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These are the notes for the summer 2020 mini course on the representation theory of Lie
algebras. We’ll first define Lie groups, and then discuss why the study of representations
of simply connected Lie groups reduces to studying representations of their Lie algebras
(obtained as the tangent spaces of the groups at the identity). We’ll then discuss a very
important class of Lie algebras, called semisimple Lie algebras, and we’ll examine the repre-
sentation theory of two of the most basic Lie algebras: sl2 and sl3. Using these examples, we
will develop the vocabulary needed to classify representations of all semisimple Lie algebras!

Please email me any typos you find in these notes! Thanks to Arun Debray, Joakim
Færgeman, Aaron Mazel-Gee, and Pablo Sanchez Ocal for doing this. Also–thanks to Saad
Slaoui and Max Riestenberg for agreeing to be teaching assistants for this course and for
many, many helpful edits.
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1 From Lie Groups to Lie Algebras

1.1 Lie Groups and Their Representations

Definition 1.1.1. A complex (real) Lie group is a group G equipped with a complex (real)
manifold structure, such that the multiplication map G × G m−→ G and the inversion map

G
i−→ G−1 (which sends g 7→ g−1) are both maps of complex (real) manifolds.

Example 1.1.1. The groups GLn(C) and GLn(R) are complex and real Lie groups, respec-
tively. This is because both of these groups are det−1(U) for some open U ⊂ R, so they
are open subsets of affine space An2

. Similarly, the groups SLn(C) and SLn(R) are complex
and real Lie groups, respectively, because SLn = det−1({1}) and is a regular level set of the
determinant function with respect to the regular value 1 ∈ R. Notice that in both cases,
matrix multiplication and matrix inversion are manifold maps (the first is a polynomial in
each entry and the second is a non-vanishing rational function in each entry by Cramer’s
rule).

Example 1.1.2. The groups (R,+), (R>0,×), and S1, are all one dimensional real Lie
groups (where we define the group structure on S1 = {eiθ ∈ C : 0 ≤ θ < 2π} via complex
multiplication).

Remark 1.1.1. The definition of a Lie group is a bit stronger than ‘a group which is also
a manifold’, because we are requiring the maps that are part of the group data to be maps
of manifolds (i.e. smooth or holomorphic maps). This reflects a general theme throughout
algebra and topology, which says that if we have certain structure (for example, a group
structure, ring structure, manifold structure, etc), then the maps to consider between any two
objects should be those that preserve that structure (for example, group homomorphisms,
ring homomorphisms, smooth maps, etc). This leads us to defining:
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Definition 1.1.2. A map of Lie groups φ : G → H is a map of real/complex manifolds
which is also a group homomorphism. A representation of a Lie group G is a map of Lie
groups G→ GL(V ) for some finite dimensional1 vector space V .

Our goal in this course will be to study representations of Lie groups. The first step
in doing this is to note that our requirement that the group multiplication map is manifold
map buys us a lot of mileage. For instance, any two representations of a connected Lie group
which agree in some neighborhood of the identity are actually the same representation, as
we will see exercise 1.1 below.

We can go even further than that. One important feature of manifolds is that many
properties of maps between them are determined locally by their associated maps (deriva-
tives) at the level of tangent spaces. Combined with the fact that group multiplication on G
can be used to carry information from one tangent space to another, it turns out that much
can be learned about G by simply looking at its tangent space at the identity TeG. This
leads us to make the following definition:

Definition 1.1.3. Given a Lie group G, define the Lie algebra of G to be the tangent space
of G at the identity, and denote it by g := Te(G). (Similarly for a Lie group H, write
h := Te(H), and so on.)

Remark 1.1.2. So far, we have only defined the Lie algebra g as a vector space. The choice
of terminology will be justified when we define a multiplicative structure on g called the Lie
bracket in the next section.

Now, for any map of Lie groups φ : G→ H, we get an induced map dφe : g→ h (since φ
is a group homomorphism!). One of the first major theorems in the subject, which we won’t
prove in this course, is that φ is actually determined by its derivative at the identity dφe,
provided that G is connected:

Theorem 1.1.1. If G is a connected Lie group, H a Lie group, then any two maps of Lie
groups φ1, φ2 : G → H inducing equal maps d(φ1)e = d(φ2)e : g → h at the level of Lie
algebras must be equal: φ1 = φ2.

Example 1.1.3. The multiplicative group G = (R>0,×) has Lie algebra given by g ∼=
(R,+). Viewed as a connected Lie group, g is its own Lie algebra, and the exponential map
exp : g→ G identifies these two groups, so the theorem holds in this case.

Broadly speaking, the proof of theorem 1.1.1 involves working with the exponential map
exp : g → G, defined for an arbitrary Lie group by following integral flows of vector fields
(see exercise 1.5). One can argue that this exponential map identifies a small neighborhood
of 0 ∈ g with a small neighborhood of e ∈ G, and then we can appeal to exercise 1.1 to
obtain theorem 1.1.1.

1This assumption is made so that GL(V ) is a manifold as defined in example 1.1.1 above – some care is
needed to define infinite dimensional representations of Lie groups.
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1.2 Exercises

Exercise 1.1. Show that if two maps of Lie groups φ1, φ2 : G→ H agree on any nonempty
neighborhood of e ∈ G, then φ1 = φ2 provided G is connected.

Exercise 1.2. Show that sln can be identified with the subspace of gln consisting of traceless
matrices.

Exercise 1.3. Show that son can be identified as a vector space with the set of matrices
A with AT = −A (i.e. skew-symmetric matrices). As SOn is a subgroup of GLn, it follows
from a general fact that the Lie bracket on son is given by the commutator of the matrices.

Exercise 1.4. Show that pgln can be identified with the vector space of traceless matrices.
(Hint: Consider the map SLn → PGLn.) We will see that sln ∼= pgln as Lie algebras
tomorrow, hence this exercise shows that two distinct Lie groups can have the same Lie
algebra!

Exercise 1.5. Fix a tangent vector X ∈ g. Show that there exists a (smooth or algebraic–
whichever context you want to work in) vector field on G which returns the vector X at the
identity. Show that the vector field you constructed is either invariant under the right action
of G on itself, or invariant under the left action of G on itself, depending on how you defined
it. (This exercise is not as critical as the other four).

1.3 Bonus Exercises

These exercises are not required for the course and are for those interested in going deeper
into the ideas of representation theory touched on in this course or in the very related
representation theory of algebraic groups. As such, in the bonus exercises, we freely use the
language of algebraic geometry (and you are welcome to ask us for clarification!)

Exercise 1.6. In the spirit of today’s lecture, define an ‘algebraic group’ as the algebraic
variety analogue of a Lie group2. Show that GLn is an algebraic group and define the notion
of a representation of an algebraic group G.

Exercise 1.7. Show that one dimensional representations of Gm := GL1 are classified by
the integers.

For the following exercises, it helps to know why affine algebraic groups are classified by
Hopf algebras.

Exercise 1.8. Show that a representation of Gm is the same thing as a graded vector space.

Exercise 1.9. Show that all irreducible representations of affine algebraic groups are finite
dimensional (!). (Hint: Show that any finite dimensional subspace of this representation is
contained in a finite dimensional G subspace.)

2Please ask us if this is unclear!
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Exercise 1.10. Let Ga denote the additive group, defined by Spec(C[x]) with the addition
law Ga × Ga → Ga or, equivalently, as the forgetful functor Rings → Groups given by
A 7→ (A,+). Show that the category of representations of Ga is equivalent to the category of
vector spaces V equipped with a nilpotent endomorphism T : V → V , i.e. an endomorphism
such that T n = 0 for n� 0. (Hint: Show that over any characteristic a representation of Ga is
equivalent to a module V over the divided power algebra k[M1,M2, ...]/(

(
i+j
i

)
Mi+j = MiMj).

