2 = 0 corresponds
to Maxwell molecules.

We assume that the binary angular transition probability density b2 satisfies the following prop-
erties

• b2 : [−1, 1] → R is a measurable, non-negative probability density.
• b2 is even i.e.

b2(−z) = b2(z), ∀z ∈ [−1, 1], (2.10)

which, due to property from (2.8), yields the binary micro-reversibility condition

b2(û
′ · ω) = b2(û · ω), ∀ω ∈ S

d−1
, ∀v, v1 ∈ R

d
, (2.11)

where û′ =
u′

|u| ∈ S
d−1 is the scattering direction. In addition, relations (2.7), (2.9) and

(2.11) yield

B2(u
′
, ω) = B2(u, ω), ∀ω ∈ S

d−1
, ∀v, v1 ∈ R

d
. (2.12)
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• The probability density is integrable on the sphere, i.e. for any fixed û we have b2(û · ω) ∈
L1(Sd−1), or equivalently b2(z)(1− z2)

d−3

2 ∈ L1([−1, 1]), for z = û · ω, and

‖b2‖L1(Sd−1) = |Sd−2|
ˆ 1

−1

|b2(z)|(1− z
2)

d−3

2 dz < ∞, (2.13)

where |Sd−2| is the volume of the (d− 2)-dimensional sphere.

Remark 2.1. The integrability condition on b2 is weaker than the classical Grad cut-off assumption
which assumes b2 is a bounded function of z = û · ω. So our result is valid for a broader class of
angular transition probability measures.

Remark 2.2. One can see that the usual hard sphere model is a special case of the form (2.9) for

γ2 = 1, b2(z) =
|z|
2
.

2.1.2. Ternary collisional operator. The ternary collisional operator is given by (see [5] for details)

Q3(f, f, f)(t, x, v)

=

ˆ

S2d−1×R2d

B3(u,ω) (f(t, x, v, v∗)f(t, x, v, v∗1)f(t, x, v, v
∗
2)− f(t, x, v)f(t, x, v1)f(t, x, v2)) dω1 dω2 dv1 dv2,

(2.14)

where

u :=

(
v1 − v

v2 − v

)
∈ R

2d
, (2.15)

is the relative velocity of some colliding particles centered at x, x1, x2 ∈ R
d, with velocities v, v1, v2 ∈

R
d before the ternary interaction with respect to the impact directions vector

ω =

(
ω1

ω2

)
:=

1√
|x− x1|2 + |x− x2|2

(
x1 − x

x2 − x

)
∈ S

2d−1
, (2.16)

and

v
∗ = v +

ω1 · (v1 − v) + ω2 · (v2 − v)

1 + ω1 · ω2
(ω1 + ω2),

v
∗
1 = v1 − ω1 · (v1 − v) + ω2 · (v2 − v)

1 + ω1 · ω2
ω1,

v
∗
2 = v2 −

ω1 · (v1 − v) + ω2 · (v2 − v)

1 + ω1 · ω2
ω2,

(2.17)

are the outgoing velocities of the particles after the ternary interaction. It can be easily seen that
if v∗, v∗1 , v

∗
2 are given by (2.17), the ternary energy-momentum conservation system

v
∗ + v

∗
1 + v

∗
2 = v + v1 + v2, (2.18)

|v∗|2 + |v∗1 |2 + |v∗2 |2 = |v|2 + |v1|2 + |v2|2, (2.19)

is satisfied. Expressions (2.18)-(2.19) also imply the ternary velocities conservation law

|v∗ − v
∗
1 |2 + |v∗ − v

∗
2 |2 + |v∗1 − v

∗
2 |2 = |v − v1|2 + |v − v2|2 + |v1 − v2|2, (2.20)

For the postcollisional relative velocity, we will write

u
∗ :=

(
v∗1 − v∗

v∗2 − v∗

)
, (2.21)
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and let us also define the quantities

|ũ| :=
√

|v − v1|2 + |v − v2|2 + |v1 − v2|2, (2.22)

|ũ∗| :=
√

|v∗ − v∗1 |2 + |v∗ − v∗2 |2 + |v∗1 − v∗2 |2. (2.23)

Then (2.20) can be written as

|ũ| = |ũ∗|, (2.24)

which is the ternary analog of the binary expression (2.7). Defining

ū :=
u

|ũ| , ū
∗ :=

u
∗

|ũ| , (2.25)

equality (2.20) implies ū, ū∗ ∈ E
2d−1, where

E
2d−1 := {(ν1, ν2) ∈ R

2d : |ν1|2 + |ν2|2 + |ν1 − ν2|2 = 1}, (2.26)

is a (2d− 1)-dimensional ellipsoid. The vectors ū, ū∗ are the ternary analogs of the relative velocity
direction and the scattering direction of the binary interaction. Because of the assymetry of the
ternary interaction they are not unit vectors, they lie on the ellipsoid E

2d−1 instead. However, for
convenience we will refer to ū, ū∗ as relative velocity direction and scattering direction respectively.

The collisional formulas (2.17) also imply

ω · ū∗ = −ω · ū, (2.27)

which is the ternary analog to specular reflection with respect to the impact directions vector
ω = (ω1, ω2) ∈ S

2d−1. Indeed, one has

ω · u∗ = ω1 · (v∗1 − v
∗) + ω2 · (v∗2 − v

∗) = u · ω − 2u · ω

1 + ω1 · ω2

(
|ω1|2 + ω1 · ω2 + |ω2|2

)
= −ω · u,

which is equivalent to (2.27) due to (2.25).

The term B3 in the integrand of (2.14), depending on the relative velocity u ∈ R
2d and the

impact directions vector ω = (ω1, ω2) ∈ S
2d−1, is the ternary interaction differential cross-section,

which describes the transition probability of ternary interactions. Recalling |ũ| from (2.22) and
ū ∈ E

2d−1 from (2.25), we assume B3 takes the form

B3(u,ω) = |ũ|γ3b3 (ū · ω, ω1 · ω2) , γ3 ∈ (−2d+ 1, 1], (2.28)

and b3 : [−1, 1] × [− 1
2
, 1
2
] → [0,∞) is the ternary angular transition probability density. Since ω =

(ω1, ω2) ∈ S
2d−1, Cauchy-Schwartz inequality and (2.22) yield

|ū · ω| ≤ |ū| · |ω| = |u|
|ũ| ≤ 1. (2.29)

Moreover, for any ω = (ω1, ω2) ∈ S
2d−1, Cauchy-Schwartz inequality followed by Young’s inequal-

ity yield

|ω1 · ω2| ≤ |ω1| · |ω2| ≤ |ω1|2 + |ω2|2
2

=
1

2
.

Therefore, for any ω = (ω1, ω2) ∈ S
2d−1
1 , the expression b3 (ū · ω, ω1 · ω2) is well defined.

In addition, we assume that b3 satisfies the following properties

• b3 : [−1, 1]× [− 1
2
, 1
2
] → R is a measurable, non-negative probability density.
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• b3 is even with respect to the first argument i.e.

b3(−z, w) = b3(z,w), ∀(z,w) ∈ [−1, 1]× [−1

2
,
1

2
] . (2.30)

In addition, due to (2.27), the ternary micro-reversibility condition holds

b3 (ū
∗ · ω, ω1 · ω2) = b3 (ū · ω, ω1 · ω2) , ∀ω ∈ S

2d−1
, ∀v, v1, v2 ∈ R

d
, (2.31)

and relations (2.28), (2.25) and (2.31) imply the total ternary collision kernel satisfies

B3(u
∗

,ω) = B3(u,ω), ∀ω ∈ S
2d−1

, ∀v, v1, v2 ∈ R
d
. (2.32)

• The probability density b3 is integrable on S
2d−1 i.e.

‖b3‖L1(S2d−1) := sup
ν∈E

2d−1
1

ˆ

S2d−1

b3(ν · ω, ω1 · ω2) dω < ∞. (2.33)

Remark 2.3. One can see that the ternary operator introduced in [5] is a special case of (2.28) for

γ3 = 1, b3(z, w) =
1

2

|z|√
1 + w

.

Remark 2.4. Throughout the paper we assume that at least one of b2, b3 is not trivially zero;
however one of the two could be zero. If b3 = 0, we recover the classical Boltzmann equation (1.3),
while if b2 = 0 we recover the ternary Boltzmann equation (1.2). As it will become clear, see for
instance (2.78), the dependence on the size of b2 and b3 is additive implying that the two collisional
operators can be studied separately.

2.1.3. Gain and loss operators. It turns out more convenient to study the more general collisional
operators

Q2(f, g)(t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)
(
f(t, x, v′)g(t, x, v′1)− f(t, x, v)g(t, x, v1)

)
dω dv1, (2.34)

Q3(f, g, h)(t, x, v) =

ˆ

S2d−1×R2d

B3(u,ω) (f(t, x, v∗)g(t, x, v∗1)h(t, x, v
∗
2)− f(t, x, v)g(t, x, v1)h(t, x, v2))

dω1 dω2 dv1 dv2,

(2.35)
Due to the assumptions (2.13), (2.33), the binary-ternary operator Q2(f, g) + Q3(f, g, h) can be
decomposed into a gain and a loss term as follows

Q2(f, g) +Q3(f, g, h) = G(f, g, h)− L(f, g, h), (2.36)

where

L(f, g, h) = L2(f, g) + L3(f, g, h), (2.37)

G(f, g, h) = G2(f, g) +G3(f, g, h). (2.38)

The binary gain and loss operators G2, L2 are given respectively by

G2(f, g)(t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)f(t, x, v
′)g(t, x, v′1) dω dv1, (2.39)

L2(f, g)(t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)f(t, x, v)g(t, x, v1) dω dv1, (2.40)

(2.41)
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and are clearly bilinear. The ternary gain and loss operators L3, G3 are given respectively by

G3(f, g, h)(t, x, v) =

ˆ

S2d−1×R2d

B3(u,ω)f(t, x, v∗)g(t, x, v∗1)h(t, x, v
∗
2) dω1 dω2 dv1 dv2, (2.42)

L3(f, g, h)(t, x, v) =

ˆ

S2d−1×R2d

B3(u,ω)f(t, x, v)g(t, x, v1)h(t, x, v2) dω1 dω2 dv1 dv2, (2.43)

and are clearly trilinear. Notice the loss term can be factorized as

L(f, g, h) = fR(g, h), (2.44)

where R is given by

R(g, h) := R2(g) +R3(g, h), (2.45)

R2 is the linear operator

R2(g)(t, x, v) :=

ˆ

Sd−1×Rd

B2(u, ω)g(t, x, v1) dω dv1, (2.46)

and R3 is the bilinear operator

R3(g, h)(t, x, v) :=

ˆ

S2d−1×R2d

B3(u,ω)g(t, x, v1)h(t, x, v2) dω1 dω2 dv1 dv2. (2.47)

2.2. Some notation and the notion of a solution. Throughout the paper, the dimension d ≥ 2,
the binary and ternary integrability assumptions (2.13), (2.33) respectively, and the cross-section
exponents

γ2 ∈ (−d+ 1, 1], γ3 ∈ (−2d+ 1, 1], (2.48)

appearing respectively in (2.9), (2.28) will be fixed. Moreover, Cd denotes a general constant
depending on the dimension d and can change values.

2.2.1. Functional spaces. Let us introduce the functional spaces used in this paper. First, in order
to point out the dependence in positions and velocities, we will use the notation

L
1
x,v := L

1(Rd × R
d), (2.49)

L
∞
x,v := L

∞(Rd × R
d). (2.50)

We also define the sets of space-velocity functions

Fx,v := {f : Rd × R
d → R, such that f is measurable}, (2.51)

F
+
x,v := {f ∈ Fx,v : f(x, v) ≥ 0, for a.e. (x, v) ∈ R

d × R
d}, (2.52)

L
1,+
x,v := L

1
x,v ∩ F

+
x,v. (2.53)

In general, for f, g ∈ Fx,v, we write f ≥ g iff f(x, v) ≥ g(x, v) for a.e. (x, v) ∈ R
d × R

d. Same notation
will hold for equality as well.

