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Chapter 1

GEOMETRY: Making a Start

1.1 INTRODUCTION. The focus of geometry continues to evolve with time. The renewed

emphasis on geometry today is a response to the realization that visualization, problem-solving

and deductive reasoning must be a part of everyone’s education. Deductive reasoning has long

been an integral part of geometry, but the introduction in recent years of inexpensive dynamic

geometry software programs has added visualization and individual exploration to the study of

geometry. All the constructions underlying Euclidean plane geometry can now be made

accurately and conveniently. The dynamic nature of the construction process means that many

possibilities can be considered, thereby encouraging exploration of a given problem or the

formulation of conjectures. Thus geometry is ideally suited to the development of visualization

and problem solving skills as well as deductive reasoning skills. Geometry itself hasn’t

changed: technology has simply added a powerful new tool for use while studying geometry.

So what is geometry? Meaning literally “earth measure”, geometry began several thousand

years ago for strictly utilitarian purposes in agriculture and building construction. The explicit

3-4-5 example of the Pythagorean Theorem, for instance, was used by the Egyptians in

determining a square corner for a field or the base of a pyramid long before the theorem as we

know it was established. But from the sixth through the fourth centuries BC, Greek scholars

transformed empirical and quantitative geometry into a logically ordered body of knowledge.

They sought irrefutable proof of abstract geometric truths, culminating in Euclid’s Elements

published around 300 BC.  Euclid’s treatment of the subject has had an enormous influence on

mathematics ever since, so much so that deductive reasoning is the method of mathematical

inquiry today. In fact, this is often interpreted as meaning “geometry is 2-column proofs”. In

other words geometry is a formal axiomatic structure – typically the axioms of Euclidean plane

geometry - and one objective of this course is to develop the axiomatic approach to various

geometries, including plane geometry. This is a very important, though limited, interpretation of

the need to study geometry, as there is more to learn from geometry than formal axiomatic

structure. Successful problem solving requires a deep knowledge of a large body of geometry
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and of different geometric techniques, whether or not these are acquired by emphasizing the

‘proving’ of theorems.

Evidence of geometry is found in all cultures. Geometric patterns have always been used to

decorate buildings, utensils and weapons, reflecting the fact that geometry underlies the creation

of design and structures. Patterns are visually appealing because they often contain some

symmetry or sense of proportion. Symmetries are found throughout history, from dinosaur

tracks to tire tracks. Buildings remain standing due to the rigidity of their triangular structures.

Interest in the faithful representation of a three dimensional scene as a flat two-dimensional

picture has led artists to study perspective. In turn perspective drawing led to the introduction of

projective geometry, a different geometry from the plane geometry of Euclid. The need for

better navigation as trading distances increased along with an ever more sophisticated

understanding of astronomy led to the study of spherical geometry. But it wasn’t until the 19th

century, as a result of a study examining the role of Euclid’s parallel postulate, that geometry

came to represent the study of the geometry of surfaces, whether flat or curved. Finally, in the

20th century this view of geometry turned out to be a vital component of Einstein’s theory of

relativity. Thus through practical, artistic and theoretical demands, geometry evolved from the

flat geometry of Euclid describing one’s immediate neighborhood, to spherical geometry

describing the world, and finally to the geometry needed for an understanding of the universe.

The most important contribution to this evolution was the linking of algebra and geometry

in coordinate geometry. The combination meant that algebraic methods could be added to the

synthetic methods of Euclid. It also allowed the use of calculus as well as trigonometry. The use

of calculus in turn allowed geometric ideas to be used in real world problems as different as

tossing a ball and understanding soap bubbles. The introduction of algebra also led eventually

to an additional way of thinking of congruence and similarity in terms of groups of

transformations. This group structure then provides the connection between geometry and the

symmetries found in geometric decorations.

But what is the link with the plane geometry taught in high school which traditionally has

been the study of congruent or similar triangles as well as properties of circles? Now

congruence is the study of properties of figures whose size does not change when the figures

are moved about the plane, while similarity studies properties of figures whose shape does not

change. For instance, a pattern in wallpaper or in a floor covering is likely to be interesting when

the pattern does not change under some reflection or rotation.  Furthermore, the physical

problem of actually papering a wall or laying a tile floor is made possible because the pattern

repeats in directions parallel to the sides of the wall or floor, and thereby does not change under

translations in two directions. In this way geometry becomes a study of properties that do not

change under a family of transformations. Different families determine different geometries or
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different properties. The approach to geometry described above is known as Klein’s Erlanger

Program because it was introduced by Felix Klein in Erlangen, Germany, in 1872.

This course will develop all of these ideas, showing how geometry and geometric ideas are a

part of everyone’s life and experiences whether in the classroom, home, or workplace. To this is

added one powerful new ingredient, technology. The software to be used is Geometer’s

Sketchpad. It will be available on the machines in this lab and in another lab on campus. Copies

of the software can also be purchased for use on your own machines for approximately $45

(IBM or Macintosh). If you are ‘uncertain’ of your computer skills, don’t be concerned - one

of the objectives of this course will be to develop computer skills. There’s no better way of

doing this than by exploring geometry at the same time.