How does the classification of Ga reps change in characteristic p?)

2 Examples and Semisimple Lie Algebras

2.1 The Bracket Structure on Lie Algebras

Since vector space maps are generally easier to work with than maps of groups, a natural
question to ask next is, ‘When does a map of tangent spaces g → h actually induce a map
of the associated Lie groups G→ H?’ 3

There are a few ways to go about this, and here is one. Given a group G, we automatically
obtain three different canonical actions of G on itself–G acts on itself by left multiplication,
right multiplication, and conjugation. By exercise 1.1, we have, in essence, ‘used up’ the first
two actions by requiring that Lie group maps preserve the identity. However, we haven’t
touched on the conjugation action yet (because conjugation preserves the identity). This is
pretty important, because any map of groups should in particular preserve conjugation.

Concretely, fix an element g ∈ G. Then ‘conjugation by g’ is a map G → G which fixes

the identity, so we can take its derivative at the identity to get a map g := Te(G)
d(g−g−1)e−−−−−−→

Te(G) = g. This gives a (set theoretic) assignment Ad : G → Aut(g), which is a map of
real/complex manifolds because it was defined exclusively in terms of d, multiplication, and
inversion, which are all manifold maps because G is a Lie group. Since we want our condition
to be entirely in terms of g only, we can take the derivative of Ad at the identity to obtain
the adjoint action ad := d(Ad)e : g→ Tid(Aut(g)) = EndV ect(g).

Remark 2.1.1. In this summer mini course we will almost exclusively work with matrix
Lie groups G ⊂ GLn, in which case g is naturally a subspace of gln

∼= {n × n matrices},
and for X ∈ gln, ad(X) : gln → EndV ect(gln) is given by ad(X)(Y ) = XY − Y X, the usual
commutator of matrices (see [2]). Note that for a general Lie algebra, XY may not even be
defined!

Because of remark 2.1.1, for X ∈ g associated to a general Lie group G, we often denote
ad(X) by [X,−] : g → g and refer to it as the Lie bracket. This is further justified by the
following properties, which can be readily verified for the commutator of matrices, and can
be proven in general by carefully combing through the construction above:

Proposition 2.1.1. The Lie bracket is linear in each variable, it is antisymmetric (meaning
that for any X, Y ∈ g, we have [X, Y ] = −[Y,X]), and it satisfies the Jacobi identity
(meaning that for any X, Y, Z ∈ g, we have [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0).

3A small technical point that will come up later–we’ve still started this whole discussion by fixing Lie
groups G and H, because different Lie groups can have the same tangent space, see exercise 1.4.
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As discussed earlier, given a map of Lie groups ϕ : G → H, we obtain an induced map
of Lie algebras g→ h, and it turns out that this map must take the Lie bracket of g to the
Lie bracket of h, i.e.

dϕe([X, Y ]g) = [dϕe(X), dϕe(Y )]h for all X, Y ∈ g.

This also the most information that we can extract about a map of Lie groups from its Lie
algebra:

Theorem 2.1.1. Given two Lie groups G, H such that G is simply connected, any map
g→ h which preserves the Lie bracket induces a map G→ H.

Remark 2.1.2. The hypothesis that G be simply connected is necessary. Coming back
to exercise 1.4, recall that there is an inclusion map pgl2 = sl2 ↪→ gl2 that lifts to an
inclusion SL2 ↪→ GL2, yet does not lift to a map PGL2 → GL2. A general pattern in the
representation theory of Lie groups is to first work with the universal cover π : G̃ → G,
obtain a representation ρ : G̃ → GLn, and then show that ρ(ker(π)) = 1 to obtain an
induced representation of G.

This leads to the following definition:

Definition 2.1.1. A Lie algebra is a vector space g equipped with a bilinear map

[−,−] : g× g→ g

which is antisymmetric and satisfies the Jacobi identity. A map of Lie algebras φ : g→ h is a
linear map which preserves the Lie bracket, i.e. for all X, Y ∈ g, φ([X, Y ]g) = [φ(X), φ(Y )]h.
A (finite dimensional) representation of a Lie algebra g is a map of Lie algebras g→ gl(V ) =
EndV ect(V ) for some finite dimensional vector space V , where the Lie bracket structure on
EndV ect(V ) is given by the commutator of linear maps (i.e. [A,B] := AB −BA).

Remark 2.1.3. In the language of category theory, the fact that maps of Lie groups induce
maps of the corresponding Lie algebras together with the chain rule tell us that the assign-
ment G 7→ g extends to a functor Lie : LieGrp→ LieAlg from the category of (smooth, resp.
complex) Lie groups and maps of Lie groups to the category of Lie algebras (over R, resp.
C) and maps of Lie algebras.

2.2 Ideals and Simplicity of Lie Algebras

Fix a Lie algebra g associated to a Lie group G. Some of the properties of G readily translate
over to the Lie algebra g. One example is that if G is an abelian Lie group, then its Lie
bracket always returns 0. For another example, one can verify that the notion of N E G
being a (closed) normal Lie subgroup of translates to the notion of an ideal n ⊆ g of the Lie
algebra:

Definition 2.2.1. A ideal of g is a linear subspace I ⊂ g such that [X, Y ] ∈ I for all
X ∈ g, Y ∈ I (i.e. [g, I] ⊆ I).
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One useful fact from the representation theory of finite groups is the phenomenon of
complete reducibility–that is, if V is a subrepresentation of some representation W of a
finite group H (over a field of characteristic zero), then one can obtain a decomposition
V ∼= W ⊕ V/W as H-representations. It follows by induction on dimension that every
H-representation decomposes (essentially uniquely) into a direct sum of irreducible ones.

Example 2.2.1. Let b ⊂ sl2 denote the Lie algebra of traceless upper triangular matrices,
with coefficients taken in a field k. We have a two dimensional representation of b by its
standard action on k2, which admits a b-subrepresentation given by the subspace spanned
by the first canonical basis vector, but it turns out that there is no other one dimensional
subrepresentation, so complete reducibility of b reps fails.

It turns out that the existence of abelian ideals is essentially what determines this failure.

Theorem 2.2.1. If a Lie algebra g has no nonzero abelian ideals, then all finite dimen-
sional(!) representations of g are completely reducible.

This leads to the following definition:

Definition 2.2.2. A semisimple Lie algebra is a Lie algebra with no nonzero abelian ideals.

2.3 Exercises

Exercise 2.1. Fix a Lie algebra (g, [−,−]g). Show that for any object X ∈ g, [X,X]g = 0.

Exercise 2.2. Fix a Lie algebra (g, [−,−]g). Show that the map g → EndV ect(g) given by
X 7→ [X,−]g is a representation of Lie algebras (as introduced in definition 2.1.1).

Exercise 2.3. Show that b ⊂ sl2 (as in example 2.2.1) admits a nonzero abelian ideal, and
thus is not semisimple.

Exercise 2.4. Show that the category of abelian groups has an object which is not com-
pletely reducible (Hint: Look at 2Z ⊂ Z). This exercise is not as important as the other
two, and is given mostly to make you feel happy about the fact that the category of finite
dimensional g modules is completely reducible for a semisimple g.

2.4 Bonus Exercises

Exercise 2.5. Show that the condition of a Lie algebra g being semisimple is equivalent to
the weaker condition that g contains no nonzero solvable ideals, i.e. no ideal I for which the
series determined by I0 := I, In := [In−1, In−1] eventually vanishes.