Given α, β > 0, we define the corresponding (non-normalized) Maxwellian Mα,β : Rd×R
d → (0,∞)

by

Mα,β(x, v) := e
−α|x|2−β|v|2

. (2.54)

We also define the corresponding Banach space of functions essentially bounded by Mα,β as

Mα,β := {f ∈ Fx,v : ‖f‖Mα,β < ∞}, (2.55)

where

‖f‖Mα,β := ‖fM−1
α,β‖L∞

x,v
.
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We will write fn
Mα,β−→ f if

fn
a.e.−→ f and sup

n∈N

‖fn‖Mα,β < ∞. (2.56)

It is clear that if fn
Mα,β−→ f then fn ∈ Mα,β for all n ∈ N and f ∈ Mα,β. If k ∈ N and f1,n

Mα,β−→ f1,

f2,n
Mα,β−→ f2,..., fk,n

Mα,β−→ fk, we will write

(f1,n, ..., fk,n)
Mα,β−→ (f1, ..., fk).

We also define the set of a.e. non-negative functions essentially bounded by Mα,β as

M+
α,β := Mα,β ∩ F

+
x,v. (2.57)

Given 0 < T ≤ ∞, we define the sets of time dependent functions

FT := {f : [0, T ) → Fx,v}, (2.58)

F+
T := {f : [0, T ) → F

+
x,v}, (2.59)

and given f, g ∈ FT , we will write f ≥ g iff f(t) ≥ g(t) for all t ∈ [0, T ). Same notation will hold for
equalities as well.

Finally, we define the following subsets of functional spaces

C
0([0, T ), L1,+

x,v ) := C
0([0, T ), L1

x,v) ∩ F+
T , (2.60)

L
1
loc([0, T ), L

1,+
x,v ) := L

1
loc([0, T ), L

1
x,v) ∩ F+

T , (2.61)

L
∞([0, T ), L1,+

x,v ) := L
∞([0, T ), L1

x,v) ∩ F+
T , (2.62)

and given α, β > 0, we define the Banach space of time dependent functions uniformly essentially
bounded by Mα,β

L
∞([0, T ),Mα,β) := {f ∈ FT : |||f |||∞ < ∞}, (2.63)

with norm

|||f |||∞ = sup
t∈[0,T )

‖f(t)‖Mα,β . (2.64)

Notice that in definition (2.63), the supremum is taken with respect to all t ∈ [0, T ). We also write

L
∞([0, T ),M+

α,β) := L
∞([0, T ),Mα,β) ∩ F+

T . (2.65)

2.2.2. Transport operator. We now introduce the transport operator which will be crucial to define
mild solutions to (1.1). Let us recall from (2.51)-(2.52) the sets of functions

Fx,v := {f : Rd × R
d → R, such that f is measurable},

F
+
x,v := {f ∈ Fx,v : f(x, v) ≥ 0, for a.e. (x, v) ∈ R

d × R
d}.

Consider a positive time 0 < T ≤ ∞ (we can have T = ∞) and recall from (2.58)-(2.59) the sets
of time dependent functions

FT := {f : [0, T ) → Fx,v},
F+

T := {f : [0, T ) → F
+
x,v}.

Given f ∈ FT , we define f# ∈ FT by

f
#(t, x, v) := f(t, x+ tv, v), (2.66)
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and f−# ∈ FT by

f
−#(t, x, v) := f(t, x− tv, v).

Clearly, the operators # : FT → FT and −# : FT → FT are linear and invertible and in particular

(#)−1 = −#.

Remark 2.5. Let f, g ∈ FT . Since the maps (x, v) → (x+ tv, v) and (x, v) → (x− tv, v) are measure-
preserving, for all t ∈ [0, T ), we have

f ≥ g ⇔ f
# ≥ g

# ⇔ f
−# ≥ g

−#
.

In particular

f ∈ F+
T ⇔ f

# ∈ F+
T ⇔ f

−# ∈ F+
T . (2.67)

Remark 2.6. Let f, g ∈ FT . Since the maps (x, v) → (x+ tv, v) and (x, v) → (x− tv, v) are measure-
preserving, for all t ∈ [0, T ), we have

‖f#(t)‖L1
x,v

= ‖f(t)‖L1
x,v

= ‖f−#(t)‖L1
x,v

, ∀t ∈ [0, T ). (2.68)

Relation (2.67)-(2.68) and linearity of the transport operator imply

f ∈ C
0([0, T ), L1,+

x,v ) ⇔ f
# ∈ C

0([0, T ), L1,+
x,v ) ⇔ f

−# ∈ C
0([0, T ), L1,+

x,v ). (2.69)

Throughout the manuscript, we will often define f# ∈ FT directly, implying that f is defined by
f := (f#)−#.

2.2.3. Transported gain and loss operators. In order to define mild solutions to (1.1) , it is important
to understand the action of the transport operator on the gain and loss operators. More specifically,
given f, g, h ∈ FT , for the gain operators we write

G
#
2 (f, g)(t, x, v) := (G2 (f, g))

# (t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)f(t, x+ tv, v
′)g(t, x+ tv, v

′
1) dω dv1,

G
#
3 (f, g, h)(t, x, v) := (G3 (f, g, h))

# (t, x, v)

=

ˆ

S2d−1×R2d

B3(u,ω)f(t, x+ tv, v
∗)g(t, x+ tv, v

∗
1)h(t, x+ tv, v

∗
2) dω1 dω2 dv1 dv2,

G
#(f, g, h)(t, x, v) := G

#
2 (f, g)(t, x, v) +G

#
3 (f, g, h)(t, x, v), (2.70)

and for the loss operators we write

L
#
2 (f, g)(t, x, v) := (L2 (f, g))

# (t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)f(t, x+ tv, v)g(t, x+ tv, v1) dω dv1,

L
#
3 (f, g, h)(t, x, v) := (L3 (f, g, h))

# (t, x, v)

=

ˆ

S2d−1×R2d

B3(u,ω)f(t, x+ tv, v)g(t, x+ tv, v1)h(t, x+ tv, v2) dω1 dω2 dv1 dv2,

L
#(f, g, h)(t, x, v) := L

#
2 (f, g)(t, x, v) + L

#
3 (f, g, h)(t, x, v). (2.71)

Under this notation, it is straightforward to verify that

L
#
2 (f, g, h)(t) = f

#(t)R#
2 (g)(t),

L
#
3 (f, g, h)(t) = f

#(t)R#
3 (g, h)(t),

L
#(f, g, h)(t) = f

#(t)R#(g, h)(t),

(2.72)
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where

R
#
2 (g)(t, x, v) : = (R2 (g))

# (t, x, v) =

ˆ

Sd−1×Rd

B2(u, ω)g(t, x+ tv, v1) dω dv1,

R
#
3 (g, h)(t, x, v) : = (R3 (g, h))

# (t, x, v)

=

ˆ

S2d−1×R2d

B3(u,ω)g(t, x+ tv, v1)h(t, x+ tv, v2) dω1 dω2 dv1 dv2,

R
#(g, h)(t, x, v) : = R

#
2 (g)(t, x, v) +R

#
3 (g, h)(t, x, v). (2.73)

2.2.4. Notion of a mild solution. Using (2.36), the binary-ternary Boltzmann equation (1.1) is
written as follows

{
∂tf + v · ∇xf = G(f, f, f) − L(f, f, f), (t, x, v) ∈ (0,∞)× R

d × R
d,

f(0) = f0, (x, v) ∈ R
d × R

d,
(2.74)

where the gain term G(f, f, f) and the loss term L(f, f, f) are given by (2.38)-(2.37) respectively.

Here is where the importance of the transport operator will become clear. Indeed, using the
chain rule, the initial value problem (2.74) can be formally written as

{
∂tf

# + L#(f, f, f) = G#(f, f, f), (t, x, v) ∈ (0,∞)× R
d × R

d,

f#(0) = f0, (x, v) ∈ R
d × R

d.
(2.75)

Motivated by (2.75), we aim to define solutions of (1.1) up to time 0 < T ≤ ∞, with respect to
a given Maxwellian Mα,β , where α, β > 0.

Definition 2.7. Let 0 < T ≤ ∞, α, β > 0 and f0 ∈ M+
α,β. A mild solution to (1.1) in [0, T ), with

initial data f0 ∈ M+
α,β, is a function f ∈ F+

T such that

(i) f# ∈ C0([0, T ), L1,+
x,v ) ∩ L∞([0, T ),M+

α,β),

(ii) L#(f, f, f), G#(f, f, f) ∈ L∞([0, T ), L1,+
x,v ),

(iii) f# is weakly differentiable and satisfies





df#

dt
+ L

#(f, f, f) = G
#(f, f, f),

f#(0) = f0.

(2.76)

Remark 2.8. The differential equation of (2.76) is interpreted as an equality of distributions since
all terms involved belong to L1

loc([0, T ), L
1,+
x,v ).

Remark 2.9. Remarks 2.5-2.6 imply that a mild solution f to (1.1) belongs to C0([0, T ), L1,+
x,v ).

2.3. Statement of the main result. Now we are ready to state the main result of the paper.

Theorem 2.10. Let 0 < T ≤ ∞, α, β > 0. Then for any initial data f0 ∈ M+
α,β with

‖f0‖Mα,β <
α1/2

48Kβ(1 +
α1/4

2
√

6Kβ
)
, (2.77)

where

Kβ = Cd

[
‖b2‖L1(Sd−1)(β

−d/2 +
1

d+ γ2 − 1
) + ‖b3‖L1(S2d−1)(β

−d +
1

2d + γ3 − 1
)

]
> 0, (2.78)
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and Cd is an appropriate constant depending on the dimension d, the binary-ternary Boltzmann
equation (1.1) has a unique mild solution f satisfying the bound

|||f#|||∞ ≤
1−

√
1− 48Kβα−1/2(1 + α1/4

2
√

6Kβ
)‖f0‖Mα,β

24Kβα−1/2

(
1 + α1/4

2
√

6Kβ

) . (2.79)

Remark 2.11. As we will see, the uniqueness claimed above holds in the class of solutions of (1.1)
satisfying (2.79).

Remark 2.12. According to the assumptions on b2, b3 made in Remark 2.4, Theorem 2.10 applies
as well to the end point cases where either b2 = 0 or b3 = 0 (but not both). In the case b3 = 0, one
recovers the solution of the classical Boltzmann equation (1.3) constructed in [13], while in the case
b2 = 0, one obtains well-posedness of the ternary Boltzmann equation (1.2), introduced in [5].

3. Properties of the transported gain and loss operators

In this section, we investigate properties of the transported gain and loss operators which will
be important for proving global well-posedness of (1.1).

3.1. Monotonicity and L1-norms. As we will see, the transported gain and loss operators are
monotone increasing when acting on non-negative functions. These monotonicity properties will
allow us to construct monotone sequences of supersolutions and subsolutions to (1.1). Moreover,
we show that the L1-norm of the gain is equal to the L1-norm of the loss. This equality will allow
us to reduce estimates on the norm of the gain term to estimating the norm of the loss term. In
the following, saying that an operator is bilinear/trilinear, we mean it is linear in each argument,
and saying it is monotone increasing, we mean it is increasing in each argument.

Proposition 3.1. Let 0 < T ≤ ∞. Then the following hold

(i) R
#
2 : F+

T → F+
T is linear and monotone increasing.

(ii) L
#
2 , G

#
2 , R

#
3 : F+

T × F+
T → F+

T are bilinear and monotone increasing.
(iii) L

#
3 , G

#
3 : F+

T × F+
T × F+

T → F+
T are trilinear and monotone increasing.

(iv) L#, G# : F+
T × F+

T × F+
T → F+

T and R# : F+
T × F+

T → F+
T are monotone increasing.

(v) For any f, g, h ∈ F+
T , the following identities hold

‖G#
2 (f, g)(t)‖L1

x,v
= ‖L#

2 (f, g)(t)‖L1
x,v

, ∀t ∈ [0, T ),

‖G#
3 (f, g, h)(t)‖L1

x,v
= ‖L#

3 (f, g, h)(t)‖L1
x,v

, ∀t ∈ [0, T ),

‖G#(f, g, h)(t)‖L1
x,v

= ‖L#(f, g, h)(t)‖L1
x,v

, ∀t ∈ [0, T ).

(3.1)

Proof. Parts (i)-(iv) are immediate by linearity of the integral, positivity of the functions considered
and relation (2.67).

Let us now prove (v). We first prove (3.1) for the binary case. By (2.68), we have

‖G#
2 (f, g)(t)‖L1

x,v
= ‖G2(f, g)(t)‖L1

x,v
, ‖L#

2 (f, g)(t)‖L1
x,v

= ‖L2(f, g)(t)‖L1
x,v

, ∀t ∈ [0, T ).
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Therefore, for any t ∈ [0, T ), using (2.12) and involutionary substitution (v′, v′1) → (v, v1), we obtain

‖G#
2 (f, g)(t)‖L1

x,v
= ‖G2(f, g)(t)‖L1

x,v

=

ˆ

R3d×Sd−1

B2(u, ω)f(t, x, v
′)g(t, x, v′1) dω dv1 dv dx

=

ˆ

R3d×Sd−1

B2(u
′
, ω)f(t, x, v′)g(t, x, v′1) dω dv1 dv dx

=

ˆ

R3d×Sd−1

B2(u, ω)f(t, x, v)g(t, x, v1) dω dv1 dv dx

= ‖L2(f, g)(t)‖L1
x,v

= ‖L#
2 (f, g)(t)‖L1

x,v
.