In the first chapter of the course notes we will cover a variety of geometric topics in order to

illustrate the many features of Sketchpad. The four subsequent chapters cover the topics of

Euclidean Geometry, Non-Euclidean Geometry, Transformations, and Inversion.  Here we will

use Sketchpad to discover results and explore geometry. However, the goal is not only to study

some interesting topics and results, but to also give “proof” as to why the results are valid and

to use Sketchpad as a part of the problem solving process.

1.2 EUCLID’S ELEMENTS. The Elements of Euclid were written around 300 BC. As Eves

says in the opening chapter of his ‘College Geometry’ book,

“this treatise by Euclid is rightfully regarded as the first great landmark in the history of

mathematical thought and organization. No work, except the Bible, has been more widely

used, edited, or studied. For more than two millennia it has dominated all teaching of

geometry, and over a thousand editions of it have appeared since the first one was printed in

1482. ... It is no detraction that Euclid’s work is largely a compilation of works of

predecessors, for its chief merit lies precisely in the consummate skill with which the

propositions were selected and arranged in a logical sequence ... following from a small

handful of initial assumptions. Nor is it a detraction that ... modern criticism has revealed

certain defects in the structure of the work.”

The Elements is a collection of thirteen books. Of these, the first six may be categorized as

dealing respectively with triangles, rectangles, circles, polygons, proportion and similarity. The

next four deal with the theory of numbers. Book XI is an introduction to solid geometry, while

XII deals with pyramids, cones and cylinders. The last book is concerned with the five regular

solids. Book I begins with twenty three definitions in which Euclid attempts to define the notion

of ‘point’, ‘line’, ‘circle’ etc. Then the fundamental idea is that all subsequent theorems – or

Propositions as Euclid calls them – should be deduced logically from an initial set of

assumptions. In all, Euclid proves 465 such propositions in the Elements. These are listed in
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detail in many texts and not surprisingly in this age of technology there are several web-sites

devoted to them. For instance,

            http://aleph0.clarku.edu/~djoyce/java/Geometry/Geometry.html

is a very interesting attempt at putting Euclid’s Elements on-line using some very clever Java

applets to allow real time manipulation of figures; it also contains links to other similar web-

sites. The web-site

                                    http://thales.vismath.org/euclid/

is a very ambitious one; it contains a number of interesting discussions of the Elements.

Any initial set of assumptions should be as self-evident as possible and as few as possible so

that if one accepts them, then one can believe everything that follows logically from them. In the

Elements Euclid introduces two kinds of assumptions:

COMMON NOTIONS:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

POSTULATES:   Let the following be postulated.

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That, if a straight line falling on two straight lines makes the interior angles on the same side

less than two right angles, then the two straight lines if produced indefinitely, meet on that

side on which are the angles less than two right angles.

Today we usually refer to all such assumptions as axioms. The common notions are surely

self-evident since we use them all the time in many contexts not just in plane geometry –

perhaps that’s why Euclid distinguished them from the five postulates which are more

geometric in character. The first four of these postulates too seem self-evident; one surely needs

these constructions and the notion of perpendicularity in plane geometry. The Fifth postulate is

of a more technical nature, however. To understand what it is saying we need the notion of

parallel lines.
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1.2.1 Definition. Two straight lines in a plane are said to be parallel if they do not intersect,

i.e., do not meet.

  The Fifth postulate, therefore, means that straight lines in the plane are not parallel when

there is a transversal t  such that the sum (α + β) of the interior angles on one side is less than

the sum of two right angles; in fact, the postulate states that the lines  must meet on this side.

t

α

β

The figure above makes this clear. The need to assume this property, rather than showing

that it is a consequence of more basic assumptions, was controversial even in Euclid’s time. He

himself evidently felt reluctant to use the Fifth postulate, since it is not used in any of the proofs

of the first twenty-eight propositions in Book I.  Thus one basic question from the time of

Euclid was to decide if the Fifth Postulate is independent of the Common Notions and the first

four Postulates or whether it could be deduced from them.

Attempts to deduce the Fifth postulate from the Common Notions and other postulates led

to many statements logically equivalent to it. One of the best known is

1.2.2 Playfair’s Axiom: Through a given point, not on a given line, exactly one line can be

drawn parallel to the given line.

Its equivalence to the Fifth Postulate will be discussed in detail in Chapter 2.  Thus the Fifth

postulate would be a consequence of the Common notions and first four postulates if it could

be shown that neither

ALTERNATIVE A: through a given point not on a given line, no line can be drawn parallel to

the given line,  nor
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ALTERNATIVE B: through a given point not on a given line, more than one line can be drawn

parallel to the given line

is possible once the five Common notions and first four postulates are accepted as axioms.