Exercise 2.6. Show that the category Rep(SL2) fails to be semisimple over a field k of char-
acteristic p by showing that the representation ∇p := k[x, y]p (the homogeneous polynomials
of degree p) defined in exercise 3.9 is a nontrivial extension of Lp := k[xp, yp]p by another
subrep ∇m. What is m? (All you’ll need from exercise 3.9 is the formula, but depending on
your experience you may want to wait until tomorrow to solve this exercise.)

Exercise 2.7. Show that any algebraic group in characteristic zero is smooth. (Hint: Char-
acteristic zero buys generic smoothness.) Show this is not true in characteristic p, possibly

by using the kernel of the Frobenius morphism Ga
Frob−−→ Ga.
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3 Representation Theory of sl2

This will largely follow Lecture 11.1 from [2], but will be written mostly in exercise form.
Before we begin, we’ll need to cite one theorem (that we won’t prove in this course), and
discuss how we can use it in classifying the representations of semisimple Lie algebras.

3.1 Diagonalizability

Today, we’ll study the smallest semisimple Lie algebra sl2 and its representations. Recall
that sl2 consists of 2 × 2 traceless matrices. It is a three dimensional Lie algebra which
admits the following basis:

f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
,

with Lie bracket determined4 by [h, e] = 2e, [h, f ] = −2f, and [e, f ] = h. To obtain a
representation of sl2, it therefore suffices to give the data of a vector space V equipped with
three endomorphisms e, f, g : V → V which are compatible with the relations stated above
(i.e. h ◦ e− e ◦ h = 2e, and so on).

To start, we’ll cite one of the most useful theorems which stems from the ‘general theory’
of representations of a semisimple Lie algebra. We’ll discuss its generalization below, but for
now we’ll just give the statement:

Theorem 3.1.1. (Diagonalizability) Let V be a finite dimensional sl2-representation over
C. Then we can write V as a direct sum of h-eigenspaces, i.e.

V ∼= ⊕λ∈CVλ,

where Vλ := {v ∈ V : hv = λv}.

Remark 3.1.1. The existence of eigenvalues is so important that, for the rest of the course,
we will assume that our ground field is C, or at least an algebraically closed field of char-
acteristic zero. There are alternative techniques for working with real representations, and
these will hopefully be discussed in Max’s mini course!

3.2 Classification of the Irreducible Representations of sl2

We’ll now classify the reps of sl2. To do this, we’ll employ a convenient language shift from
representations to modules over a certain non-commutative algebra known as the universal
enveloping algebra of sl2:

Exercise 3.1. Convince yourself until you are satisfied that representations of sl2 are the
same thing as finite dimensional5 vector spaces which are modules over the universal en-
veloping algebra of sl2, defined as follows:

U(sl2) := C〈e, f, h〉/(ef − fe = h, he− eh = 2e, hf − fh = −2f).

4along with exercise 2.1
5Recall from definition 1.1.2 that we defined our representations to be finite dimensional.
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(This exercise is optional, but may help you translate from the possibly less familiar concept
of Lie algebras and their representations to a possibly more familiar one, (non-commutative)
rings and modules over them.)

Now fix a finite dimensional irreducible representation V of sl2 for the rest of this section.
By theorem 3.1.1, we can write V as a direct sum of h-eigenspaces, V ∼= ⊕λ∈CVλ.

Exercise 3.2. Show that there are only finitely many λ ∈ C for which Vλ 6= 0. Choose some
λ for which Re(λ) is maximal, breaking ties if necessary.6 Prove that ev = 0 (Hint: Try to
determine which h−eigenspace ev lives in).

For the rest of the section, we fix a λ as in the previous exercise and a nonzero eigenvector
v ∈ Vλ.

Exercise 3.3. In which eigenspace does the vector fv live? In which eigenspace does the
vector efv live?

Exercise 3.4. More generally, show that if w ∈ Vz for some z ∈ C, then fw ∈ Vz−2 and
ew ∈ Vz+2. The following diagram (modeled after the one on page 148 of [2]) is a helpful
visualization:

...
e ++

Vz−2

e
))

f

jj

h

��
Vz

e ++

f
ll

h

��
Vz+2

e
''

f

jj

h

��
...

f
ll

The previous two exercises show that the set S := {v, fv, f 2v, f 3v, ..., fm−1v}, where m
is the smallest nonnegative integer such that fmv = 0, is linearly independent.

Exercise 3.5. Why must such an m exist? Show by induction on n that

efnv = n(λ− n+ 1)fn−1v,

and conclude that S spans V , hence is a basis for V .

Exercise 3.6. Show that λ ∈ Z≥0 (Hint: Substitute n = m in your formula for exercise 3.5.)
Note that by exercise 3.4, it follows that all eigenvalues of h are integers.

There we have it!

Theorem 3.2.1. All irreducible finite dimensional representations of sl2 are classified by
their highest weight, i.e. the largest positive integer n such that Vn 6= 0.

This allows us to complete the above picture illustrating the structure of V as an sl2-
representation:

... 0 Vn−2(m−1)

e --

f

jj

h

��
Vn−2(m−2)

e
))

f
nn

h

��
... ...

e ++

f
nn Vn−2

e
))

f
ll

h

��
Vn

e
''

f
ll

h

��
0 ...

6At the risk of spoiling the surprise, we will see that λ was in fact a positive integer the whole time, so
we never needed to break this tie!
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Existence is not always easy to verify directly for general semisimple Lie algebras, but
it can be easily done in the case of sl2: the vector space ∇n := C[x, y]n of homogeneous
polynomials of degree n viewed as an (n+ 1)-dimensional sl2representation under the action

induced by matrix multiplication on

(
x
y

)
gives the highest weight sl2-representation of

highest weight n.
For general semisimple Lie algebras, existence of these highest weight representations

can be established pretty easily by studying line bundles on the flag variety associated to
the Lie group G. This is examined for SL2 in exercise 3.8. One can also show existence of
these irreps as quotients of Verma modules, which are introduced in exercise 3.10 and further
discussed in exercise 3.11.

Note that by theorem 2.2.1, we have actually just classified all finite dimensional represen-
tations of sl2! We state a corollary of our results below which uses the complete reducibility
of finite dimensional representations of sl2:

Exercise 3.7. Let U be a finite dimensional sl2-representation, such that Un 6= ∅ for some
nonnegative integer n. Show that Un−2 6= ∅, Un−4 6= ∅, ..., U−n 6= ∅. In particular, this says
that the eigenvalues of any finite dimensional sl2 representation are symmetric about zero
(Hint: look at the subrepresentation of U generated by the images of some nonzero v ∈ Un
under the sl2 action and use exercise 3.5 and exercise 3.4).

3.3 Bonus Exercises

The next few exercises will give a geometric interpretation of the above irreps as line bundles
on P1. This will be phrased in the language of algebraic geometry, as that is the language
with which the author is most familiar. The real/complex analytic viewpoint on this story
can be found in 11.3 of [2].

Exercise 3.8. Let B be the set of upper triangular matrices in the group SL2. Show that
we can identify SL2(C)/B(C) ∼= P1(C). We call SL2/B the flag variety of SL2. We will
explore these ideas in more detail in exercise 4.9.

Exercise 3.9. Show (or remember) that the global sections of the line bundle O(n) on P1

are given by ∇n = k[x, y]n (the homogeneous polynomials of degree n ∈ Z). Define a right

SL2 action by exercise 3.8 above, via translation. Specifically, given f

(
x
y

)
∈ ∇n, we define

the action via the formula

(fg)

(
x
y

)
:= f(g

(
x
y

)
).