We now prove (3.1) for the ternary case. By (2.68), we have

‖G#
3 (f, g, h)(t)‖L1

x,v
= ‖G3(f, g, h)(t)‖L1

x,v
, ‖L#

3 (f, g, h)(t)‖L1
x,v

= ‖L3(f, g, h)(t)‖L1
x,v

, ∀t ∈ [0, T ).

Therefore, for any t ∈ [0, T ), using (2.32) and the involutionary substitution (v∗, v∗1 , v
∗
2) → (v, v1, v2),

we obtain

‖G#
3 (f, g, h)(t)‖L1

x,v
= ‖G3(f, g, h)(t)‖L1

x,v

=

ˆ

R4d×S2d−1

B3(u,ω)f(t, x, v∗)g(t, x, v∗1)h(t, x, v
∗
2) dω1 dω2 dv1 dv2 dv dx

=

ˆ

R4d×S2d−1

B3(u
∗

,ω)f(t, x, v∗)g(t, x, v∗1)h(t, x, v
∗
2) dω1 dω2 dv1 dv2 dv dx

=

ˆ

R4d×S2d−1

B3(u,ω)f(t, x, v)g(t, x, v1)h(t, x, v2) dω1 dω2 dv1 dv2 dv dx

= ‖L3(f, g, h)(t)‖L1
x,v

= ‖L#
3 (f, g, h)(t)‖L1

x,v
.

We finally prove (3.1) for the mixed case. By positivity, for any t ∈ [0, T ), we have

‖G#(f, g, h)(t)‖L1
x,v

= ‖G#
2 (f, g)(t) +G

#
3 (f, g, h)(t)‖L1

x,v
= ‖G#

2 (f, g)(t)‖L1
x,v

+ ‖G#
3 (f, g, h)(t)‖L1

x,v
,

‖L#(f, g, h)(t)‖L1
x,v

= ‖L#
2 (f, g)(t) + L

#
3 (f, g, h)(t)‖L1

x,v
= ‖L#

2 (f, g)(t)‖L1
x,v

+ ‖L#
3 (f, g, h)(t)‖L1

x,v
.

Equality (3.1) for the mixed case immediately follows from the corresponding binary and ternary
equalities. �

3.2. Convolution estimates. We now present a general convolution-type result, which will be
essential for the control of the binary and the ternary collisional operators. These estimates will be
of fundamental importance in the proof of the L∞L1 estimates (see Subsection 3.3) and the global
estimate on the time average of the transported gain and loss operators appearing in Proposition
3.7, which in turn will be crucial for the proof of global well-posedness of (1.1). For the binary case
one can find similar convolution estimates in [14, 13, 2]. Here, our contribution is the derivation of
these estimates for the ternary case, since this is the first time global well-posedness is studied for
such a ternary correction of the Boltzmann equation. The estimates of the ternary term illustrate
that consideration of softer potentials is allowed for the ternary collisional operator.

Lemma 3.2. Let β > 0, q2 ∈ (−d, 1] and q3 ∈ (−2d, 1]. Then the following hold

(i) For any v ∈ R
d, we have

ˆ

Rd

|u|q2e−β|v1|
2

dv1 ≤ K̃
2
β,q2(1 + |v|q

+
2 ), (3.2)
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where u = v1 − v, q+2 := max{0, q2}, K̃2
β,q2

is given by

K̃
2
β,q2 = Cd

[
(1 + β

−d/2 + β
− d+1

2 )1q2>0(q2) + (β−d/2 +
1

d+ q2
)1q2≤0(q2)

]
, (3.3)

and Cd is an appropriate constant depending on the dimension d.

(ii) For any v ∈ R
d, we have

ˆ

R2d

|ũ|q3e−β(|v1|
2+|v2|

2)
dv1 dv2 ≤ K̃

3
β,q3(1 + |v|q

+

3 ), (3.4)

where |ũ| is given by (2.22), q+3 := max{0, q3}, K̃3
β,q3

is given by

K̃
3
β,q3 = Cd

[
(1 + β

−d + β
− 2d+1

2 )1q3>0(q3) + (β−d +
1

2d + q3
)1q3≤0(q3)

]
, (3.5)

and Cd is an appropriate constant depending on the dimension d.

Proof. We will rely on the elementary estimate
ˆ

Rd

e
−β|v1|

2

dv1 ≤ Cdβ
−d/2

, (3.6)

and, given q ∈ (0, 1], on the estimate
ˆ

Rd

|v1|qe−β|v1|
2

dv1 ≤ |Bd
1 |+

ˆ

|v1|>1

|v1|qe−β|v1|
2

dv1

≤ |Bd
1 |+

ˆ

|v1|>1

|v1|e−β|v1|
2

dv1

≤ Cd(1 + β
− d+1

2 ), (3.7)

where |Bd
1 | denotes the volume of the d-dimensional unit ball.

(i) We take separate cases for q2 ∈ (−d, 1]

• q2 ∈ (0, 1]: Since q2 ∈ (0, 1], we have

|u|q2 = |v − v1|q2 ≤ (|v|+ |v1|)q2 ≤ |v|q2 + |v1|q2 .
Therefore

ˆ

Rd

|u|q2e−β|v1|
2

dv1 ≤
ˆ

Rd

(|v|q2 + |v1|q2 )e−β|v1|
2

dv1

≤ Cd(1 + β
−d/2 + β

− d+1

2 )(1 + |v|q2), (3.8)

where to obtain (3.8), we use the estimates (3.6)-(3.7) for q = q2.
• q2 ∈ (−d, 0]: Since q2 ≤ 0, estimate (3.6) implies

ˆ

Rd

|v − v1|q2e−β|v1|
2

dv1 ≤
ˆ

|v−v1|>1

e
−β|v1|

2

dv1 +

ˆ

|v−v1|<1

|v − v1|q2 dv1

= Cdβ
−d/2 +

ˆ

|y|<1

|y|q2 dy

= Cdβ
−d/2 + Cd

ˆ 1

0

r
d−1+q2 dr

= Cd

(
β
−d/2 +

1

d+ q2

)
, (3.9)
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since we have assumed q2 > −d.

(ii) We take separate cases for q3 ∈ (−2d, 1]

• q3 ∈ (0, 1]: Since q3 ∈ (0, 1], we have

|ũ|q3 =
(
|v − v1|2 + |v − v2|2 + |v1 − v2|2

)q3/2

≤ 2q3(|v|2 + |v1|2 + |v2|2)q3/2

≤ 2(|v|q3 + |v1|q3 + |v2|q3).

Therefore, Fubini’s Theorem and estimates (3.6)-(3.7) applied for q = q3 imply
ˆ

R2d

|ũ|q3e−β(|v1|
2+|v2|

2)
dv1 dv2 ≤ 2

ˆ

R2d

(|v|q3 + |v1|q3 + |v2|q3)e−β(|v1|
2+|v2|

2)
dv1 dv2

≤ Cd(1 + β
−d + β

− 2d+1

2 )(1 + |v|q3 ). (3.10)

• q3 ∈ (−2d, 0]: Recalling (2.22) and using the fact that q3 ≤ 0, Fubini’s Theorem and estimates
(3.6)-(3.7) imply

ˆ

R2d

|ũ|q3e−β(|v1|
2+|v2|

2)
dv1 dv2 ≤

ˆ

R2d

|u|q3e−β(|v1|
2+|v2|

2)
dv1 dv2

≤
ˆ

|u|>1

e
−β(|v1|

2+|v2|
2)
dv1 dv2 +

ˆ

|u|<1

|u|q3 dv1 dv2

≤ Cdβ
−d +

ˆ

|u|<1

|u|q3 dv1 dv2

= Cdβ
−d +

ˆ

|y|<1

|y|q3 dy

≤ Cdβ
−d +Cd

ˆ 1

0

r
2d−1+q3 dr

= Cd

(
β
−d +

1

2d+ q3

)
, (3.11)

since we have assumed q3 > −2d.

Combining (3.8)-(3.10) and (3.11), we obtain (3.2)-(3.4). �

3.3. L∞L1 estimates. Here we prove uniform in time, space-velocity L1 estimates on the trans-
ported gain and loss operators. These estimates will be of fundamental importance for the con-
vergence of the iteration to the global solution. As we will see, the ternary collisional operator
introduces some asymmetry which is not present in the binary case. For this reason, when we use
Lemma 3.2, we first obtain estimates in asymmetric form (see Lemma 3.3). However, we will need a
symmetric version of this estimate which we derive in Proposition 3.4. To achieve that, we crucially
rely on properties of the ternary interactions.

Recall from (2.48) the fixed cross-section exponents γ2 ∈ (−d + 1, 1] and γ3 ∈ (−2d + 1, 1]. For
convenience, we define the function

pγ2,γ3(v) = 1 + |v|γ
+
2 + |v|γ

+
3 . (3.12)

Notice that, given α > 0, β > 0, we have

pγ2,γ3Mα,β ∈ L
1
x,v. (3.13)



16 IOAKEIM AMPATZOGLOU, IRENE M. GAMBA, NATAŠA PAVLOVIĆ, AND MAJA TASKOVIĆ

Using Lemma 3.2 for q2 = γ2 and q3 = γ3, we obtain some the assymetric estimates mentioned
above.

Lemma 3.3. Let 0 < T ≤ ∞ and α, β > 0. Then there is a constant Cβ > 0 such that the following
hold

(i) For any g, h ∈ F+
T , with g#, h# ∈ L∞([0, T ),M+

α,β), and any t ∈ [0, T ), we have

0 ≤ R
#
2 (g)(t) ≤ Cβ|||g#|||∞pγ2,γ3 , (3.14)

0 ≤ R
#
3 (g, h)(t) ≤ Cβ|||g#|||∞|||h#|||∞pγ2,γ3 , (3.15)

0 ≤ R
#(g, h)(t) ≤ Cβ|||g#|||∞(1 + |||h#|||∞)pγ2,γ3 . (3.16)

(ii) For any f, g, h ∈ F+
T , with f#, g#, h# ∈ L∞([0, T ),M+

α,β), and t ∈ [0, T ), we have

‖L#
2 (f, g)(t)‖L1

x,v
, ‖G#

2 (f, g)(t)‖L1
x,v

≤ Cβ|||g#|||∞‖f#(t)pγ2,γ3‖L1
x,v

, (3.17)

‖L#
3 (f, g, h)(t)‖L1

x,v
, ‖G#

3 (f, g, h)(t)‖L1
x,v

≤ Cβ|||g#|||∞|||h#|||∞‖f#(t)pγ2,γ3‖L1
x,v

, (3.18)

‖L#(f, g, h)(t)‖L1
x,v

, ‖G#(f, g, h)(t)‖L1
x,v

≤ Cβ|||g#|||∞(1 + |||h#|||∞)‖f#(t)pγ2,γ3‖L1
x,v

. (3.19)

Moreover,

L
#(f, g, h), G

#(f, g, h) ∈ L
∞([0, T ), L1,+

x,v ). (3.20)

Proof. We prove each claim separately.

Proof of (i): Positivity follows immediately by the monotonicity of R
#
2 , R

#
3 , R# on F+

T (see
Proposition 3.1). Since g#, h# ∈ L∞([0, T ),M+

α,β), for any t ∈ [0, T ), we have

0 ≤ g(t, x, v) ≤ |||g#|||∞e
−α|x−tv|2−β|v|2

, for a.e. (x, v) ∈ R
d × R

d
,

0 ≤ h(t, x, v) ≤ |||h#|||∞e
−α|x−tv|2−β|v|2

, for a.e. (x, v) ∈ R
d × R

d
.