Surprisingly, the first of these alternatives does occur in a geometry that was familiar already to

the Greeks, replacing the plane by a sphere. On the surface of the earth, considered as a sphere,

a great circle is the curve formed by the intersection of the earth’s surface with a plane passing

through the center of the earth.   The arc between any two points on a great circle is the shortest

distance between those two points.  Great circles thus play the role of ‘straight lines’ on the

sphere and arcs of great circles play the role of line segments. In practical terms, arcs of great

circles are the most efficient paths for an airplane to fly in the absence of mountains or for a

ship to follow in open water. Hence, if we interpret ‘point’ as having its usual meaning on a

sphere and ‘straight line’ to mean great circle, then the resulting geometry satisfies Alternative

A because two great circles must always intersect (why?). Notice that in this geometry ‘straight

lines’ are finite in length though they can still be continued indefinitely as required by the

second Postulate.

This still leaves open the possibility of Alternative B.  In other words, there might be

geometry in which Alternative B occurs, and hence a geometry in which Alternative B is a

legitimate logical substitute for Playfair’s axiom. If so, the familiar results of Euclidean

geometry whose proofs rely on the Fifth postulate would not necessarily remain true in this

geometry. In the early 19th century Gauss, Lobachevsky, and Bolyai showed that there indeed

exists such a logically reasonable geometry – what we now call hyperbolic geometry. It is based

on Alternative B together with the five common notions and first four postulates of Euclid.

Towards the end of the 19th century simple ‘models’ of hyperbolic plane geometry were given

by Poincaré and others in terms of two and three dimensional Euclidean geometry. As a result

of this discovery of hyperbolic geometry, the mathematical world has been radically changed

since Alternative B appears to run counter to all prior experiences. Thus Euclidean plane

geometry is only one possible geometry - the one that follows by adopting the Fifth Postulate

as an axiom. For this reason, the Fifth Postulate is often referred to as the Euclidean parallel

postulate, and these notes will continue this convention. Some interesting consequences of the

Euclidean Parallel postulate beyond those studied in high school will be developed in Chapter 2.

The first three postulates of Euclid reflect the growth of formal geometry from practical

constructions – figures constructed from line segments and circles – and the same can be said

for many of the subsequent propositions proved by Euclid. We will see that software will allow

constructions to be made that Euclid could only describe in words or that previously one could

draw only in a rudimentary fashion using ruler and compass.  This software will provide a rapid
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and accurate means for constructing line-segments, lines, and circles, as well as constructions

based upon these objects. It will enable us to construct accurate geometric configurations that in

turn can be altered to new figures having the same construction constraints. This ability to drag

the figure about has been available only within the past decade. It allows a student to carry out

geometric experiments quickly, producing accurate sketches from which ‘conjectures’ can be

made. These conjectures can then be in turn verified in whatever manner is deemed appropriate.

The Geometer’s Sketchpad referred to in these notes, is such a software program. It

provides accurate constructions and measures of geometric configurations of points, line

segments, circles, etc. and it has the ability to replay a given construction. The software can be

used to provide visually compelling evidence of invariance properties such as concurrence of

lines, the collinearity of points, or the ratios of particular measurements. In addition, Sketchpad

allows translations, rotations, reflections and dilations of geometric constructions to be made

either singly or recursively, permitting the study of transformations in a visually compelling way

as will be seen in Chapters 2 and 4. Because the two-dimensional models of hyperbolic

geometry – the so called Poincaré disk and upper half-plane models - make extensive use of

circles and arcs of circles, Geometer’s Sketchpad is also particularly well-adapted to developing

hyperbolic plane geometry as we shall see in Chapters 3 and 5.

1.3 GEOMETER’S SKETCHPAD. Successful use of any software requires a good working

knowledge of its features and its possibilities. One objective of this course is the development

of that working knowledge.

Basic geometric figures are constructed using the drawing tools in the toolbox and the

dynamic aspect of Sketchpad can be exploited by using the selection arrow to drag any figure

that has been constructed. The Measure menu allows us to measure properties of a figure. With

the Edit and Display menus labels can be added to figures, and those figures can be animated.

Using scripts we also can replay complex geometric constructions in a single step. To start with

we will use some of the more basic tools of Sketchpad - a more extensive listing is given in

Appendix A.

General  Instructions:  The set of squares along the left-hand side of the screen comprises the

toolbox. The tools in the toolbox are (from top to bottom):

• Selection Arrow tools: Press and hold down the mouse clicker for Rotate and Dilate

tools.

• Point tool: Creates points.

• Compass (Circle) tool: Creates circles
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• Straightedge (Segment) tool: Press and hold down the mouse clicker for Ray and Line

tools.

• Text: Click on object to display or hide label. Drag label to reposition. Double click on

label, measure or caption to edit or change style. Drag in blank area to create caption.

• Information tool: Press to display menu of current selections. Choose item from menu for

information. Click on object in sketch for info balloon. Double click for more information.

These notes contain several Demonstrations.   In a Demonstration, a problem or task is

proposed and the solution to the problem or task is described in the body of the

Demonstration.

To get started using Sketchpad let’s consider this Demonstration.

1.3.1 Demonstration:  Construct an equilateral triangle using Geometer’s Sketchpad.

In other words, using Sketchpad construct a triangle that remains equilateral no matter how

we drag each of the vertices around the sketch using the Arrow tool.  Here are the steps for one

of several possible constructions.