Show that this is a right (!) action and that there is an object p

(
x
y

)
∈ ∇n on which any

element of N := {
(

1 ∗
0 1

)
} acts by the identity and any element of B/N ∼= {

(
α ∗
0 α−1

)
}

acts on p by scaling by7 α−n. We’ll show how to interpret this construction in a way that

7This pesky inverse can be taken care of with a dual, which we won’t define here.
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generalizes more readily in exercise 3.12 (which doesn’t require any exercises other than this
one).

Exercise 3.10. Fix some λ ∈ C. Define the Verma module associated to λ to be the tensor
product representation:

Mλ := U(sl2)⊗U(b) C,

where U(b) is the subring of U(sl2) generated by h and e, and C is given a U(b) module
structure by letting h act by scalar multiplication by λ and e act by 0. Show that Mλ is a
simple U(sl2)-module if and only if λ is not a nonnegative integer.

Exercise 3.11. In the notation above, show that for n ∈ Z≥0, Mn surjects onto the finite
dimensional irreducible representation ∇n of highest weight n. In the language used in this
lecture, what is the kernel of this map? (Once you show that this kernel actually is a sl2-
submodule, this also proves existence of these finite dimensional representations, where the
analysis above shows that the quotient actually is finite dimensional!)

Exercise 3.12. Keeping the notation of exercise 3.8, fix an integer n, and show that the
above construction has a more methodical interpretation as follows:

Define a map λ : B → Gm via8

(
α ∗
0 α−1

)
7→ αn, where we set T := B/[B,B] ∼=

{
(
α ∗
0 α−1

)
: α ∈ C×}. Show that because SL2 acts on SL2/B ∼= P1, SL2 acts on the

global sections of the line bundle SL2×B A1 and that these global sections are precisely the
representation of highest weight −n (note the minus sign, which can again be taken care of
by dualizing).

4 Representation Theory of sl3

Today, we’ll chat about the representation theory of sl3. The really cool part about this
is that the representation theory of sl3 accounts for a large percentage of the complexity
that goes into the study of representations of a general semisimple Lie algebra g (and in
fact suggests how to proceed with the general theory.) Recall that sl3 can be identified with
traceless 3× 3 matrices.

4.1 The Generalization of Eigenvalues

The main jump from studying the representations of sl2 to studying representations of a
general semisimple Lie algebra g is generalizing the role of h. Because of the fact that sl2

sits naturally inside the upper left 2×2 block of sl3, one might hope that h1,2 :=

1 0 0
0 −1 0
0 0 0


plays the same role as h did in the previous section. It turns out that it does–one can show
that any finite dimensional sl3 rep splits as a direct sum of its h1,2-eigenspaces.

8Here, Gm := Spec(C[x, x−1]) can be replaced with the complex analytic version C×.
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But why stop there? We can also embed sl2 inside sl3 in the bottom right 2 × 2 block,

or we can identify it as {

a 0 c
0 0 0
b 0 d

 : a+ d = 0}. These embeddings lead to corresponding

elements h2,3, h1,3 ∈ sl3 respectively. But even further still–why choose h1,3 over h3,1?
Note also that any two diagonal matrices h and h′ commute, so that [h, h′] = 0. The

solution to our problem of choosing the analogue of h will come from the linear algebra fact
that pairwise commuting diagonalizable matrices can be simultaneously diagonalized (see
exercise 4.7). Specifically, let h ⊂ sl3 be the subspace of diagonal matrices in sl3. The notion
of eigenvalues will be replaced in our settings by the generalized notion of weights.

Definition 4.1.1. For a given Lie algebra g with a choice of maximal abelian Lie subalgebra9

h, the weight space of g is defined to be h∗ := MapsV ect(h,C).

In this particular case, h∗ is spanned by the functionals Li, i = 1, 2, 3, where Li(M) := Mii

picks out the iith entry, subject to the relation L1 + L2 + L3 = 0:

h∗ ∼= C〈L1, L2, L3〉/(L1 + L2 + L3 = 0).

The notion of weights leads to a description of the Lie algebra structure on sl3 that generalizes
well to an arbitrary semisimple Lie algebra g.

Exercise 4.1. Convince yourself that sl3 is an eight dimensional vector space spanned by
three embedded sl2’s as described above. Specifically, sl3 admits a basis given by e1,2, e1,3,
e2,3, f2,1, f3,1, f3,2, together with a choice of two linearly independent elements in h, and the
corresponding relations are given by [h, ei,j] = (Li −Lj)(h)ei,j and [h, fj,i] = (Lj −Li)(h)fj,i
for all h ∈ h and 1 ≤ i < j ≤ 3.

We now formulate the analogue of theorem 3.1.1 in the case of sl3–in fact, we state it for
a general semisimple Lie algebra:

Theorem 4.1.1. (Diagonalizability) Let V be a finite dimensional representation of a
semisimple Lie algebra g with a choice of a maximal abelian subalgebra h. Then we can
write

V ∼= ⊕λ∈h∗Vλ,

where the sum is taken over finitely many λ ∈ h∗ and Vλ := {v ∈ V : hv = λ(h)v ∀h ∈ h}.

4.2 Highest Weights for sl3

Remark 4.2.1. For the following section, the reader may wish to have a few copies of (finely
graded) A2 graph paper at hand, available at Matthew Fayers’s web page here.

We will classify representations of sl3 through exercises, similarly to our classification of
the irreps of sl2. We’ll start with the canonical nontrivial example of a representation, the
adjoint representation.

9It turns out that diagonal matrices give such a choice for sln.
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Exercise 4.2. Show that the adjoint representation of sl3 has nonzero eigenvalues10 given
by Li − Lj for distinct i, j ∈ {1, 2, 3}. We call these six eigenvalues the roots of sl3, and
sometimes denote the set of roots by R. On your A2 graph paper, draw h∗ as follows: choose
an origin, declare that the rightward arrow is L1, the up and left line L2, and the down and
left line L3, then plot the six eigenspaces.

Exercise 4.3. Let V be an sl3-representation and let v ∈ Vλ for some λ ∈ h∗. Recall the
construction of ei,j and fi,j from exercise 4.1. In what eigenspace does e1,2v live? Generalize
this to the other ei,j’s and to the fj,i’s.

Back in sl2, our choice of h :=

(
1 0
0 −1

)
dictated that e had a positive h-eigenvalue,

and our notion of highest weight vector was precisely that of a nonzero vector v ∈ Vλ for
some λ ∈ C such that ev = 0. With that in mind, let V be an sl3 rep. We will declare11

that a highest weight vector for sl3 is a nonzero vector v ∈ Vλ for some λ ∈ h∗ such that
ei,jv = 0 for all i, j ∈ {1, 2, 3} with i < j. Accordingly, we introduce a partition on the
set of roots R = R+ ∪ R− of sl3 into positive roots R+ := {Li − Lj : i < j} and negative
roots R− := {Li −Lj : i > j}. In this terminology, a highest weight vector is an eigenvector
(again, labeled by h∗) that is killed by the action of e1,2, e2,3, and e1,3 (or, equivalently, it
turns out, all the eigenvectors associated to the positive roots).

Exercise 4.4. Show that such a highest weight vector exists. (Hint: Fix a nonzero v ∈ Vλ
for some λ ∈ h∗. Let t ∈ Z≥0 be the maximal element for which (e1,3)tv 6= 0. Next, let
s ∈ Z≥0 be the maximal element for which w := (e2,3)s(e1,3)tv 6= 0. Show that e1,3w = 0 and
e2,3w = 0. Finally, let r ∈ Z≥0 be maximal so that u := (e1,2)rw 6= 0, and check that u is a
highest weight vector for V .)