(3.21)

Recalling the fact that R#(g, h) = R
#
2 (g) +R

#
3 (g, h), it suffices to prove the estimates (3.14)-(3.15).

Let us first prove (3.14). For a.e. (x, v) ∈ R
2d, estimate (3.21) and part (i) of Lemma 3.2, applied

for q2 = γ2 and q3 = γ3, imply

R2(g)(t, x, v) ≤ ‖b2‖L1(Sd−1)

ˆ

Rd

|u|γ2g(t, x, v1) dv1

≤ ‖b2‖L1(Sd−1)|||g#|||∞
ˆ

Rd

|u|γ2e−β|v1|
2

dv1

≤ Cβ |||g#|||∞(1 + |v|γ
+

2 )

≤ Cβ |||g#|||∞pγ2,γ3(v). (3.22)

Since the right hand side of (3.22) does not depend on x, we obtain (3.14).
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Let us now prove (3.15). For a.e. (x, v) ∈ R
2d, estimate (3.21) and part (ii) of Lemma 3.2, applied

for q2 = γ2 and q3 = γ3, imply

R3(g, h)(t, x, v) ≤ ‖b3‖L1(S2d−1)

ˆ

R2d

|ũ|γ3g(t, x, v1)h(t, x, v2) dv1 dv2

≤ ‖b3‖L1(S2d−1)|||g#|||∞|||h#|||∞
ˆ

R2d

|ũ|γ3e−β(|v1|
2+|v2|

2)
dv1 dv2

≤ Cβ|||g#|||∞|||h#|||∞(1 + |v|γ
+
3 )

≤ Cβ|||g#|||∞|||h#|||∞pγ2,γ3(v). (3.23)

Since the right hand side of (3.23) does not depend on x, we obtain (3.15).

Estimate (3.16) follows by the fact that R#(g, h) = R
#
2 (g) +R

#
3 (g, h).

Proof of (ii): We first prove the claim for the loss operators. Positivity follows immediately
from the monotonicity of L

#
2 , L

#
3 , L# on F+

T . Estimates (3.17)-(3.19) follow directly from (2.72)
and part (i). Moreover, estimate (3.19) implies (3.20) since f#, g#, h# ∈ L∞([0, T ),M+

α,β) and

pγ2,γ3Mα,β ∈ L1
x,v by (3.13).

For the gain operators, positivity follows immediately from the monotonicity of G#
2 , G

#
3 , G# on

F+
T . Estimates (3.17)-(3.19) and (3.20) come from (3.1) and the estimates for the loss operators. �

Notice that bounds (3.17)-(3.19) are only with respect to the first argument f . Although this
is not an issue in the binary case where the gain and loss collisional operators are symmetric with
respect to the inputs in the L1-norm, this is not the case for the ternary operators. In order to treat
this assymetry, we need to derive estimates with respect to all three inputs of the ternary gain and
loss collisional operators. This is achieved in the following result

Proposition 3.4. Let 0 < T ≤ ∞ and α, β > 0. Consider f1, f2, f3 ∈ F+
T with f

#
1 , f

#
2 , f

#
3 ∈

L∞([0, T ),M+
α,β). Then, there is a constant Cβ > 0 such that, for any permutation π : {1, 2, 3} →

{1, 2, 3}, the following estimates hold for any t ∈ [0, T )

‖L#
2 (f1, f2)(t)‖L1

x,v
, ‖G#

2 (f1, f2)(t)‖L1
x,v

≤ Cβ |||f#
π1
|||∞‖f#

π2
(t)pγ2,γ3‖L1

x,v
, (3.24)

‖L#
3 (f1, f2, f3)(t)‖L1

x,v
, ‖G#

3 (f1, f2, f3)(t)‖L1
x,v

≤ Cβ |||f#
π1
|||∞|||f#

π2
|||∞‖f#

π3
(t)pγ2,γ3‖L1

x,v
, (3.25)

‖L#(f1, f2, f3)(t)‖L1
x,v

, ‖G#(f1, f2, f3)(t)‖L1
x,v

≤ Cβ |||f#
π1
|||∞(1 + |||f#

π2
|||∞)‖f#

π3
(t)pγ2,γ3‖L1

x,v
. (3.26)

Proof. By (3.1), triangle inequality and part (ii) of Lemma 3.3, the proof of (3.24)-(3.26) for the
loss term reduces to showing the following estimates

‖L#
2 (f1, f2)(t)‖L1

x,v
≤ Cβ |||f#

1 |||∞‖f#
2 pγ2,γ3‖L1

x,v
, (3.27)

‖L#
3 (f1, f2, f3)(t)‖L1

x,v
≤ Cβ |||f#

1 |||∞|||f#
3 |||∞‖f#

2 pγ2,γ3‖L1
x,v

, (3.28)

‖L#
3 (f1, f2, f3)(t)‖L1

x,v
≤ Cβ |||f#

1 |||∞|||f#
2 |||∞‖f#

3 pγ2,γ3‖L1
x,v

. (3.29)

• Proof of (3.27): Performing the involutionary change of variables (v, v1) → (v1, v) and using (2.10),
for any t ∈ [0, T ), we have

‖L2(f1, f2)(t)‖L1
x,v

= ‖L2(f2, f1)(t)‖L1
x,v

⇒ ‖L#
2 (f1, f2)(t)‖L1

x,v
= ‖L#

2 (f2, f1)(t)‖L1
x,v

.

The claim comes from part (ii) of Lemma 3.3.
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• Proof of (3.28): Here the proof is subtler because the inner product ū · ω is not symmetric
upon renaming the velocities. However, we will strongly rely on the fact that the expression

|ũ|2 = |v − v1|2 + |v − v2|2 + |v1 − v2|2,

given in (2.22) is symmetric with respect to the inputs v, v1, v2.

Since f
#
1 , f

#
3 ∈ L∞([0, T ),M+

α,β), for any t ∈ [0, T ) and a.e. (x, v) ∈ R
d × R

d, we have

0 ≤ fi(t, x, v) ≤ |||f#
i |||∞e

−α|x−tv|2−β|v|2 ≤ |||f#
i |||∞e

−β|v|2
, ∀i ∈ {1, 3}. (3.30)

Using (2.68), the change of variables (v, v1) → (v1, v), bound (3.30), part (ii) of Lemma 3.2, and the
fact that pγ2,γ3 is invariant in space, we obtain

‖L#
3 (f1, f2, f3)(t)‖L1

x,v
= ‖L3(f1, f2, f3)‖L1

x,v

≤ ‖b3‖L1(S2d−1)

ˆ

R4d

|ũ|γ3 |f1(t, x, v)||f2(t, x, v1)||f3(t, x, v2)|dv1 dv2 dv dx

= ‖b3‖L1(S2d−1)

ˆ

R4d

(|v − v1|2 + |v − v2|2 + |v1 − v2|2)γ3/2|f1(t, x, v)||f2(t, x, v1)||f3(t, x, v2)| dv1 dv2 dv dx

= ‖b3‖L1(S2d−1)

ˆ

R4d

(|v − v1|2 + |v − v2|2 + |v1 − v2|2)γ3/2|f2(t, x, v)|f1(t, x, v1)||f3(t, x, v2)| dv1 dv2 dv dx

≤ ‖b3‖L1(S2d−1)

ˆ

R4d

|ũ|γ3 |f2(t, x, v)||f1(t, x, v1)||f3(t, x, v2)|dv1 dv2 dv dx

= ‖b3‖L1(S2d−1)

ˆ

Rd×Rd

|f2(t, x, v)|
ˆ

R2d

|ũ|γ3 |f1(t, x, v1)||f3(t, x, v2)| dv1 dv2 dv dx

≤ ‖b3‖L1(S2d−1)|||f#
1 |||∞|||f#

3 |||∞
ˆ

Rd×Rd

|f2(t, x, v)|
ˆ

R2d

|ũ|γ3e−β(|v1|
2+|v2|

2)
dv1 dv2 dv dx

≤ Cβ|||f#
1 |||∞|||f#

3 |||∞‖f2(t)pγ2,γ3‖L1
x,v

= Cβ|||f#
1 |||∞|||f#

3 |||∞‖(f2(t)pγ2,γ3)#‖L1
x,v

= Cβ|||f#
1 |||∞|||f#

3 |||∞‖f#
2 (t)pγ2,γ3‖L1

x,v
.

• Proof of (3.29): Follows in a similar way to the proof of (3.28).

Estimates (3.24)-(3.26) for the loss operators follow. Estimates for the gain operators follow from
(3.1) and the estimates for the loss operators. The proof is complete. �

Proposition 3.4 also implies an L1-continuity result for the transported gain and loss operators

Corollary 3.5. Let 0 < T ≤ ∞ and α, β > 0. For i ∈ {1, 2, 3}, consider some sequences (fi,n)n ⊆ F+
T

and fi ∈ F+
T such that f

#
i,n(t)

Mα,β−→ f
#
i (t) for all t ∈ [0, T ). Then, for all t ∈ [0, T ), the following

convergence holds

(
L

#(f1,n, f2,n, f3,n)(t), G
#(f1,n, f2,n, f3,n)(t)

) L1
x,v−→
(
L

#(f1, f2, f3)(t),G
#(f1, f2, f3)(t)

)
, as n → ∞.

(3.31)

Proof. Fix t ∈ [0, T ). Since f
#
i,n(t)

Mα,β−→ f
#
i (t), for any i ∈ {1, 2, 3}, we have

f
#
i,n(t)

a.e.−→ f
#
i (t), sup

n∈N

{|f#
i,n(t)|, |f#

i (t)|} ≤ CMα,β , (3.32)
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for some constant C > 0. Thus

fi,n(t)
a.e.−→ fi(t), sup

n∈N

{|fi,n(t)|, |fi(t)|} ≤ CM
−#
α,β (t). (3.33)

Let us first prove (3.31) for the loss case. By (2.37) and triangle inequality, it suffices to prove

‖L#
2 (f1,n, f2,n)(t)− L

#
2 (f1, f2)(t)‖L1

x,v

n→∞−→ 0, (3.34)

‖L#
3 (f1,n, f2,n, f3,n)(t)− L

#
3 (f1, f2, f3)(t)‖L1

x,v

n→∞−→ 0. (3.35)

• Proof of (3.34): Using bilinearity of L#
2 , bound (3.33) and monotonicity of L#

2 , we have

‖L#
2 (f1,n, f2,n)(t)− L

#
2 (f1, f2)(t)‖L1

x,v
≤

≤ ‖L#
2 (f1,n − f1, f2,n)(t)‖L1

x,v
+ ‖L#

2 (f1, f2,n − f2)(t)‖L1
x,v

≤ C‖L#
2 (f1,n − f1,M

−#
α,β )(t)‖L1

x,v
+ C‖L#

2 (M−#
α,β , f2,n − f2)(t)‖L1

x,v

≤ Cβ(‖(f#
1,n(t)− f

#
1 (t))pγ2,γ3‖L1

x,v
+ Cβ‖(f#

2,n(t)− f
#
2 (t))pγ2,γ3‖L1

x,v
), (3.36)

where to obtain the last inequality we use (3.24) from Proposition 3.4 and ‖Mα,β‖Mα,β = 1.

By (3.32) and the Dominated Convergence Theorem, each of the terms in (3.36) goes to zero as
n → ∞ and (3.34) is proved.

• Proof of (3.35): Using trilinearity of L#
3 , bound (3.33) and monotonicity of L#

3 , we have

‖L#
3 (f1,n, f2,n, f3,n)(t)− L

#
3 (f1, f2, f3)(t)‖L1

x,v

≤ ‖L#
3 (f1,n − f1, f2,n, f3,n)(t)‖L1

x,v
+ ‖L#

3 (f1, f2,n − f2, f3,n)(t)‖L1
x,v

+ ‖L#
3 (f1, f2, f3,n − f3)‖L1

x,v

≤ C‖L#
3 (f1,n − f1,M

−#
α,β ,M

−#
α,β )(t)‖L1

x,v
+ C‖L#

3 (M−#
α,β , f2,n − f2,M

−#
α,β )(t)‖L1

x,v

+ C‖L#
3 (M−#

α,β ,M
−#
α,β , f3,n − f3)‖L1

x,v

≤ Cβ(‖(f#
1,n(t)− f

#
1 (t))pγ2,γ3‖L1

x,v
+ Cβ‖(f#

2,n(t)− f
#
2 (t))pγ2,γ3‖L1

x,v

+ Cβ‖(f#
3,n(t)− f

#
3 (t))pγ2,γ3‖L1

x,v
), (3.37)

where to obtain the last inequality we use (3.25) from Proposition 3.4 and ‖Mα,β‖Mα,β = 1. By
(3.32) and the Dominated Convergence Theorem, each of the terms in (3.37) goes to zero as n → ∞
and (3.35) is proved. Combining (3.34)-(3.35), we obtain (3.31).