• Open a new sketch. To create a new sketch, select “New Sketch” from under the File

menu. Using the Segment tool, draw a line segment, and label its endpoints A, B. This

defines one side of the equilateral triangle. The idea for our construction will be to construct

the remaining sides so that they have length equal to that of AB .  To accomplish this we

construct a circle passing through A with radius AB  as well as a circle passing through B

with the same radius. Either point of intersection of these circles can then form the third

vertex C of an equilateral triangle ∆ABC .

• Select vertices A and B while holding down the Shift key. Select “Circle By Center And

Point” from under the Construct menu. Note that the order in which the points A and B

are selected determines which is the center of the circle and which point lies on the circle.

Repeat to construct a circle centered at the other endpoint.

• Using the Select arrow, and while holding down the Shift key, select the two circles. Select

“Point At Intersection” from under the Construct menu. Using the Text tool, label the

point C.

• To finish ∆ABC , use the Segment tool to construct AC  and CB . The resulting figure

should look similar to
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A B

C

Hide everything in this figure except the required equilateral triangle by simultaneously

selecting the undesired objects. Then choose “Hide Objects” from the Display Menu. You

may click on objects individually with the Arrow Tool or you may use the Arrow Tool to drag

over an area and select more than one object at once. If you selected too many objects while

holding the shift key you can deselect the unwanted objects with the Arrow Tool again.

Drag either A or B to verify that ∆ABC  remains equilateral. Does dragging vertex C have the

same effect as dragging vertex A? The answer should be no. This is due to the fact that vertex C

is not a free point because it was constructed from A and B. The vertex A is a free point so A

might be thought of as a independent variable and C as a dependent variable.  To save your

figure select “Save” from under the File menu. The convention is to save sketches with the file

extension .gsp.

End of Demonstration 1.3.1.

We can use measuring features of Sketchpad to confirm that we do have an equilateral

triangle. Select the three sides of the equilateral triangle then select “Length” from the

Measure menu. The lengths of the three segments should appear in the corner of your sketch.

At this time you should notice the various other quantities that can be measured.  Select Show

Balloons from the Help menu to provide details on what needs to be selected to make the

various measurements.

1.3.2 Exercise.  Using Sketchpad, construct each of the following figures so that the figure

retains its defining property when a free point on the figure is dragged:

      a)  a rectangle,  given perpendicular segments AB  and AC ;

      b)  a parallelogram,  given two segments AB  and AC  with  A, B, and C  free points;
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      c)  a rhombus,  given two segments AB  and AC  with ACAB ≅ ;

      d)  a 30-60-90 triangle,  given line segment AB  as the hypotenuse of the triangle.

1.4 GETTING STARTED. Let’s review briefly some of the principal ideas typically taught in

high school geometry, keeping in mind the role of the Euclidean parallel postulate and the

question of how one might incorporate the use of dynamic geometric. Many of the early

propositions established by Euclid dealt with constructions which were a consequence of the

first four postulates, so high school geometry often begins with the following constructions:

• construct a congruent copy of a given line segment (given angle)

• bisect a given line segment (given angle)

• construct the perpendicular bisector of a given line segment

• construct a line perpendicular to a given line through a point on the given line

• construct the perpendicular line to a given line from a point not on the given line

The Construct menu in Sketchpad allows us to do most of these constructions in one or

two steps.  If you haven’t done so already, look at what is available under the Construct menu.

It is worth noting that Euclid’s constructions were originally accomplished with only a compass

and straightedge.  On Sketchpad this translates to using only the Circle and Segment tools.  Try

this!

1.4.1  Exercise: Do the constructions listed above using only the Circle and Segment tools.

(You can drag, label, hide etc.)

Although Euclid’s fifth postulate is needed to prove many of his later theorems, he presents

28 propositions in The Elements before using that postulate for the first time.  This will be

important later because all these results remain valid in a geometry in which Alternative B is

assumed and all but one of these remain valid in a geometry in which Alternative A is assumed.

For this reason we will make careful note of the role of the fifth postulate while continuing to

recall geometric ideas typically taught in high school geometry.  For instance, the familiar

congruence properties of triangles can be proved without the use of the Fifth postulate. In high

school these may have been taught as ‘facts’ rather than as theorems, but it should be

remembered that they could be deduced from the first four Postulates. Recall that a triangle

∆ABC  is said to be congruent to DEF∆ , written ∆ABC ≅ ∆DEF ,  when there is a

correspondence A ↔  D, B ↔  E, C ↔  F in which all three pairs of corresponding sides are
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congruent and all three pairs of corresponding angles are congruent. To establish congruence of

triangles, however, it is not necessary to establish congruence of all sides and all angles.

1.4.2 Theorem (SAS). If two sides and the included angle of one triangle are congruent

respectively to two sides and the included angle of another triangle, then the two triangles are

congruent.

1.4.3 Theorem (ASA). If two angles and the included side of one triangle are congruent

respectively to two angles and the included side of another triangle, then the two triangles are

congruent.

1.4.4 Theorem (SSS). If three sides of one triangle are congruent respectively to three sides of

another triangle, then the two triangles are congruent.