Remark 4.2.2. As an alternative to exercise 4.4, one can draw a line L with irrational
slope in h∗ which separates the ‘positive’ weights Li − Lj for i < j from the ‘negative’
weights Lj−Li, thereby inducing a well-defined ordering on the lattice spanned by these six
elements. The ordering is given by looking at the real part of the value of the weights 12 of
our representation under application of the functional l defining L, and one can show that
multiplication by the ei,j’s increases weight (see [2] for more details on this). In this approach,
positive (resp. negative) roots are declared to be those α ∈ R such that Re(l(α)) > 0 (resp.
Re(l(α)) < 0).

By exercise 4.4, we can fix a highest weight vector v ∈ Vλ for some λ ∈ h∗. When plotting
this on your graph paper, it may help to assume λ = 2L1 − L3.

Now, we’ll use one of the most important techniques in the representation theory of
semisimple Lie algebras – namely, reduction of the analysis to the various copies of sl2

10Although these might more descriptively be called the sl3 eigenvalues with respect to h, the choice of
maximal abelian subalgebra h is often left implicit.

11Note that here we make a choice! Just as we could have given the whole sl2 story with h instead being(
−1 0
0 1

)
and e replaced by f =

(
0 0
1 0

)
in the highest weight discussion, there are different choices for the

notion of ‘highest weight’ in general. The amount of freedom we have in making these choices is captured
by the Weyl group, which we will discuss later.

12And, similarly to sl2, we will see that these weights are always integral linear combinations of the Li!
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embedded in sl3. Specifically, let α := L1 − L2 (one of the positive roots of sl3), and
consider the subalgebra sl2,α ⊂ sl3 obtained by embedding sl2 into the upper left 2×2 block.
Then, we observe that the sl2,α-span of v is an sl2-representation with highest weight v.
By using exercise 3.7, we thus obtain that λ − 2α, λ − 4α, ..., wα(λ) are all weights of V ,
where wα denotes the operation of reflection across the hyperplane cut out by the condition
h1,2 = 0 (i.e. the hyperplane defined by the equation h1,2X = 0 for X ∈ h∗, geometrically
perpendicular to α = L1 − L2) – draw this!

Exercise 4.5. Repeat the above sl2,α discussion for α = L2 − L3 and α = L1 − L3, the two
other positive roots of sl3. Show that if µ ∈ h∗ is any eigenvalue of the representation V ,
then for any positive root α ∈ R+, wα(µ) is also an eigenvalue, where wα is reflection across
the hyperplane defined by hα = 0 in h∗ for the corresponding hα ∈ sl2,α ∩ h.

Using the above exercise with the choice of highest weight λ = 2L1 − L3, you should be
able to draw a series of eigenvalues which trace out a sort of ‘hexagon13’ in h∗.

We thus see that studying the embedded copies of sl2 can tell us where the eigenvalues
of our representation live in h∗. It can also give us restrictions on what the highest weight λ
can be!

Exercise 4.6. Show that if λ = aL1 + bL2 + cL3 for some a, b, c ∈ C is a highest weight for
the representation V , then a, b, c ∈ Z≥0, and furthermore a ≥ b ≥ c. (Hint: Show that ΛW ,
the set of all elements of h∗ which take integer values on the hi,j, is a lattice and is generated
as a lattice by the Li’s.)

This is enough to state the classification theorem, where we write in parenthesis terms
which will be generalized to the case of an arbitrary semisimple Lie algebra later:

Theorem 4.2.1. Every finite dimensional irreducible representation V of sl3 has a highest

weight λ ∈ h∗ which is in the ‘1
6

th
’ plane cut out by the conditions h1,2 ≥ 0 and h2,3 ≥ 0

(the dominant Weyl chamber associated to the simple weights L1−L2 and L2−L3). This λ
determines the representation. Furthermore, for all λ satisfying the above conditions, there
is an irreducible representation of highest weight λ. If v ∈ V is a highest weight vector,
then any vector in V can be obtained as the U(n−) span of V , where n− is the Lie algebra
spanned by f2,1, f3,2,, f3,1 (the negative root vectors), and U(n−) is the associated universal
enveloping algebra.

The last statement is exercise 4.8 below. Existence, as usual, is not as fun to do by hand,
but it can be done by realizing this representation as a line bundle on the space G/B (as
was the case for sl2) – see exercise 4.10 for more.

4.3 Bonus Exercises

Exercise 4.7. Show that ‘commuting diagonalizable matrices can be simultaneously diago-
nalized’, i.e., if A and B are two commuting linear maps of a finite dimensional vector space
V to itself which are diagonalizable, then there is a basis of V consisting of simultaneous
eigenvectors for both A and B (Hint: Show that A preserves the B-eigenspaces.)

13Although if you had picked a different highest weight λ, you may have obtained a triangle!
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Exercise 4.8. Prove that the multiplication map U(n−) ⊗ U(h) ⊗ U(n) → U(sl3) is a
surjection of vector spaces, and show this implies the final claim of theorem 4.2.1, where n is
the Lie algebra generated by the positive root vectors ei,j for i > j. (The Poincaré Birkhoff
Witt (PBW) theorem for sl3 says that this map is in fact an isomorphism of vector spaces).

Exercise 4.9. For a Lie (resp. algebraic) group G, the flag manifold (variety) is the quotient
manifold (variety) G/B, where B is a Borel subgroup of G. Show that G/B can be identified
with the manifold (variety) {(u, v) ∈ P2

C × P2
C : u ⊥ v} (Hint: SL3 acts on the set of

complete flags of C3, i.e. sequences of i-dimensional subspaces Vi ⊂ C3, i = 1, 2, 3, such that
0 ⊂ V1 ⊂ V2 ⊂ V3 = C3. What is the stabilizer of the flag 0 ⊂ C ⊂ C2 ⊂ C3 under the
action of SL3?)

Exercise 4.10. Imitate the constructions in exercise 3.12 to give an algorithm to construct
line bundles on G/B giving rise to the irreducible representations of sl3 stated in theo-
rem 4.2.1.14 The Borel-Weil theorem states that all finite dimensional representations of a
semisimple Lie algebra g can be realized as line bundles on the flag variety of an associated
semisimple simply connected Lie group G.

5 The Geometry of Semisimple Lie Algebras

Fix an arbitrary semisimple Lie algebra g and a maximal diagonalizable subalgebra h ⊂ g.
Last time, we saw that when g = sl3 and h is the subspace of traceless diagonal matrices,
we can determine all finite dimensional representations of g by studying embedded sl2,α’s for
each positive root α ∈ {L1 − L2, L1 − L3, L2 − L3} and generalizing the notion of highest
weight. We also saw that the other choices of highest weight could be obtained from a given
one by reflecting across the hyperplanes in h∗ cut out by the condition that evaluation at
some Hα ∈ hα ⊂ sl2,α must be zero.

Today, we’ll talk about how these facts generalize to a general g. First, we will need to
generalize the embeddings of sl2 ⊂ g. The following theorem is one of the main theorems
of the basic theory of semisimple Lie algebras, which we will take as a black box for the
remainder of the course (recall that a root of g is a nonzero (generalized) eigenvalue of h
under the adjoint representation of g on itself):

Theorem 5.0.1. Let α be a root of g. Then

• −α is also a root of g,

• The root space gα := {x ∈ g : [h, x] = α(h)x for all h ∈ h} is one dimensional, and

• There exists an embedding of Lie algebras sl2,α ↪→ g, where the sl2 element

(
1 0
0 −1

)
maps to an element of h,

(
0 1
0 0

)
to an element of gα, and

(
0 0
1 0

)
to an element of

g−α.