The gain operator convergence follows with a similar argument. �

3.4. A global estimate on the time average of the transported gain and loss operators.

Here, we prove Proposition 3.7, which provides upper global bounds for the time average of the
transported operators. These estimates will be essential to prove that the necessary beginning
condition (4.49) for the convergence of the iteration holds globally in time for small enough initial
data (see Section 5). For the binary case and soft potentials, these bounds were established in [2].
However, the presence of the ternary collisional operator requires new treatment which strongly
relies on the properties of ternary interactions.

Before stating Proposition 3.7, we provide the following auxiliary estimate for the time integral
of a traveling Maxwellian which will be used in the proof of the result for n = d in the binary case
and n = 2d in the ternary case.
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Lemma 3.6. Let n ∈ N, x0, u0 ∈ R
n, with u0 6= 0 and α > 0. Then, the following estimate holds

ˆ ∞

0

e
−α|x0−τu0|

2

dτ ≤
√
π

2
α
−1/2|u0|−1

.

Proof. By triangle inequality, we have
∣∣τ |u0| − |x0|

∣∣ ≤ |x0 − τu0| ⇒ e
−α|x0−τu0|

2

≤ e
−α(τ |u0|−|x0|)

2

, ∀τ ≥ 0.

Therefore integrating in τ , we obtain
ˆ ∞

0

e
−α|x0−τu0|

2

dτ ≤
ˆ ∞

0

e
−α(τ |u0|−|x0|)

2

dτ ≤ α
−1/2|u0|−1

ˆ ∞

0

e
−y2

dy ≤
√
π

2
α
−1/2|u0|−1

,

and the estimate is proved. �

We now state and prove Proposition 3.7. Given f ∈ L∞([0, T ),Mα,β), recall from (2.64) the norm

|||f |||∞ = sup
t∈[0,T )

‖f(t)‖Mα,β .

Proposition 3.7. Let 0 < T ≤ ∞ and α, β > 0. Then, for all f, g, h ∈ FT with f#, g#, h# ∈
L∞([0, T ),Mα,β), the following bounds hold for any t ∈ [0, T )

• For the binary operators

ˆ t

0

|L#
2 (f, g)(τ )|dτ,

ˆ t

0

|G#
2 (f, g)(τ )|dτ ≤ Kβα

−1/2
Mα,β||f#|||∞|||g#|||∞. (3.38)

• For the ternary operators
ˆ t

0

|L#
3 (f, g, h)(τ )|dτ,

ˆ t

0

|G#
3 (f, g, h)(τ )|dτ ≤ Kβα

−1/2
Mα,β|||f#|||∞|||g#|||∞|||h#|||∞. (3.39)

• For the mixed operators

ˆ t

0

|L#(f, g, h)|(τ ) dτ,
ˆ t

0

|G#(f, g, h)(τ )|dτ ≤ Kβα
−1/2

Mα,β|||f#|||∞|||g#|||∞(1 + |||h#|||∞), (3.40)

where

Kβ = Cd

[
‖b2‖L1(Sd−1)(β

−d/2 +
1

d+ γ2 − 1
) + ‖b3‖L1(S2d−1)(β

−d +
1

2d + γ3 − 1
)

]
. (3.41)

Proof. We prove each of the estimates separately.

Proof of (3.38): As mentioned above, these bounds were established for the soft potential case in
[2]. Here we also treat the hard potential case. Since L

#
2 , G

#
2 are bilinear, we may assume without

loss of generality that

|||f#|||∞ = |||g#|||∞ = 1. (3.42)

Let us first prove it for the loss term. For any t ∈ [0, T ) and a.e. (x, v) ∈ R
2d, relation (3.42), followed

by an application of Lemma 3.6 for n = d, x0 = x, u0 = u, the fact that −d + 1 < γ2 ≤ 1, and an
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application of part (i) of Lemma 3.2 for q2 = γ2 − 1 imply

ˆ t

0

|L#
2 (f, g)(τ, x, v)| dτ ≤ ‖b2‖L1(Sd−1)

ˆ t

0

ˆ

Rd

|u|γ2 |f(τ, x+ τv, v)||g(τ, x+ τv, v1)| dv1 dτ

= ‖b2‖L1(Sd−1)

ˆ t

0

ˆ

Rd

|u|γ2 |f#(τ, x, v)||g#(τ, x+ τ (v − v1), v1)| dω dv1 dτ

≤ ‖b2‖L1(Sd−1)Mα,β(x, v)

ˆ t

0

ˆ

Rd

|u|γ2e−α|x+τ(v−v1)|
2−β|v1|

2

dv1 dτ

≤ ‖b2‖L1(Sd−1)Mα,β(x, v)

ˆ

Rd

|u|γ2e−β|v1|
2

ˆ ∞

0

e
−α|x−τu|2

dτ dv1

≤ ‖b2‖L1(Sd−1)

√
π

2
α
−1/2

Mα,β(x, v)

ˆ

Rd

|u|γ2−1
e
−β|v1|

2

dv1

≤ ‖b2‖L1(Sd−1)

√
π

2
K̃

2
β,γ2−1α

−1/2
Mα,β(x, v)

≤ Cd‖b2‖L1(Sd−1)α
−1/2

(
β
−d/2 +

1

d+ γ2 − 1

)
Mα,β(x, v), (3.43)

where Cd is an appropriate constant depending on the dimension d. To obtain (3.43), we used (3.3)
and the fact that q2 = γ2 − 1 ≤ 0. Estimate (3.38) for the loss term follows.

To prove (3.38) for the gain term, we will use the identity

|x+ τ (v − v
′)|2 + |x+ τ (v − v

′
1)|2 = |x|2 + |x+ τ (v − v1)|2, (3.44)

which follows from the binary conservation of momentum and energy

v
′ + v

′
1 = v + v1,

|v′|2 + |v′1|2 = |v|2 + |v1|2. (3.45)

For any t ∈ [0, T ) and a.e. (x, v) ∈ R
2d, (3.42) and (3.44)-(3.45) imply

ˆ t

0

|G#
2 (f, g)(τ, x, v)| dτ ≤

ˆ t

0

ˆ

Sd−1×Rd

|u|γ2b2(û · ω)|f(τ, x+ τv, v
′)||g(τ, x+ τv, v

′
1)| dω dv1 dτ

=

ˆ t

0

ˆ

Sd−1×Rd

|u|γ2b2(û · ω)|f#(τ, x+ τ (v − v
′), v′)||g#(τ, x+ τ (v − v

′
1), v

′
1)| dω dv1 dτ

≤
ˆ t

0

ˆ

Sd−1×Rd

|u|γ2b2(û · ω)e−α(|x+τ(v−v′)|2+|x+τ(v−v′

1)|
2)
e
−β(|v′|2+|v′

1|
2)
dω dv1 dτ

= ‖b2‖L1(Sd−1)Mα,β(x, v)

ˆ t

0

ˆ

Rd

|u|γ2e−α|x+τ(v−v1)|
2−β|v1|

2

dv1 dτ. (3.46)

Combining (3.46) with an identical argument to the one used for the loss term, we obtain

ˆ t

0

|G#
2 (f, g)(τ, x, v)| dτ ≤ Cd‖b2‖L1(Sd−1)α

−1/2

(
β
−d/2 +

1

d+ γ2 − 1

)
Mα,β(x, v), (3.47)

and estimate (3.38) for the gain term follows.

Proof of (3.39): Since L
#
3 , G

#
3 is trilinear, we may assume without loss of generality that

|||f#|||∞ = |||g#|||∞ = |||h#|||∞ = 1. (3.48)
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Let us first prove (3.39) for the loss term. For any t ∈ [0, T ) and a.e. (x, v) ∈ R
2d, (3.48) implies

ˆ t

0

|L#
3 (f, g, h)(τ, x, v)| dτ ≤

≤ ‖b3‖L1(S2d−1)

ˆ t

0

ˆ

R2d

|ũ|γ3 |f(τ, x+ τv, v)||g(τ, x+ τv, v1)||h(τ, x+ τv, v2)| dv1 dv2 dτ

= ‖b3‖L1(S2d−1)

ˆ t

0

ˆ

R2d

|ũ|γ3 |f#(τ, x, v)||g#(τ, x+ τ (v − v1), v1)||h#(τ, x+ τ (v − v2), v2)| dv1 dv2 dτ

≤ ‖b3‖L1(S2d−1)Mα,β(x, v)

ˆ t

0

ˆ

R2d

|ũ|γ3e−α(|x+τ(v−v1)|
2+|x+τ(v−v2)|

2

)e−β(|v1|
2+|v2|

2)
dv1 dv2 dτ

≤ ‖b3‖L1(S2d−1)Mα,β(x, v)

ˆ

R2d

|ũ|γ3e−β(|v1|
2+|v2|

2)

ˆ ∞

0

e
−α|x−τu|2

dτ dv1 dv2, (3.49)

where in (3.49) we use the notation

x :=

(
x

x

)
∈ R

2d
, u =

(
v1 − v

v2 − v

)
∈ R

2d
.

Notice that by triangle inequality and Young’s inequality, we have

|ũ|2 = |v − v1|2 + |v − v2|2 + |v1 − v2|2

≤ |v − v1|2 + |v − v2|2 + (|v − v1|+ |v − v2|)2

≤ 3(|v − v1|2 + |v − v2|2)
= 3|u|2. (3.50)

Therefore, an application of Lemma 3.6 for n = 2d, x0 = x, u0 = u, followed by (3.50), the fact that
−2d+ 1 < γ3 ≤ 1, and an application of part (ii) of Lemma 3.2 for q3 = γ3 − 1 yield
ˆ t

0

|L#
3 (f, g, h)(τ, x, v)| dτ ≤ ‖b3‖L1(S2d−1)Mα,β(x, v)

ˆ

R2d

|ũ|γ3e−β(|v1|
2+|v2|

2)

ˆ ∞

0

e
−α|x−τu|2

dτ dv1 dv2

≤ ‖b3‖L1(S2d−1)

√
π

2
α
−1/2

Mα,β(x, v)

ˆ

R2d

|ũ|γ3 |u|−1
e
−β(|v1|

2+|v2|
2)
dv1 dv2

≤ ‖b3‖L1(S2d−1)

√
3π

6
α
−1/2

Mα,β(x, v)

ˆ

R2d

|ũ|γ3−1
e
−β(|v1|

2+|v2|
2)
dv1 dv2

≤ ‖b3‖L1(S2d−1)

√
3π

6
K̃

3
β,γ3−1α

−1/2
Mα,β(x, v)

≤ Cd‖b3‖L1(S2d−1)α
−1/2

(
β
−d +

1

2d + γ3 − 1

)
Mα,β(x, v), (3.51)

where Cd is an appropriate constant depending on the dimension d. To obtain (3.51), we used (3.5)
and the fact that q3 = γ3 − 1 ≤ 0. Estimate (3.39) for the loss term follows.

To prove (3.39) for the gain term, we will use the identity

|x+ τ (v − v
∗)|2 + |x+ τ (v − v

∗
1)|2 + |x+ τ (v − v

∗
2)|2 = |x|2 + |x+ τ (v − v1)|2 + |x+ τ (v − v2)|2, (3.52)

following from the ternary conservation of momentum and energy

v
∗ + v

∗
1 + v

∗
2 = v + v1 + v2,

|v∗|2 + |v∗1 |2 + |v∗2 |2 = |v|2 + |v1|2 + |v2|2. (3.53)
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For any t ∈ [0, T ) and a.e. (x, v) ∈ R
2d, by (3.48) and (3.52)-(3.53), we obtain

ˆ t

0

|G#
3 (f, g, h)(τ )| dτ

≤
ˆ t

0

ˆ

S2d−1×R2d

|ũ|γ3b3(ū · ω, ω1 · ω2)|f(τ, x+ τv, v
∗)||g(τ, x+ τv, v

∗
1)||h(τ, x+ τv, v

∗
2)|

× dω1 dω2 dv1 dv2 dτ

=

ˆ t

0

ˆ

S2d−1×R2d

|ũ|γ3b3(ū · ω, ω1 · ω2)|f#(τ, x+ τ (v − v
∗), v∗)||g#(τ, x+ τ (v − v

∗
1), v

∗
1)|

× |h#(τ, x+ τ (v − v
∗
2), v

∗
2)| dω1 dω2 dv1 dv2 dτ

≤
ˆ t

0

ˆ

S2d−1×R2d

|ũ|γ3b3(ū · ω, ω1 · ω2)e
−α(|x+τ(v−v∗)|2+|x+τ(v−v∗

1 )|
2+|x+τ(v−v∗

2)|
2)
e
−β(|v∗|2+|v∗

1 |
2+|v∗

2 |
2)

× dω1 dω2 dv1 dv2 dτ

= ‖b3‖L1(S2d−1)Mα,β(x, v)

ˆ t

0

ˆ

R2d

|ũ|γ3e−α(|x+τ(v−v1)|
2+|x+τ(v−v2)|

2)
e
−β(|v1|

2+|v2|
2)
dv1 dv2 dτ

≤ ‖b3‖L1(S2d−1)Mα,β(x, v)

ˆ

R2d

|ũ|γ3e−β(|v1|
2+|v2|

2)

ˆ ∞

0

e
−α|x−τu|2

dτ dv1 dv2. (3.54)

Combining (3.54) with an identical argument to the one used for the loss case, we obtain
ˆ t

0

|G#
3 (f, g, h)(τ )|dτ ≤ Cd‖b3‖L1(S2d−1)α

−1/2

(
β
−d +

1

2d+ γ3 − 1

)
Mα,β(x, v), (3.55)

and estimate (3.39) for the gain term follows.