1.4.5. Theorem (HL). If the hypotenuse and a leg of one right triangle are congruent

respectively to the hypotenuse and leg of another right triangle, then the two triangles are

congruent.

These shortcuts to showing triangle congruence will be put to good use in the future.  As an

illustration of how we might implement them on Sketchpad consider the problem of

constructing a triangle congruent to a given triangle. In more precise terms this can be

formulated as follows.

1.4.5a  Demonstration:  Open a new sketch and construct ∆ABC ; now construct a new

triangle in this sketch congruent to ∆ABC .  Here is one solution based on the SSS shortcut.



12

green

blue

red

blue

green

red

C

A B

D

F

E

• Open a new sketch and construct ∆ABC  using the Segment tool in the toolbar on the left of

the screen. Make certain that it is the segment tool showing, not the ray or line tool. To

verify that the correct tool is selected look at the toolbar, the selected tool should be purple.

Now in the sketch window click down at the first vertex position, move the mouse to the

second vertex and release the mouse clicker. At this same position, click down on the

mouse, move the mouse to the third vertex, and release. Click down on the third vertex, and

release on the first vertex. Label the vertices A, B, and C using the Text tool, re-labeling if

necessary.

•  Change the color of AB  to blue, BC  to red, and AC  to green.  To change the color of a

line segment first select the segment then select “Color” from the Display menu and

choose the desired color.

• Construct the point D elsewhere in your sketch. Now select the point D and AB  while

holding down the shift key.  Using the Construct menu select “Circle By Center And

Radius”.  Change the color of the circle to blue.

• Now select the point D and AC  while holding down the shift key.  Using the Construct

menu select “Circle By Center And Radius”.  Change the color of the circle to green.

• Now construct any point on the green circle and label it F. Select that F and BC  while

holding down the shift key.  Using the Construct menu select “Circle By Center And

Radius”.  Change the color of the circle to red.
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• Construct one of the points of intersection between the red and the blue circle and label the

point by E. To do this you may use the point tool to click on the intersection point directly.

Alternatively, you can select both circles and using the Construct menu select “Point At

Intersection”.

• Finally, use the segment tool to construct DE , EF , and DF .  By SSS ∆ABC  is congruent

to ∆DEF .  Drag the vertices of ∆ABC  to observe the dynamic nature of your construction.

End of Demonstration 1.4.5a.

Two important results follow from the previous theorems about triangle congruence.

1.4.6 Theorem. In an isosceles triangle, the angles opposite the congruent sides are congruent.

1.4.7 Corollary. In an isosceles triangle, the ray bisecting the angle included by the

congruent sides bisects the side opposite to this angle and is perpendicular to it.

One surprising discovery of a high school geometry course is the number of properties that the

simplest of all geometric figures – a triangle – has. Recall first

Definition:  Three or more lines that intersect in one point are called concurrent lines.

1.4.8 Theorem. The perpendicular bisectors of the sides of a triangle are concurrent at a point

called the circumcenter.

Definition:  The segment connecting the vertex of a triangle and the midpoint of its opposite

side is called a median.

1.4.9 Theorem. The medians of a triangle are concurrent, at a point called the centroid.

Furthermore, the centroid  trisects each of the medians.

1.4.10 Theorem. The bisectors of the angles of a triangle are concurrent at a point called the

incenter.

Definition: The segment connecting the vertex of a triangle and perpendicular to its opposite

side is called an altitude.
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1.4.11 Theorem. The altitudes of a triangle are concurrent at a point called the orthocenter.

The circumcenter is equidistant from all three

of the vertices of a triangle it is also the center

of the unique circle, the circumcircle or

circumscribing circle, passing through the

three vertices of the triangle.

C

A

B

The incenter is equidistant from all three sides

of a triangle and so is the center of the unique

circle, the incircle or inscribing

circle, of a triangle. C

B

A

Although the proofs of Theorems 1.4.9 and 1.4.10 (existence of the centroid and the

incenter) do not require Euclid’s fifth postulate, both Theorem 1.4.8 and 1.4.11 (existence of

the circumcenter and the orthocenter) are dependent on the fifth postulate. In other words, no

proof can be found that does not use the fifth postulate.  To understand this better, you may

want to try to recall the proofs of these theorems.

What may come as an even greater surprise is that triangles have many more properties than

the ones taught in high school. In fact, there are many special points and circles associated with

triangles other than the ones previously listed. The web-site

http://www.evansville.edu/~ck6/tcenters/ lists a number of them; look also at

http://www.evansville.edu/~ck6/index.html. Sketchpad explorations will be given or

suggested in subsequent sections and chapters enabling the user to discover and exhibit many

of these properties.  First we will look at a Sketchpad construction for the circumcircle of a

triangle.

1.4.12  Demonstration:  Construct the circumcircle of a given triangle.
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• Open a new sketch.  To construct ∆ABC  use the Segment tool in the toolbar on the left of

the screen. Make certain that it is the segment tool showing, not the ray or line tool. To

verify that the correct tool is selected look at the toolbar, the selected tool should be purple.