Furthermore, the roots of g span h∗.
14No need to prove these actually do have the global sections–A fun proof that these line bundles actually

have these global sections is given in [4]!
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5.1 The Killing Form

We saw that much of the representation theory of sl3 came from the geometry of the maximal
diagonalizable subalgebra h. We’ll soon see that this geometry came implicitly from the Lie
algebra structure on sl3.

Definition 5.1.1. Fix any (not necessarily semisimple!) finite dimensional Lie algebra f.
The Killing form on f is defined to be the pairing κ : f× f→ C given by

κ(x, y) := Tr(ad(x) ◦ ad(y)),

where we view ad(x) ◦ ad(y) : f→ f as a linear endomorphism.

The cyclicity of trace (Tr(XY ) = Tr(Y X)) implies that κ is symmetric. A few more
linear algebra tricks (see [3]) involving properties of the trace show that the Killing form is
ad-invariant, i.e.:

Proposition 5.1.1. Fix a finite dimensional Lie algebra f. Then for all x, y, z ∈ f,

κ([x, y], z) = κ(x, [y, z]).

Example 5.1.1. If g = sl2, then κ(h, e) = κ(h, f) = 0, since ad(h) ◦ ad(e) and ad(h) ◦ ad(f)
permute the three eigenspaces sl2 = Cf ⊕ Ch ⊕ Ce = (sl2)−2 ⊕ (sl2)0 ⊕ (sl2)2. Similarly,
κ(e, e) = κ(f, f) = 0. Direct computation shows that κ(e, f) = 4 and κ(h, h) = (−2)2 + 02 +
22 = 8.

The above method for computing κ(h, h) can be generalized to any semisimple Lie alge-
bra. Specifically, write g as the sum of its root spaces, i.e. g = ⊕α∈Rgα where R denotes
the set of roots of g. Then if h ∈ h ⊂ g, then κ(h, h) =

∑
β∈R(β(h))2. In particular, since

α(hα) 6= 0, we see that each κ(hα, hα) 6= 0:

Proposition 5.1.2. The Killing form restricted to the real span of the roots inside h× h is
positive definite.

When g = sl2, the example also shows that the Killing form on g is non-degenerate (i.e.
if κ(x, y) = 0 for all y ∈ g then x = 0), hence that it induces an isomorphism g ∼= g∗. This
is, in fact, is an equivalent characterization of semisimple Lie algebras:

Proposition 5.1.3. A Lie algebra f is semisimple if and only if the Killing form on f is
non-degenerate.

5.2 The Weyl Group

Consider again the adjoint representation of sl2. When working with the representation
theory of sl3, we saw that it was better to make our eigenvalues functionals on all diagonal
matrices, instead of just singling out one (or a few) diagonal matrices. In particular, this
implies that for the representations of sl2, our entire discussion should work with h :=(

1 0
0 −1

)
replaced by −h. In carrying out that discussion, we would find that f :=

(
0 0
1 0

)
,
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the vector we originally took to be in the ‘negative’ direction, would now be pointing in the
positive direction.

In the sl3 case, this discussion amounted to the fact that reflections across the hyperplanes
cut out by the various hα’s for all three positive roots of the adjoint representation (i.e.
α = Li−Lj for i < j) preserved the set of eigenvalues of a representation. The fact that the
roots always span h∗ (see theorem 5.0.1) leads us to a general definition:

Definition 5.2.1. The Weyl group of g is defined to be the group generated by the reflections
in the various hyperplanes {β : β(hα) = 0}, where β varies over the real span of the roots
inside h∗ and α varies over the roots of g.

Remark 5.2.1. We could also take this definition for general β ∈ h∗, but the emphasis here
is on the real geometry inside of h∗. We’ll discuss this more when we discuss the notion of
root systems in section 6.2.

Remark 5.2.2. Geometrically, the reflection corresponding to a given α ∈ R is taken across
the hyperplane perpendicular to α in h, hence in particular it sends α to −α.

Example 5.2.1. The Weyl group of sl3 is the symmetric group on three letters S3, where
σ ∈ S3 acts via σ(Li) := Lσ(i).

Example 5.2.2. The Weyl group of sl2 is S2
∼= Z/2Z.

By definition, the Weyl group is a Coxeter group15. One of the reasons for which the
Weyl group is important is the analogue of the fact that the weights of any sl3 representation
are preserved under the action of the Weyl group (i.e. the Weyl group induces symmetries
on the set of weights). This generalizes to any g:

Theorem 5.2.1. If V is any finite dimensional representation of g, then the weights of V
are preserved under the action of the Weyl group W .

5.3 Exercises

These exercises are meant to give a taste of how the general theory of semisimple Lie algebras
is built. Readers who have not finished the exercises for sl2 and sl3 may wish to work on
those!

Exercise 5.1. Fix a semisimple Lie algebra g. Show that if x ∈ gα and y ∈ gβ are such that
κ(x, y) 6= 0, then α = −β.

Exercise 5.2. Prove the ‘if’ direction of proposition 5.1.3. (Hint: Assume the Killing form
is nondegenerate on g, and let a be some abelian ideal of g. Then for any a ∈ a, x ∈ g, prove
that ad(x) ◦ ad(a) maps entirely into a and kills a, so this map has trace zero.)

15In fact, W is a finite Coxeter group, but not all finite Coxeter groups arise in this way, see section 6.2.
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5.4 Bonus Exercises

These next two exercises introduce the Casimir operator of a semisimple Lie algebra g, a
nontrivial element in the center of Ug which, among other things, is used to prove that all
finite dimensional representations of g are completely reducible.

Exercise 5.3. Let g be a semisimple Lie algebra. Prove that we have identifications of
g-modules g ⊗ g ∼= g∗ ⊗ g ∼= HomV ect(g, g), where the tensor product of two Lie algebras is
given a g-module structure by the ‘product rule’ and the vector space of maps between two
Lie algebras is given a g-module structure via (xf)(v) = xf(v)− f(xv).

Exercise 5.4. Show that there is an element C /∈ C ⊂ Ug with C ∈ Z(g) := Z(Ug). (Hint:
For a g representation V , define the invariants V g := {v ∈ V : xv = 0 for all x ∈ g}. Use the
chain of isomorphisms from exercise 5.3, and the map of g-modules g⊗g→ Ug to show that
C ∈ (Ug)g.) (For this exercise, it may help to use the ‘adjoint’ definition of the universal
enveloping algebra, namely that U : Lie→ C-Alg is the left adjoint to the forgetful functor
C-Alg → Lie.)

Exercise 5.5. Note that the Weyl group action W = S3 preserves the root lattice ΛR of sl3,
namely the lattice spanned by the roots (and this phenomenon holds for all semisimple Lie
algebras). In particular, we can define the affine Weyl group W aff := W o ΛR.

It is a theorem that for an algebraically closed field of characteristic p, the category
Rep(G) is not semisimple (i.e. there are nontrivial extensions of simple objects by other
simple objects), but that certain “blocks” of the category which do not have no nontrivial
maps or extensions between them. Specifically, define the p-dilated · action (“p-dilated dot
action”) on Λ via the map (nr, w) ·p λ := w(λ+ pr + ρ)− ρ, where n ∈ Z, r a root, w ∈ W ,
and ρ denotes half the sum of the positive roots. There is a theorem that for a semisimple
algebraic group G, the category of representations breaks up as a direct sum of categories
labeled by the W aff orbits on Λ. In symbols,

Rep(G) =
⊕

λ∈Λ/Waff

Repλ(G).

Compute the W aff orbits of this action for SL2 and SL3. Compare your answer to that
of exercise 2.6.