Proof of (3.40): It follows directly from (3.38)-(3.39). �

4. The Kaniel-Shinbrot iteration scheme and the associated linear problem

In this section, we present the Kaniel-Shinbrot iteration scheme which will then be used as the
heart of the construction of a global solution in Section 5. This scheme is motivated by the works
of [13, 14]. However the presence of the ternary collisional operator, in addition to the binary
collisional operator, required a modification of the original construction.

In particular, we outline the construction of the Kaniel-Shinbrot iteration that we will use in
this paper. Formally speaking, given an initial data f0, we construct an increasing sequence (ln)n∈N

and a decreasing sequence (un)n∈N, with ln ≤ un, through the iteration

dln

dt
+ v · ∇xln = G(ln−1, ln−1, ln−1)− L(ln, un−1, un−1),

ln(0) = f0,
(4.1)

dun

dt
+ v · ∇xun = G(un−1, un−1, un−1)− L(un, ln−1, ln−1),

un(0) = f0.
(4.2)

We will see that that the sequences ln, un converge to the same limit, namely a function f , which
will be the solution of the binary-ternary Boltzmann equation (1.1).

To make things rigorous, we first study an associated linear problem, and then inductively apply
these results, together with the estimates derived in Section 3, to establish that the Kaniel-Shinbrot
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iteration converges to a solution of (1.1), provided that an appropriate beginning condition is
satisfied. This solution will be unique in the class of functions uniformly bounded by a Maxwellian.

4.1. The associated linear problem. Here, we prove well-posedness for a linear problem associ-
ated to the iteration scheme (4.1)-(4.2). More precisely, given some functions of time g, h, we show
well-posedness up to time 0 < T ≤ ∞ of the linear problem

{
∂tf + v · ∇xf = h− L(f, g, g), (t, x, v) ∈ (0, T )× R

d × R
d,

f(0) = f0, (x, v) ∈ R
d × R

d.
(4.3)

Definition 4.1. Let 0 < T ≤ ∞, α, β > 0, f0 ∈ L1,+
x,v , g

# ∈ L∞([0, T ),M+
α,β) and h# ∈ L1

loc([0, T ), L
1,+
x,v ).

We say that a function f ∈ F+
T with

(i) f# ∈ C0([0, T ), L1,+
x,v ),

(ii) L#(f, g, g) ∈ L1
loc([0, T ), L

1,+
x,v ),

(iii) f# is weakly differentiable and satisfies




df#

dt
+ L

#(f, g, g) = h
#
,

f#(0) = f0,

(4.4)

is a mild solution of (4.3) in [0, T ) with initial data f0 ∈ L1,+
x,v .

Remark 4.2. The differential equation of (4.4) is interpreted as an equality of distributions since
all terms involved belong to L1

loc([0, T ), L
1,+
x,v ).

Remark 4.3. Remarks 2.5-2.6 imply that a mild solution f to (4.3) belongs to C0([0, T ), L1,+
x,v ).

For technical reasons, we first prove well-posedness of (4.3) under the additional assumptions

f0 ∈ M+
α,β , 0 ≤ h

#(t) ≤ Ce
−t2

Mα,β, ∀t ∈ [0, T ), (4.5)

for some constant C > 0. Clearly if (4.5) holds, then f0 ∈ L1,+
x,v and h# ∈ L1

loc([0, T ), L
1,+
x,v ), thus (4.5)

is a stronger assumption than those appearing in Definition 4.1. This additional assumption will
be removed later using an approximation argument.

Lemma 4.4. Let 0 < T ≤ ∞ and α, β > 0. Consider f0, h satisfying (4.5) and g# ∈ L∞([0, T ),M+
α,β).

Then, there exists a mild solution f of (4.3) with f# ∈ L∞([0, T ),M+
α,β). Moreover, ‖f#(·)‖L1

x,v
is

absolutely continuous and satisfies

‖f#(t)‖L1
x,v

+

ˆ t

0

‖L#(f, g, g)(τ )‖L1
x,v

dτ = ‖f0‖L1
x,v

+

ˆ t

0

‖h#(τ )‖L1
x,v

dτ, ∀t ∈ [0, T ). (4.6)

Proof. Since g# ∈ L∞([0, T ),M+
α,β), part (i) of Lemma 3.3 implies

0 ≤ R
#(g, g)(t) ≤ Cβ|||g#|||∞(1 + |||g#|||∞)pγ2,γ3 , ∀t ∈ [0, T ), (4.7)

for some constant Cβ > 0 depending on β. We define f by

f
#(t) := f0 exp

(
−
ˆ t

0

R
#(g, g)(σ)dσ

)
+

ˆ t

0

h
#(τ ) exp

(
−
ˆ t

τ

R
#(g, g)(σ)dσ

)
dτ, t ∈ [0, T ). (4.8)

By (4.5), (4.7), and the fact f0 ∈ M+
α,β, f

# is well-defined and satisfies the bound

0 ≤ f
#(t) ≤ f0 +

ˆ t

0

h
#(τ ) dτ ≤

(
‖f0‖Mα,β + C

√
π

2

)
Mα,β , ∀t ∈ [0, T ), (4.9)
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thus f ≥ 0 and

f
# ∈ L

∞([0, T ),M+
α,β). (4.10)

Let us now show that f# ∈ C0([0, T ), L1,+
x,v ). For any t, s ∈ [0, T ), expression (4.8) yields

|f#(t)− f
#(s)| =

∣∣∣∣
[
f0 exp

(
−
ˆ s

0

R
#(g, g)(σ)dσ

)
+

ˆ s

0

h
#(τ ) exp

(
−
ˆ s

τ

R
#(g, g)(σ)dσ

)
dτ

]

×
[
exp

(
−
ˆ t

s

R
#(g, g)(σ) dσ

)
− 1

]
+

ˆ t

s

h
#(τ ) exp

(
−
ˆ t

τ

R
#(g, g)(σ)dσ

)
dτ

∣∣∣∣,

therefore by (4.5), (4.7), we may find a positive constants Cf0,g,h > 0 such that

|f#(t)− f
#(s)| ≤ Cf0,g,hMα,β(1− e

−Cf0,g,h|t−s|pγ2,γ3 ) +Cf0,g,h|t− s|Mα,β, ∀t ∈ [0, T ). (4.11)

Using the elementary inequality 1− e−x ≤ x, for all x ≥ 0, we obtain

|f#(t)− f
#(s)| ≤ 2Cf0,g,h|t− s|pγ2,γ3Mα,β, ∀t ∈ [0, T ). (4.12)

Integrating (4.12), we obtain

‖f#(t)− f
#(s)‖L1

x,v
≤ 2Cf0,g,h|t− s|, ∀t, s ∈ [0, T ), (4.13)

since pγ2,γ3Mα,β ∈ L1,+
x,v . We conclude that f# ∈ C0([0, T ), L1,+

x,v ), therefore f ∈ C0([0, T ), L1,+
x,v ). In

particular, bound (4.13) implies that f is actually Lipschitz continuous.

Since f#, g# ∈ L∞([0, T ),M+
α,β), part (ii) of Lemma 3.3 implies

L
#(f, g, g) ∈ L

∞([0, T ), L1,+
x,v ) ⊆ L

1
loc([0, T ), L

1,+
x,v ). (4.14)

Finally, by (4.5), (4.14), representation (4.8) and the Dominated Convergence Theorem, we
conclude that f# is weakly differentiable and satisfies





df#

dt
+ L

#(f, g, g) = h
#
,

f#(0) = f0,

(4.15)

thus it is a mild solution of (4.3).

Integrating (4.15), the Fundamental Theorem of Calculus and the fact that f# ∈ C0([0, T ), L1,+
x,v ),

L#(f, g, g) and h# ∈ L1
loc([0, T ), L

1,+
x,v ), imply

f
#(t) +

ˆ t

0

L
#(f, g, g)(τ )dτ = f0 +

ˆ t

0

h
#(τ ) dτ, ∀t ∈ [0, T ). (4.16)

Using non-negativity of all terms involved in (4.16) and Fubini’s Theorem, we obtain (4.6) and
absolute continuity of ‖f(t)‖L1

x,v
follows. The proof is complete. �

Since the gain operator does not satisfy (4.5), it will be convenient to relax assumption (4.5) to
f0 ∈ L1,+

x,v , h
# ∈ L1

loc([0, T ), L
1,+
x,v ). As in [14], the idea is to approximate f0, h

# in the L1
x,v-norm with

a monotone sequence of solutions occurring from a repeated application of Lemma 4.4. We obtain
the following well-posedness result

Proposition 4.5. Let 0 < T ≤ ∞ and α, β > 0. Consider f0 ∈ L1,+
x,v , g# ∈ L∞([0, T ),M+

α,β) and

h# ∈ L1
loc([0, T ), L

1,+
x,v ). Then, there exists a unique mild solution f of (4.3). In particular f# is

given by

f
#(t) := f0 exp

(
−
ˆ t

0

R
#(g, g)(σ)dσ

)
+

ˆ t

0

h
#(τ ) exp

(
−
ˆ t

τ

R
#(g, g)(σ)dσ

)
dτ, t ∈ [0, T ). (4.17)
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Proof. Existence: Given n ∈ N, let us define

f0,n :=

{
f0, if f0 ≤ nMα,β ,

nMα,β , if f0 > nMα,β ,
(4.18)

and

h
#
n (t) :=

{
h#(t), if h#(t) ≤ ne−t2Mα,β ,

ne−t2Mα,β, if h#(t) > ne−t2Mα,β.
(4.19)

It is clear that f0,n, hn satisfy condition (4.5) for all n ∈ N and that

0 ≤ f0,n ր f0 as n → ∞, (4.20)

∀t ∈ [0, T ) : 0 ≤ h
#
n (t) ր h

#(t) as n → ∞. (4.21)

Then the Monotone Convergence Theorem yields that

‖f0,n‖L1
x,v

ր ‖f0‖L1
x,v

, as n → ∞, (4.22)

∀t ∈ [0, T ) : ‖h#
n (t)‖L1

x,v
ր ‖h#(t)‖L1

x,v
, as n → ∞. (4.23)

Moreover, since f0 ∈ L1
x,v and h# ∈ L1

loc([0, T ), L
1,+
x,v ), relations (4.20)-(4.21) and the Dominated

Convergence Theorem yield

f0,n
L1

x,v−→ f0, as n → ∞, (4.24)

for a.e. t ∈ [0, T ) : h
#
n (t)

L1
x,v−→ h

#(t), as n → ∞, (4.25)

∀t ∈ [0, T ) :

ˆ t

0

h
#
n (τ ) dτ

L1
x,v−→
ˆ t

0

h
#(τ ) dτ, as n → ∞. (4.26)

Let fn ∈ F+
T be the mild solution to the problem






dfn

dt
+ v · ∇xfn = hn − L(fn, g, g),

fn(0) = f0,n,
(4.27)

constructed in Lemma 4.4. Let us note that Lemma 4.4 is applicable for all n ∈ N since f0,n, hn

satisfy (4.5). Hence, f#
n satisfies





df#
n

dt
+ L

#(fn, g, g) = h
#
n ,

f#
n (0) = f0,n,

(4.28)

and is given by the formula

f
#
n (t) := f0,n exp

(
−
ˆ t

0

R
#(g, g)(σ) dσ

)
+

ˆ t

0

h
#
n (τ ) exp

(
−
ˆ t

τ

R
#(g, g)(σ) dσ

)
dτ, t ∈ [0, T ). (4.29)

Also by (4.6), given t ∈ [0, T ), we have the bound

sup
n∈N

‖f#
n (t)‖L1

x,v
≤ sup

n∈N

(
‖f0,n‖L1

x,v
+

ˆ t

0

‖h#
n (τ )‖L1

x,v
dτ

)
≤ ‖f0‖L1

x,v
+

ˆ t

0

‖h#(τ )‖L1
x,v

dτ < ∞, (4.30)

where to obtain the last bound we use (4.22)-(4.23), the fact that R#(g, g) ≥ 0 (by monotonicity of
R# and g ≥ 0), f0 ∈ L1

x,v and h# ∈ L1
loc([0, T ), L

1,+
x,v ).
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Since the sequences (f0,n)n, (h#
n (t))n are increasing and non-negative for all t ∈ [0, T ), formula

(4.29) implies that the sequence (f#
n (t))n is increasing for all t ∈ [0, T ). Let us define

f
#(t) := lim

n→∞
f
#
n (t).