Now in the sketch window click down at the first vertex position, move the mouse to the

second vertex and release the mouse clicker. At this same position, click down on the mouse

button, move the mouse to the third vertex, and release. Click down on the third vertex, and

release on the first vertex. Re-label the vertices A, B, and C using the Text tool.

• To construct a midpoint of a segment, use the Select arrow tool from the toolbar. Select a

segment on screen, say AB , by pointing the arrow at it and clicking. If done correctly, the

line segment becomes highlighted by two small squares. Select “Point At Midpoint” from

under the Construct menu. Upon releasing the mouse, the midpoint of AB  will be

constructed immediately as a highlighted small circle. Repeat this procedure for the

remaining two sides of ∆ABC . (Note that all three midpoints can be constructed

simultaneously by selecting all three sides of ∆ABC  while also holding down the shift key

and clicking on each of the three sides.)

• To construct a perpendicular bisector of a segment, use the Select arrow tool to select a

segment and the midpoint of the segment (while holding down the Shift key). Select

“Perpendicular Line” from under the Construct menu. Repeat this procedure for the

remaining two sides of ∆ABC .

• These perpendicular bisectors are concurrent at a point called the circumcenter of ∆ABC ,

confirming visually Theorem 1.4.8.

• To identify this point as a specific point, use the arrow tool to select two of the

perpendicular bisectors simultaneously while holding down the Shift key. Select “Point At

Intersection” from under the Construct menu. In practice this means that only two

perpendicular bisectors of a triangle are needed in order to find the circumcenter.

• To construct the circumcircle of a triangle, use the Select arrow to select the circumcenter

and a vertex of the triangle, in that order. Select “Circle By Center+Point” from under the

Construct menu. This contains all parts of the construction.
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A B

C

• To hide all the objects other than the triangle ∆ABC  and its circumcircle, use the Select

arrow tool to select all parts of the figure except the triangle and the circle. Select “Hide

Objects” from under the Display menu. The result should look similar to the following

figure.

A B

C

The dynamic aspect of this construction can be demonstrated by using the ‘drag’ feature.

Select one of the vertices of ∆ABC  using the Select arrow and ‘drag’ the vertex to another

point on the screen while holding down on the mouse button. The triangle and its circumcenter

remain a triangle with a circumcenter. In other words, the construction has the ability to replay

itself. Secondly, once this construction is completed there will be no need to repeat it every time

the circumcircle of a triangle is needed because a script of the construction can be created for
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use whenever a circumcircle is needed. This feature will be presented in Section 1.7, once a

greater familiarity with Sketchpad’s basic features has been attained.

End of Demonstration 1.4.12.

1.5  Exercises. The following problems are designed to develop a working knowledge of

Sketchpad as well as provide some indication of how one can gain a good understanding of

plane geometry at the same time. It is important to stress, however, that use of Sketchpad is not

the only way of studying geometry, nor is it always the best way.  For the exercises, in general,

when a construction is called for your answer should include a description of the construction,

an explanation of why the construction works and a print out of your sketches.

Exercise 1.5.1,  Particular figures I: In section 1.3 a construction of an equilateral triangle

starting from one side was given. This problem will expand upon those ideas.

a)  Draw a line segment and label its endpoints A and B. Construct a square having AB  as

one of its sides. Describe your construction and explain why it works.

b) Draw another line segment and label its endpoints A and B. Construct a triangle ∆ABC

having a right angle at C so that the triangle remains right-angled no matter which vertex

is dragged. Explain your construction and why it works. Is the effect of dragging the

same at each vertex in your construction? If not, why not?

Exercise 1.5.2,  Particular figures II:

a) Construct a line segment and label it CD . Now construct an isosceles triangle having

CD  as its base and altitude half the length of CD .  Describe your construction and

explain why it works.

b) Modify the construction so that the altitude is twice the length of CD .  Describe your

construction and explain why it works.

Exercise 1.5.3,  Special points of triangles:  For several triangles which are not equilateral,

the incenter, orthocenter, circumcenter and centroid do not coincide and are four distinct points.

For an equilateral triangle, however, the incenter, orthocenter, circumcenter and centroid all

coincide at a unique point we’ll label by N.
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• Using Sketchpad, in a new sketch place a point and label it N. Construct an equilateral

triangle ∆ABC  such that N is the common incenter, orthocenter, circumcenter and centroid

of ∆ABC .  Describe your construction and explain why it works.

Exercise 1.5.4,  Euclid’s Constructions: Use only the segment and circle tools to construct

the following objects.  (You may drag, hide, and label objects.)

(a)  Given a line segment AB  and a point C above AB  construct the point D on AB  so that CD

is perpendicular to   AB . We call D the foot of the perpendicular from C to AB . Explain your

construction.

(b)  Show how to construct the bisector of a given an angle ∠ABC . Explain your construction.

Exercise 1.5.5,  Regular Octagons: By definition an octagon is a polygon having eight sides;

a regular octagon, as shown below, is one whose sides are all congruent and whose interior

angles are all congruent:

O

A

B

Think of all the properties of a regular octagon you know or can derive (you may assume that

the sum of the angles of a triangle is 180 degrees). For instance, one property is that all the

vertices lie on a circle centered at a point O.  Use this property and others to complete the

following.