Exercise 5.6. Fix a semisimple Lie algebra g with a choice of b and t. Define the BGG
Category O to be the full subcategory of finitely generated Ug − Mod on which t acts
semisimply (i.e. “diagonalizably”) and n acts locally nilpotently (i.e. the Un span of any
element in any module of O is finite dimensional).

Are all objects of O generated by highest weight vectors? That is, given M ∈ O, can we
find a direct sum of Verma modules which surjects onto M? (This exercise will force you to
contemplate an important but annoying point about category O and may not be the best
exercise if this is the first time you are seeing this notion.)
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6 Toward the General Theory

6.1 The Representation Theory of Semisimple Lie Algebras

We have almost all of the terminology we will need to classify all representations of an
arbitrary semisimple Lie algebra. We won’t prove many of the statements made here, but it
may help to verify each statement in the special case of sl3, for which we’ve already developed
much of the theory (for a translation guide, see appendix A). We’ll need to make a few more
definitions in the general case, starting with the generalization of the notions of weights of
finite dimensional representations of sl3 (recall that the set R of roots of g denotes the set
of generalized h-eigenvalues of the adjoint representation):

Definition 6.1.1. The weight lattice Λ of a semisimple Lie algebra g is defined to be the
lattice of integral weights :

Λ := {λ ∈ h∗ : λ(hα) ∈ Z for all α ∈ R}.

Next, we generalize the notion of positive roots. Recall what we did for sl3: we made the
choice of taking the upper triangular (traceless) matrices as giving us the positive directions
for each embedded sl2. The correct analogue in the general case of an arbitrary semisimple
Lie algebra g is the notion of a maximal solvable Lie algebra.

Definition 6.1.2. The derived central series of a Lie algebra b is the sequence defined
recursively via D0 = b, Dn := [Dn−1, Dn−1]. If the derived central series for b terminates at
zero, b is said to be solvable. A maximal solvable subalgebra of g is called a Borel subalgebra
of g, and usually denoted by b.

One can check (see exercise 6.2) that if gα ⊂ b is in a Borel subalgebra of g, then any
nonzero vector in g−α is not in the Borel subalgebra. It is therefore plausible that a choice of
Borel subalgebra induces a notion of positivitiy on the roots. From here on out, we choose a
Borel subalgebra b which contains h (this can always be done), and we make the following
definition:

Definition 6.1.3. A root α is said to be positive if gα ⊂ b. The set of positive roots for g
is denoted by R+. A positive root is said to be simple if it cannot be written as the sum of
two positive roots.

We can then define the notion of a highest weight for an arbitrary finite-dimensional
representation of g as follows (recall from theorem 5.0.1 that we can associate to each root
α ∈ R an embedding sl2 ↪→ g with images eα ∈ gα, fα ∈ g−α, and hα ∈ h):

Definition 6.1.4. Let V be a finite-dimensional representation of g. Say that λ ∈ h∗ is a
highest weight for V with highest weight vector v ∈ Vλ \ 0 if eαv = 0 for each positive root
α ∈ R+.

Finally, we’ll need a notion that generalizes the part of the plane for sl3 in which we
found our highest weights:
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Definition 6.1.5. Choose embeddings of sl2 into g for each positive root α ∈ R+, mapping
e ∈ sl2 into gα and h to hα ∈ h. The dominant Weyl chamber is defined to be the set
{λ ∈ h∗ : λ(hα) ≥ 0 for all α ∈ R+}.

Remark 6.1.1. Geometrically, the dominant Weyl chamber corresponds to one of the con-
nected components of the complement of the union of the hyperplanes involved in the defi-
nition of the Weyl group of g.

We are finally in a position to state the classification theorem of irreducible representa-
tions of a general finite dimensional semisimple Lie algebra:

Theorem 6.1.1. Fix a finite dimensional semisimple Lie algebra g with a choice of maximal
diagonalizable subalgebra h and maximal solvable subalgebra b containing h. Then all finite
dimensional irreducible representations of g correspond to and are uniquely determined by
a highest weight λ ∈ h∗ located in the dominant Weyl chamber. Furthermore, this weight is
integral.

If you are in the mood for more definitions, you can define the opposite Borel b− to be
the unique Borel subalgebra for which b ∩ b− = h, and construct the opposite unipotent
radical n− := [b−, b−]. We then have the following:

Theorem 6.1.2. Fix an irreducible representation V of a semisimple Lie algebra g. All
vectors in V can be obtained as the U(n−)-span of the highest weight vector.

6.2 Root Systems and Dynkin Diagrams

We’ve seen that much about a semisimple Lie algebra g can be learned by studying the
geometry of a (mild) choice of maximal diagonalizable subalgebra h. It turns out that the
geometry of this diagonalizable subalgebra determines the Lie algebra itself! We won’t have
time to prove this, but it’s good to verify in the case of sl3 that h∗ has the structure of a
root system (with κ taken to be the killing form and ∆ = R taken to be the roots of sl3):

Definition 6.2.1. A root system is a finite dimensional real vector space E equipped with
an inner product (i.e. a positive definite symmetric bilinear form) κ : E × E → R and a
finite set of nonzero vectors ∆ ⊂ E, called roots, satisfying the following properties:

1. If α ∈ ∆, n ∈ Z, then nα ∈ ∆ if and only if n = ±1.

2. For any α ∈ ∆, reflection across the hyperplane cut out by α preserves the roots.

3. For any α, β ∈ ∆, we have that 2κ(α,β)
κ(α,α)

∈ Z.

4. The roots span E.

Remark 6.2.1. Some sources define a root system as a triple (E, κ,∆) satisfying only the
first two of the above axioms, referring to those that satisfy the third as crystallographic and
those which satisfy the fourth as essential.

Theorem 6.2.1. A choice of Cartan subalgebra h ⊂ g for a semisimple Lie algebra g defines
a root system, and each root system determines a Lie algebra.
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The idea behind the proof of this theorem is that the properties of a root system impose
tight geometric conditions on the angles that roots can have. For example, if α, β are two
roots, then axiom 3 of a root system (applied twice) tells us that if θ is the angle between
two roots α and β, then 4cos2(θ) ∈ Z! This implies that θ ∈ {0, π

6
, π

4
, π

3
}+ π

2
Z.

The geometry of a root system is further restricted when we choose a simple system,
analogous to choosing positive roots.

Definition 6.2.2. Let (E, κ,∆) be a root system. A choice of positive roots corresponds to
a choice of subset ∆+ ⊂ ∆, closed under addition, such that for each α ∈ ∆, precisely one
of {α,−α} is an element of ∆+. Given a choice of positive roots, the associated simple roots
are those positive roots which cannot be written as a sum of two other positive roots.

Once we choose a simple system, we obtain an even stronger restriction on the angles
that can be formed between two simple roots , and from this, one can construct the Dynkin
diagram of a root system.

Definition 6.2.3. Fix a root system ∆ with a choice of simple roots. The Dynkin diagram
associated to ∆ is the (oriented, multi)graph with vertices labeled by the set of simple roots
and edges given by the following rules:

• No edge if the angle is π
2
, i.e. ,

• One edge if the angle is 2π
3

, i.e. ,

• Two edges with the longer root pointing to the shorter root if the angle is 3π
4

, i.e. ,
with the convention that the arrow points to the shorter root,

• Three edges if the angle between the two simple roots is 5π
6

, i.e. , with the convention
that the arrow points to the shorter root.

It turns out that these are all the angles that can appear between two simple roots, as
we will see.

Remark 6.2.2. One reason that we don’t label any vertices between the edges is that the
only time the Killing form returns π

2
is when the associated semisimple Lie algebra was a

product of two smaller semisimple Lie algebras. Since semisimple Lie algebras are classified
by simple ones, we’ll restrict to the classification of simple Lie algebras from here on out.