Clearly f ≥ 0. By the Monotone Convergence Theorem and bound (4.30) we obtain that f#(t) ∈
L1,+

x,v , ∀t ∈ [0, T ). Then, the Dominated Convergence Theorem implies

∀t ∈ [0, T ) : f
#
n (t)

L1
x,v−→ f

#(t), as n → ∞. (4.31)

Moreover, we have

∀t ∈ [0, T ) : L
#(fn, g, g)(t) = f

#
n (t)R#(g, g)(t) ր f

#(t)R#(g, g)(t) = L
#(f, g, g)(t), as n → ∞,

(4.32)
since R#(g, g)(t) ≥ 0 by monotonicity of R# and the fact that g ≥ 0. By the Monotone Convergence
Theorem, we obtain

∀t ∈ [0, T ) :

ˆ t

0

‖L#(fn, g, g)(τ )‖L1
x,v

dτ ր
ˆ t

0

‖L#(f, g, g)(τ )‖L1
x,v

dτ, as n → ∞. (4.33)

Therefore, for any t ∈ [0, T ), equation (4.6), implies
ˆ t

0

‖L#(f, g, g)(τ )‖L1
x,v

dτ = sup
n∈N

ˆ t

0

‖L#(fn, g, g)(τ )‖L1
x,v

dτ (4.34)

≤ sup
n∈N

(
‖f0,n‖L1

x,v
+

ˆ t

0

‖h#
n (τ )‖L1

x,v
dτ

)

≤ ‖f0‖L1
x,v

+

ˆ t

0

‖h#(τ )‖L1
x,v

dτ < ∞, (4.35)

since f0 ∈ L1
x,v and h# ∈ L1

loc([0, T ), L
1,+
x,v ), thus

L
#(f, g, g)(t) ∈ L

1
x,v, for a.e. t ∈ [0, T ), (4.36)

L
#(f, g, g) ∈ L

1
loc([0, T ), L

1,+
x,v ). (4.37)

By (4.32), (4.36) and the Dominated Convergence Theorem, for a.e. t ∈ [0, T ), we have

L
#(fn, g, g)(t)

L1
x,v−→ L

#(f, g, g)(t), as n → ∞, (4.38)

and by (4.37) and another application of the Dominated Convergence Theorem, we obtain
ˆ t

0

L
#(fn, g, g)(τ ) dτ

L1
x,v−→
ˆ t

0

L
#(f, g, g)(τ )dτ, ∀t ∈ [0, T ). (4.39)

Since f#
n satisfies (4.28), the Fundamental Theorem of Calculus and the fact that f#

n ∈ C0([0, T ), L1,+
x,v ),

L#(fn, g, g) and h#
n ∈ L1

loc([0, T ), L
1,+
x,v ) imply

f
#
n (t) +

ˆ t

0

L
#(fn, g, g)(τ )dτ = f0,n +

ˆ t

0

h
#
n (τ ) dτ, ∀t ∈ [0, T ), ∀n ∈ N. (4.40)

Using (4.31), (4.39), (4.24), and (4.26), we let n → ∞ in (4.40) to obtain

f
#(t) +

ˆ t

0

L
#(f, g, g)(τ )dτ = f0 +

ˆ t

0

h
#(τ ) dτ, ∀t ∈ [0, T ), ∀n ∈ N, (4.41)

thus f# ∈ C0([0, T ), L1,+
x,v ), f

# is weakly differentiable and satisfies (4.4). We conclude that f is a
mild solution of (4.3). Moreover, since g ≥ 0, we may take the limit as n → ∞ in both sides of
(4.29) to obtain (4.17).
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Uniqueness: Since the problem is linear it suffices to show that if f is a solution of (4.3) with
f0 = 0 and h = 0, then f = 0.

Assume f is a mild solution of (4.3) with f0 = 0 and h = 0 i.e. f ≥ 0, f# ∈ C0([0, T ), L1,+
x,v ),

L#(f, g, g) ∈ L1
loc([0, T ), L

1,+
x,v ) and f# is weakly differentiable and satisfies





df#

dt
+ L

#(f, g, g) = 0,

f#(0) = 0.
(4.42)

Then (4.42), the Fundamental Theorem of Calculus and the facts f# ∈ C0([0, T ), L1,+
x,v ), L

#(f, g, g) ∈
L1

loc([0, T ), L
1,+
x,v ) imply

f
#(t) = −

ˆ t

0

L
#(f, g, g)(τ )dτ = −

ˆ t

0

f
#(τ )R#(g, g)(τ )dτ, ∀t ∈ [0, T ). (4.43)

We claim the following

Claim: For any compact set K ⊆ R
d × R

d, we have ‖f#(t)‖L1
x,v(K) = 0, ∀t ∈ [0, T ).

Proof of the claim: Fix any compact set K ⊆ R
d × R

d. By (4.43), Fubini’s Theorem, part (i)
of Lemma 3.3 and the fact that pγ2,γ3 is continuous, we obtain

‖f#(t)‖L1
x,v(K) ≤

ˆ t

0

‖f#(τ )R#(g, g)(τ )‖L1
x,v(K) dτ

≤ Cβ|||g#|||∞(1 + |||g#|||∞)

ˆ t

0

‖pγ2,γ3f#(τ )‖L1
x,v(K) dτ

≤ CK,β |||g#|||∞(1 + |||g#|||∞)

ˆ t

0

‖f#(τ )‖L1
x,v(K) dτ. (4.44)

Since f# ∈ C0([0, T ), L1,+
x,v ), the map t ∈ [0, T ) → ‖f#(t)‖L1

x,v(K) ∈ [0,∞) is continuous, thus (4.44)

and Gronwall’s inequality imply that

‖f#(t)‖L1
x,v(K) = 0, ∀t ∈ [0, T ).

The claim is proved.

Consider now a sequence of compact sets (Km)m ր R
d × R

d. By the claim above, and the
Monotone Convergence Theorem, we have

‖f#(t)‖L1
x,v

= lim
m→∞

‖f#(t)‖L1
x,v(Km) = 0, ∀t ∈ [0, T ).

Since f# ≥ 0, we obtain f# = 0 and hence f = 0. Uniqueness is proved. �

The following comparison Corollary comes immediately by the monotonicity of R# and repre-
sentation (4.17).

Corollary 4.6. Let 0 < T ≤ ∞ and α, β > 0. Consider f0,1, f0,2 ∈ L1,+
x,v , g1, g2 ∈ L∞([0, T ),M+

α,β)

and h1, h2 ∈ L1
loc([0, T ), L

1,+
x,v ) with

f0,1 ≤ f0,2, g
#
1 ≥ g

#
2 , h

#
1 ≤ h

#
2 .

Let fi, i ∈ {1, 2} be the corresponding unique solution of (4.3) with f0 := f0,i, g := gi and h := hi.
Then f1 ≤ f2.

Proof. We have g
#
1 ≥ g

#
2 ⇒ g1 ≥ g2. By monotonicity of R# we obtain R#(g1, g1) ≥ R#(g2, g2). The

claim then comes immediately by representation (4.17). �
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4.2. The Kaniel-Shinbrot iteration. Now, we will use well-posedness of the associated linear
problem and the estimates developed in Section 3 to prove convergence of the Kaniel-Shinbrot
iteration to the unique solution of (1.1) in the class of functions bounded by a Maxwellian, if an
appropriate beginning condition is satisfied.

Let 0 < T ≤ ∞ and α, β > 0. Consider a function f0 ∈ M+
α,β and a pair of functions (l#0 , u

#
0 ) ∈

M+
α,β ×M+

α,β. By part (ii) of Lemma 3.3 we have that G#(l0, l0, l0), G
#(u0, u0, u0) ∈ L∞([0, T ), L1,+

x,v ).
Applying Proposition 4.5 with h being either G(l0, l0, l0) or G(u0, u0, u0), we find unique functions
l1, u1 such that l1 is the mild solution of

dl1

dt
+ v · ∇xl1 = G(l0, l0, l0)− L(l1, u0, u0),

l1(0) = f0,
(4.45)

and u1 is the mild solution of

du1

dt
+ v · ∇xu1 = G(u0, u0, u0)− L(u1, l0, l0),

u1(0) = f0.
(4.46)

We obtain the following result

Theorem 4.7. Let 0 < T ≤ ∞, α, β > 0 and

Kβ = Cd

[
‖b2‖L1(Sd−1)(β

−d/2 +
1

d+ γ2 − 1
) + ‖b3‖L1(S2d−1)(β

−d +
1

2d+ γ3 − 1
)

]
,

be the constant given in (3.41). Consider f0 ∈ M+
α,β and (l#0 , u

#
0 ) ∈ M+

α,β ×M+
α,β with

‖u#
0 ‖Mα,β < λα,β, (4.47)

where

λα,β = min

{
α1/2

24Kβ
,

α1/4

2
√

6Kβ

}
. (4.48)

Let l1, u1 be the mild solutions to (4.45) and (4.46) respectively, and assume that the following
beginning condition holds

0 ≤ l
#
0 ≤ l

#
1 (t) ≤ u

#
1 (t) ≤ u

#
0 , ∀t ∈ [0, T ). (4.49)

Then we conclude the following

(i) There are unique sequences (ln)n, (un)n such that, for any n ∈ N, ln, un are the mild solution
to (4.1), (4.2) respectively. Moreover, for any n ∈ N, we have

0 ≤ l
#
0 ≤ l

#
1 (t) ≤ ... ≤ l

#
n (t) ≤ u

#
n (t) ≤ ... ≤ u

#
1 (t) ≤ u

#
0 , ∀t ∈ [0, T ). (4.50)

(ii) For all t ∈ [0, T ), the sequences
(
l#n (t)

)
n
,
(
u#
n (t)

)
n
converge in Mα,β. Let us define

l
#(t) := lim

n→∞
l
#
n (t), u

#(t) := lim
n→∞

u
#
n (t), t ∈ [0, T ).

Then, we conclude that

l
#
, u

# ∈ C
0([0, T ), L1,+

x,v ) ∩ L
∞([0, T ),M+

α,β),

L
#(l, u, u), L#(u, l, l), G#(l, l, l), G#(u, u, u) ∈ L

∞([0, T ), L1,+
x,v ),
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and the following integral equations are satisfied

l
#(t) +

ˆ t

0

L
#(l, u, u)(τ ) dτ = f0 +

ˆ t

0

G
#(l, l, l)(τ ) dτ, ∀t ∈ [0, T ), (4.51)

u
#(t) +

ˆ t

0

L
#(u, l, l)(τ ) dτ = f0 +

ˆ t

0

G
#(u, u, u)(τ ) dτ, ∀t ∈ [0, T ). (4.52)

(iii) The limits l, u coincide i.e. u = l.

(iv) Let us define f := l = u. Then f is the unique mild solution of the binary-ternary Boltzmann
equation (1.1) in [0, T ), with initial data f0 ∈ M+

α,β satisfying

|||f#|||∞ ≤ ‖u#
0 ‖Mα,β . (4.53)

Remark 4.8. The uniqueness claimed above holds in the class of solutions satisfying (4.53).

Proof. (i): We will construct sequences (ln)n, (un)n satisfying (4.1)-(4.50) inductively.

• n = 1: l1, u1 satisfy (4.1) for k = 1 by assumption. Moreover (4.50) reduces for k = 1 to the
assumption (4.49).