(a)  Using Sketchpad draw two points and label them O and A, respectively.  Construct a regular

octagon having O as center and A as one vertex.  In other words, construct an octagon by center

and point.

(b)  Open a new sketch and draw a line segment CD  (don’t make it too long).  Construct a

regular octagon having CD  as one side. In other words, construct an octagon by edge.
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Exercise 1.5.6,  Lost Center: Open a new sketch and select two points; label them O and A.

Draw the circle centered at O and passing through A. Now hide the center O of the circle. How

could you recover O? EASY WAY: if hiding O was the last keystroke, then “Undo hide point”

can be used. Instead, devise a construction that will recover the center of the circle - in other

words, given a circle, how can you find its center?

1.6 SKETCHPAD AND LOCUS PROBLEMS.  The process of finding a set of points or its

equation from a geometric characterization is called a locus problem. The 'Trace' and 'Locus'

features of Sketchpad are particularly well adapted for this. The Greeks identified and studied

the three types of conics: ellipses, parabolas, and hyperbolas.  They are called conics because

they each can be obtained by intersecting a cone with a plane. Here we shall use easier

characterizations based on distance.

1.6.1 Demonstration: Determine the locus of a point P which moves so that

dist(P, A) = dist(P,B)

where A and B are fixed points.

The answer, of course, is that the locus of P is the perpendicular bisector of AB . This can

be proved synthetically using properties of isosceles triangles, as well as algebraically. But

Sketchpad can be used to exhibit the locus by exploiting the ‘trace’ feature as follows.

• Open a new sketch and construct points A and B near the center of your sketch. Near the

top of your sketch construct a segment CD  whose length is a least one half the length of

AB  (by eyeballing).

• Construct a circle with center A and radius of length CD . Construct another circle with

center B and radius of length CD .

• Construct the points of intersection between the two circles. (As long as your segment CD

is long enough they will intersect). Label the points P and Q. Select both points and under

the Display menu select Trace Points.  You should see a  next to it.

• Now drag C about the screen and then release the mouse. Think of the point C as the driver.

What is the locus of P and Q?

• Click on the screen.  Your traced points should disappear.  If you want a more permanent

locus, we will have to use ‘Locus’ under the Construct menu.  However, to use the ‘locus’
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feature our driver must be constructed to lie on a path.  An example to be discussed shortly

will illustrate this.

End of Demonstration 1.6.1.

Now let’s use Sketchpad on a locus problem where the answer is not so well known or so

clear.  Consider the case when the distances from P are not equal but whose ratio remains

constant. To be specific, consider the following problem.

1.6.2  Exercise: Determine the locus of a point P which moves so that

dist(P, A) = 2 dist(P, B)

            where A and B are fixed points. (How might one modify the previous construction to answer

this question?)  Then, give the completion to Conjecture 1.6.3  below.

1.6.3 Conjecture. Given points A and B, the locus of a point P which moves so that

dist(P, A) = 2 dist(P, B)

is a/an _______________________.

A natural question to address at this point is: How might one prove this conjecture?  More

generally, what do we mean by a proof or what sort of proof suffices? Does it have to be a

'synthetic' proof, i.e. a two-column proof? What about a proof using algebra? Is a visual proof

good enough? In what sense does Sketchpad provide a proof? A synthetic proof will be given in

Chapter 2 once some results on similar triangles have been established, while providing an

algebraic proof is part of a later exercise.

It is also natural to ask: is there is something special about the ratio of the distances being

equal to 2?

1.6.4  Exercise: Use Sketchpad to determine the locus of a point P which moves so that

dist(P, A) = m dist(P, B)
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where A and B are fixed points and m = 3,4,5,...,1 2,1 3,... . Use your answer to conjecture

what will happen when m is an arbitrary positive number, m ≠ 1? What's the effect of requiring

m >1 ? What happens when m <1 ? How does the result of  Demonstration 1.6.1 fit into this

conjecture?

1.6.5 Demonstration, A Locus Example:  In this Demonstration, we give an alternate way to

examine Exercise 1.6.2 through the use of the Locus Construction.  Note: to use “Locus” our

driver point must be constructed upon a track. Open a new sketch and make sure that the

Segment tool is set at Line (arrows in both directions).

• Draw a line near the top of the screen using the Line tool. Hide any points that are drawn

automatically on this line. Construct two points on this line using the Point tool by clicking

on the line in two different positions. Using the Text tool, label and re-label these two points

as V and U (with V to the left of U). Construct the lines through U and V perpendicular to

UV . Construct a point on the perpendicular line through U. Label it R.

• Construct a line through R parallel to the first line you drew. Construct the point of

intersection of this line with the vertical line through V using “Point At Intersection” from

under the Construct menu. Label this point S. Construct the midpoint RS . Label this point

T. A figure similar to the following figure should appear on near the top of the screen.

V U

RS T

This figure will be used to specify radii of circles.  Also, the “driver point” will be U and

the track it moves along is the line containing UV  .