Theorem 6.2.2. Root systems are classified by their associated Dynkin diagram, and all
connected Dynkin diagrams either fall into one of four families or correspond to one of five
exceptional root systems, all labeled below. Therefore, simple Lie algebras are classified by
their associated Dynkin diagrams, which fall into one of the four families or one of the five
exceptional Lie algebras listed below:
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Label Lie Algebra Diagram Restriction on n
An sl(n+1) n ≥ 1
Bn so2n+1 n ≥ 2
Cn sp2n n ≥ 3

Dn so2n n ≥ 4

E6 e6

E7 e7

E8 e8

F4 f4
G2 g2

In the above list, sp2n is the Lie algebra of the symplectic group Sp(2n), given by

sp2n = {A ∈ gl2n : JA+ AtJ = 0}, where J :=

(
0 In
−In 0

)
.

6.3 Exercises

Exercise 6.1. Verify that the Lie algebra of upper triangular n× n matrices is solvable.

Exercise 6.2. Fix a semisimple Lie algebra g and choose a Borel subalgebra (i.e. a maximal
solvable subalgebra) b. Show that if gα ⊂ b for some root α, then b ∩ g−α = {0}.

Exercise 6.3. (Exceptional Isomorphisms) Identify the Dynkin diagrams for Bn, Cn and Dn

for n smaller than their constraint. (eg, B1, C1, C2, D2, D3–note that so2 is an abelian Lie
algebra). What isomorphisms of semisimple Lie algebras do these identifications suggest?
If you want, you can also prove these exceptional isomorphisms directly. (We also have the
isomorphisms E3

∼= A1 × A2, E4
∼= A4 and E5

∼= D5, which you can also interpret via the
Dynkin diagrams.)

Exercise 6.4. Using the definition of root systems, show the only Dynkin diagrams induced
by rank two root systems are given by A1 × A1, A2, B2, G2 (The rank of a root system
(E, κ,∆) is defined to be the dimension of E).

6.4 Bonus Exercises

The next few exercises will motivate and define the Langlands dual of a semisimple (in fact,
any reductive) algebraic group. For more details, see [1]. It turns out that reductive algebraic
groups are classified by their root datum, a mild generalization of the idea of a root system
which requires the additional notion of coroots.

Exercise 6.5. Verify that for a semisimple Lie algebra g with maximal diagonalizable subal-
gebra h and root α ∈ R, if we define the coroot α∨ ∈ h∗ via α∨ := 2 α

κ(α,α)
, then κ(α, α∨) = 2.
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Definition 6.4.1. A root datum is defined to be a quadruple (X,R,X∨, R∨) where X,X∨

are free finite rank Z-modules equipped with a perfect duality pairing 〈−,−〉 : X ×X∨ → Z
(i.e. the map ϕ : X → HomZ(X∨,Z), ϕ(x)(y) := 〈x, y〉 is an isomorphism), and where
R ⊂ X, R∨ ⊂ X∨ are both finite subsets such that there exists16 a bijection R → R∨,
written α 7→ α∨, satisfying:

1. For all α ∈ R, 〈a, a∨〉 = 2.

2. For all α ∈ R, the endomorphism sα,α∨ : X → X given by sα,α∨(x) := x−〈x, α∨〉α has
the property that sα,α∨(R) = R.

3. Symmetrically, for all a ∈ R, the endomorphism sa∨,α : X∨ → X∨ given by sα∨,α(y) =
y − 〈y, α〉α∨ has the property that sα∨,α(R∨) = R∨.

A root datum is defined only up to isomorphism of this data (i.e. a map of Z-modules
which maps the roots to the roots and the coroots to the coroots). For any reductive
algebraic group G with choice of maximal torus T , we define the associated root datum to
be (Λ := Hom(T,Gm), R,Λ∨ = Hom(Gm, T ), R∨) with the pairing given by exercise 1.7,
R ⊂ Λ the set of roots of the adjoint representation T on g, and the coroots R∨ ⊂ Λ∨ given
by the map Gm

∼= TSL2 → T in the following theorem:

Theorem 6.4.1. Let G be a reductive algebraic groups with a choice of maximal torus T ,
and let α ∈ R be a root of G. Then there exists a map of algebraic groups SL2 → G whose
induced map on Lie algebras sends e ∈ sl2 to some eigenvector of α.

It is a theorem that the above construction gives a bijection

{Reductive Algebraic Groups} ∼−→ {Root Datum}.

Exercise 6.6. The root datum of SL2 is isomorphic to (Z, {±m},Z, {±n}) for some m,n ∈
Z. What are m and n?

Note that the definition of root datum is symmetric–i.e. if (X,R,X∨, R∨) is a root datum,
then so is (X∨, R∨, X,R). In particular, there is an endomorphism of {reductive algebraic
groups} which squares to the identity, usually denoted G 7→ G∨ or G 7→ LG.

Definition 6.4.2. For a reductive algebraic group G, we call the group G∨ obtained by
reversing the root datum the Langlands dual of G.

Exercise 6.7. Show that the Langlands dual of SL2 is PGL2. More generally, show that the
Langlands dual of SLn is PGLn. This illustrates a general phenomenon–‘simply connected
algebraic groups go to adjoint type algebraic groups under Langlands duality.’.

Exercise 6.8. Show that the Langlands dual of GLn (which is a reductive algebraic group)
is GLn.

In particular, Gm = GL1 is its own Langlands dual. Many phenomena which go under
the name ‘class field theory’ generalize (often with great difficulty!) to a more general theory
relating G and G∨.

16It turns out that if such a bijection exists, then it is uniquely determined.
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A Cheat Sheet for sl3

The following list includes terms which we haven’t discussed in this course, but are useful to
know:

Term (Usual) Value for sl3 Determined By
sl3 {traceless 3× 3 matrices} No Choices
Borel Subalgebra b {upper triangular traceless matrices} Choice
Unipotent Radical n := [b, b] {strictly upper triangular matrices} b
h (or t) {diagonal traceless matrices} *
Opposite Borel b− {lower triangular traceless matrices} b
Opposite Unipotent Radical n− {strictly lower triangular matrices} b
h∗ = HomV ect(h,C) {(L1, L2, L3) : L1 + L2 + L3 = 0} h
Weight Lattice Λ Z-Span{L1, L2, L3} h
Roots R {Li − Lj} i, j ∈ {1, 2, 3}, i 6= j h
sl2,α sl2 Lie-subalgebra spanned by fα, hα, eα Root α
Root Lattice ΛR Z-span of roots h
Positive Roots R+ {Li − Lj} i, j ∈ {1, 2, 3}, i < j b, h
Simple Roots {L1 − L2, L2 − L3} b, h
Weyl Group S3 via σ(Li) = Lσ(i) b, h
Simple Reflections {(1, 2), (2, 3)} b, h
Dominant Weyl Chamber {aL1 + bL2 + cL3 : a ≥ b ≥ c} b, h
Parabolic Subalgebra** ps C-Span(b, fs) b, simple root s
Killing Form κ κ(M,N) = 6Tr(MN) No Choices
Coroot α∨ := 2α/κ(α, α) α∨ = hα ∈ h Root α
ρ :=

∑
r∈R+ r/2 L1 − L3 b, h

*Canonically b/n for any choice of Borel b but a choice makes it a subset of g
**Caution: These are the nontrivial parabolic subalgebras (b and g are parabolic subalge-
bras) and in general parabolic subalgebras correspond in an order preserving bijection with
subsets of the simple roots.
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