• Assume we have constructed l1, ..., ln−1, u1, ..., un−1 satisfying (4.1) and

l
#
0 ≤ l

#
1 (t) ≤ ... ≤ l

#
n−1(t) ≤ u

#
n−1(t) ≤ ... ≤ u

#
1 (t) ≤ u

#
0 , ∀t ∈ [0, T ). (4.54)

Let ln, un be the mild solutions of (4.1), (4.2) for k = n respectively , given by Proposition
4.5. Having in mind (4.54), in order to prove (4.50), it suffices to show

l
#
n−1(t) ≤ l

#
n (t) ≤ u

#
n (t) ≤ u

#
n−1(t), ∀t ∈ [0, T ). (4.55)

Fix any t ∈ [0, T ). Then (4.54) and Proposition 3.1, which gives monotonicity of G#, yield
that for any t ∈ [0, T ), we have

G
#(ln−2, ln−2, ln−2)(t) ≤ G

#(ln−1, ln−1, ln−1)(t)

≤ G
#(un−1, un−1, un−1)(t)

≤ G
#(un−2, un−2, un−2)(t).

(4.56)

Using (4.54), (4.56) and Corollary 4.6 with

g
#
1 = u

#
n−2, g

#
2 = u

#
n−1, h

#
1 = G

#(ln−2, ln−2, ln−2), h
#
2 = G

#(ln−1, ln−1, ln−1),

we obtain l
#
n−1 ≤ l#n . Similarly, using Corollary 4.6 for g

#
1 = u

#
n−1, g

#
2 = l

#
n−1, h

#
1 =

G#(ln−1, ln−1, ln−1), h
#
2 = G#(un−1, un−1, un−1), we obtain l#n ≤ u#

n , and using it for g
#
1 =

l
#
n−1, g

#
2 = l

#
n−2, h

#
1 = G#(un−1, un−1, un−1), h

#
2 = G#(un−2, un−2, un−2), we obtain u#

n ≤
u
#
n−1. Condition (4.55) is proved and the claim follows.

(ii): To prove convergence, notice that (4.50) implies that, for any t ∈ [0, T ), the sequence (l#n (t))n
is increasing and upper bounded and the sequence (u#

n (t))n is decreasing and lower bounded, thus
they are convergent. Let us define

l
#(t) := lim

n→∞
l
#
n (t), u

#(t) := lim
n→∞

u
#
n (t), t ∈ [0, T ).

Since u
#
0 ∈ M+

α,β , estimate (4.50) actually implies that the convergence takes place in Mα,β and

that l#, u# ∈ L∞([0, T ),M+
α,β). Thus relations (3.20) from Lemma 3.3 imply that

L
#(l, u, u), L

#(u, l, l), G
#(l, l, l), G

#(u, u, u) ∈ L
∞([0, T ), L1,+

x,v ). (4.57)
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Moreover, since for any t ∈ [0, T ) we have

(l#n , u
#
n−1, u

#
n−1)(t)

Mα,β−→ (l#, u
#
, u

#)(t), (u#
n , l

#
n−1, l

#
n−1)(t)

Mα,β−→ (u#
, l

#
, l

#)(t),

as n → ∞, Corollary 3.5 implies that for any t ∈ [0, T ), we have

L
#(ln, un−1, un−1)(t)

L1
x,v−→ L

#(l, u, u), L
#(un, ln−1, ln−1)(t)

L1
x,v−→ L

#(u, l, l). (4.58)

Similarly, for any t ∈ [0, T ), we obtain

G
#(ln−1, ln−1, ln−1)(t)

L1
x,v−→ G

#(l, l, l), G
#(un−1, un−1, un−1)(t)

L1
x,v−→ G

#(u, u, u). (4.59)

Moreover, by relation (4.50), monotonicity of L#, G#, and the fact that u
#
0 ∈ M+

α,β, Lemma 3.3
implies

L
#(ln, un−1, un−1), G

#(ln−1, ln−1, ln−1) ∈ L
∞([0, T ), L1

x,v), ∀n ∈ N,

L
#(un, ln−1, ln−1), G

#(un−1, un−1, un−1) ∈ L
∞([0, T ), L1

x,v), ∀n ∈ N.
(4.60)

Recalling Definition 2.7, the initial value problems (4.1), (4.2) and the Fundamental Theorem of
Calculus imply that for all n ∈ N we have

l
#
n (t) +

ˆ t

0

L
#(ln, un−1, un−1)(τ ) dτ = f0 +

ˆ t

0

G
#(ln−1, ln−1, ln−1)(τ ) dτ, ∀t ∈ [0, T ), (4.61)

u
#
n (t) +

ˆ t

0

L
#(un, ln−1, ln−1)(τ ) dτ = f0 +

ˆ t

0

G
#(un−1, un−1, un−1)(τ ) dτ, ∀t ∈ [0, T ). (4.62)

Letting n → ∞ and using the Dominated Convergence Theorem, we obtain (4.51)-(4.52). The fact
that l#, u# ∈ C0([0, T ), L1

x,v) easily follows from (4.51)-(4.52).

(iii): Since l#n ≤ u#
n by (4.50), letting n → ∞, we obtain

0 ≤ l
#
0 ≤ l

#(t) ≤ u
#(t) ≤ u

#
0 , ∀t ∈ [0, T ). (4.63)

Subtracting (4.51) from (4.52) and using (4.63) and the triangle inequality, we obtain

|u#(t)− l
#(t)| ≤

ˆ t

0

|G#(u, u, u)(τ )−G
#(l, l, l)(τ )|+ |L#(l, u, u)(τ )− L

#(u, l, l)(τ )|dτ. (4.64)

Let us estimate the right hand side of (4.64). Recalling (2.38) triangle inequality yields

ˆ t

0

|G#(u, u, u)(τ )−G
#(l, l, l)(τ )|dτ ≤

ˆ t

0

|G#
2 (u, u)(τ )−G

#
2 (l, l)(τ )|+ |G#

3 (u, u, u)(τ )−G
#
3 (l, l, l)(τ )|dτ.

(4.65)

Bilinearity of G#
2 , triangle inequality, bound (3.38) from Proposition 3.7, and the right hand side

inequality of (4.63) yield

ˆ t

0

|G#
2 (u, u)(τ )−G

#
2 (l, l)(τ )|dτ ≤

ˆ t

0

|G#
2 (u− l, u)(τ )|+ |G#

2 (l, u− l)(τ )| dτ

≤ Kβα
−1/2

Mα,β‖u# − l
#‖L∞([0,T )],Mα,β)

(
|||u#|||∞ + |||l#|||∞

)

≤ 2Kβα
−1/2

Mα,β‖u#
0 ‖Mα,β |||u# − l

#|||∞. (4.66)
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Trilinearity of G
#
3 , triangle inequality, bound (3.39) from Proposition 3.7, and the right hand

side of (4.63) yield
ˆ t

0

|G#
3 (u, u, u)(τ )−G

#
3 (l, l, l)(τ )|dτ ≤

ˆ t

0

|G#
3 (u− l, u, u)(τ )|+ |G#

3 (l, u− l, u)(τ )|+ |G#
3 (l, l, u− l)(τ )|dτ

≤ Kβα
−1/2

Mα,β|||u# − l
#|||∞

(
|||u#|||2∞ + |||u#|||∞|||l#|||∞ + |||l#|||2∞

)

≤ 3Kβα
−1/2

Mα,β‖u#
0 ‖2Mα,β

|||u# − l
#|||∞. (4.67)

Then estimates (4.66)-(4.67) yield
ˆ t

0

|G#(u, u, u)(τ )−G
#(l, l, l)(τ )|dτ ≤ 6Kβα

−1/2
Mα,β(‖u#

0 ‖Mα,β + ‖u#
0 ‖2Mα,β

)|||u# − l
#|||∞. (4.68)

By a similar argument, using (3.38), (3.39) instead, we also have
ˆ t

0

|L#(l, u, u)(τ )− L
#(u, l, l)(τ )|dτ ≤ 6Kβα

−1/2
Mα,β(‖u#

0 ‖Mα,β + ‖u#
0 ‖2Mα,β

)|||u# − l
#|||∞. (4.69)

Combining (4.64), (4.68)-(4.69), we obtain

|u#(t)− l
#(t)| ≤ 12Kβα

−1/2
Mα,β(‖u#

0 ‖Mα,β + ‖u#
0 ‖2Mα,β

)|||u# − l
#|||∞, ∀t ∈ [0, T ),

which is equivalent to

|||u# − l
#|||∞ ≤ 12Kβα

−1/2(‖u#
0 ‖Mα,β + ‖u#

0 ‖2Mα,β
)|||u# − l

#|||∞. (4.70)

Notice though that (4.47)-(4.48) yield

12Kβα
−1/2(‖u#

0 ‖Mα,β + ‖u#
0 ‖2Mα,β

) < 1,

hence (4.70) yields u = l.

(iv): To prove existence, let us define f by f# := l# = u# ∈ C0([0, T ), L1,+
x,v ) ∩ L∞([0, T ),M+

α,β).
Then, either (4.51) or (4.52) implies

f
#(t) +

ˆ t

0

L
#(f, f, f)(τ ) dτ = f0 +

ˆ t

0

G
#(f, f, f)(τ ) dτ, ∀t ∈ [0, T ),

therefore 




df#

dt
+ L

#(f, f, f) = G
#(f, f, f),

f#(0) = f0.

Recalling Definition 2.7, we conclude that f is a mild solution to the binary-ternary Boltzmann
equation (1.1) with initial data f0. Bound (4.53) directly follows from (4.63).

Uniqueness of solutions satisfying (4.53) follows similarly to the proof of (iii) using a bilinearity-
trilinearity argument and Proposition 3.7. Clearly, condition (4.53) is needed to have a contraction.

�

5. Global well-posedness near vacuum

In this final section, we prove the main result of this paper, stated in Theorem 2.10, which gives
global well-posedness of (1.1) near vacuum in the interval [0, T ), where 0 < T ≤ ∞. To prove this
result we will rely on the time average bound of the gain term from Proposition 3.7.

Proof of Theorem 2.10
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Consider f0 ∈ M+
α,β satisfying (2.77) and let us define l

#
0 = 0, u#

0 = CoutMα,β, where

Cout =

1−
√

1− 48Kβα−1/2(1 + α1/4

2
√

6Kβ
)‖f0‖Mα,β

24Kβα−1/2

(
1 + α1/4

2
√

6Kβ

) , (5.1)

Kβ is given by (2.78). The reasoning behind defining Cout will become clear in (5.8). Notice that
due to (2.77) u#

0 is well defined. In order to conclude the proof, we will use Theorem 4.7. Recalling

λα,β = min

{
α1/2

24Kβ
,

α1/4

2
√

6Kβ

}
,

from (4.48), (5.1) and (2.77) yield

‖u#
0 ‖Mα,β = Cout < λα,β, (5.2)

thus the conditions of Theorem 4.7 are satisfied. By Theorem 4.7, it suffices to prove that the
beginning condition (4.49) for the approximating sequences generated by f0 ∈ M+

α,β and the pair

of functions (l#0 , u
#
0 ) ∈ M+

α,β ×M+
α,β is satisfied. Indeed, by the iteration scheme (4.45), we have

dl
#
1

dt
+ l

#
1 R

#(u0, u0) = 0,

du
#
1

dt
= G

#(u0, u0, u0),

u
#
1 (0) = l

#
1 (0) = f0,

therefore, we obtain

l
#
1 (t) = f0 exp

(
−
ˆ t

0

R
#(u0, u0)(τ ) dτ

)
, t ∈ [0, T ), (5.3)

u
#
1 (t) = f0 +

ˆ t

0

G
#(u0, u0, u0)(τ ) dτ, t ∈ [0, T ). (5.4)

Since u0 ≥ 0, formulas (5.3)-(5.4) together with Proposition 3.1 imply

0 = l
#
0 ≤ l

#
1 (t) ≤ u

#
1 (t), ∀t ∈ [0, T ). (5.5)

It remains to prove that
u
#
1 (t) ≤ u

#
0 , ∀t ∈ [0, T ). (5.6)

By representation (5.4) and (3.40) from Proposition 3.7, we obtain

u
#
1 (t) ≤ ‖f0‖Mα,βMα,β +Kβα

−1/2
Mα,β‖u#

0 ‖2Mα,β
(1 + ‖u#

0 ‖Mα,β )

≤ Mα,β

[
‖f0‖Mα,β +Kβα

−1/2

(
1 +

α1/4

2
√

6Kβ

)
C

2
out

]
, (5.7)

where to obtain (5.7), we use the fact that u#
0 = CoutMα,β and (5.2). Recalling (5.1), we notice that

Cout satisfies the equation

‖f0‖Mα,β + 12Kβα
−1/2

(
1 +

α1/4

2
√

6Kβ

)
C

2
out = Cout, (5.8)

thus (5.7) implies
u
#
1 (t) ≤ CoutMα,β = u

#
0 , ∀t ∈ [0, T ).

Estimate (5.6) is proved and the claim of Theorem 2.10 follows.
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