• Towards the middle of the screen, construct AB  using the Segment tool. Construct the

circle with center A and radius UV using “Circle By Center+Radius” from under the

Construct menu. Construct the circle with center B and radius RT using “Circle By

Center+Radius” from under the Construct menu.  Construct both points of intersection of

these two circles. Label or re-label these points P and Q. Both points have the property that

the distance from P and Q to A is twice the distance from P and Q to B because the length

of UV  is twice that of the length of RT . The figure on screen should be similar to:
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V U

RS T

A B

P

Q

• Hide everything except AB , the points of intersection P and Q of the two circles and the

point U.

• Now select just the points P and U in that order.  Go to “Locus” in the Construct menu.

Release the mouse. What do you get? Repeat this construction with Q instead of P.

The “Locus” function causes the point U to move along the object it is on (here, line RS) and

the resulting path of point P (and Q, in the second instance) is traced.

End of Demonstration 1.6.5.

Similar ideas can used to construct conic sections. First recall their definitions in terms of

distances:

1.6.6 Definition.

(a) An ellipse is the locus a point P which moves so that

dist(P, A) + dist(P,B) = const
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where  A, B are two fixed points called the foci of the ellipse.  Note:  The word “foci” is the

plural form of the word “focus. ”

(b) A hyperbola is the locus a point P which moves so that

dist(P, A) − dist(P,B) = const

where  A, B are two fixed points  (the foci of the hyperbola).

(c) A parabola is the locus a point P which moves so that

dist(P, A) = dist(P, l)

where A is a fixed point  (the focus)  and l is a fixed line (the directrix).   Note: By dist(P,l)  we

meandist(P,Q)  where Q is on the line l and P,Q  is perpendicular to l.
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     The points A and B are called the foci and the line l is called the directerix. The following

figure illustrates the case of the parabola.

l

A

Q

P

1.6.6a  Demonstration:   Construct an ellipse given points A, B for foci.

c) Open a new sketch and construct points A, B. Near the top of your sketch construct a

line segment UV  of length greater than AB. Construct a random point Q on UV .

• Construct a circle with center at A and radius UQ . Construct also a circle with center at B

and radius VQ .  Label one of the points of intersection of these two circles by P. Thus

dist(P, A) + dist(P,B) = UV  (why?).

• Construct the other point of intersection the two circles. Now trace both points as you drag

the point Q.  Your figure should like

BAVU Q

P

Why is the locus of P an ellipse?

The corresponding constructions of a hyperbola and a parabola appear in later exercises.

End of Demonstration 1.6.6a.
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1.7 MORE SKETCHPAD AND CLASSICAL TRIANGLE GEOMETRY .  We will

continue to explore geometric ideas as we exploit the “script” feature of Sketchpad while

looking at a sampling of geometry results from the 18th and 19th centuries. In fact, it's worth

noting that many of the interesting properties of triangles were not discovered until the 18th, 19th,

and 20th centuries despite the impression people have that geometry began and ended with the

Greeks! Scripts will allow us to easily explore these geometric ideas by giving us the ability to

repeat constructions without having to explicitly repeat each step.

1.7.1 Question: Given ABC∆  construct the circumcenter, the centroid, the orthocenter, and the

incenter.  What special relationship do three of these four points share?

To explore this question via Sketchpad we need to start with a triangle and construct the

required points.  As we know how to construct the circumcenter and the other triangle points it

would be nice if we did not have to repeat all of the steps again.  Luckily, Scripts will provide

the capability to repeat all of the steps quickly and easily.  Now we will make a slight detour to

learn about scripts then we will return to our problem.

 There are two ways to construct a new script.

• Choose “New Script” from the File menu and record your construction as you go.

• Select all the objects in a construction for which you want to make a script.  Then choose

“Make Script” from the Work menu.

1.7.2 Script Demonstration: Create a script that will construct a Square-By-Edge.

Method 1: Recording as you go.

• Choose “New Script” from the File menu. A new window should open. Press the record

button.

• Perform your construction for a Square-By-Edge.  You should see your steps and the given

objects being recorded in the script window.  Once you are finished, hiding and labeling

objects, if desired, press the stop button.

Method 2: Using Make Script on a previously constructed object.

• Start with a sketch that contains the desired construction, in this case a Square-By-Edge.

• Use the Arrow Tool to select all the objects for which you want to make a script. Remember

you can click and drag using the Arrow Tool to select more than one object at once.
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• Choose “Make Script” from the Work menu. You should see a script window open

containing the (interpreted) steps and given objects for your construction.

It is always a good idea to add comments to your script, which describe the construction and

the relationship between the givens and the constructed object.  You can add comments to your

script by moving the mouse over the comment bar (in between the buttons and the script steps)

until you see a double headed arrow and then click and drag the arrow downward.  Alternatively,

you can select “Show Comments” from the Edit menu. You can save your script as you

would any file, just make sure it is the active window when you select Save File.  (Scripts

should end with the file extension .gss.)

To play your script you can do the following.

• Open the script and a sketch.

• Create and select the objects that match the Givens in the script in the order they are listed.

• Click on playback button in the script window.

Play - plays back the script step by step with speed as set in the Display menu.

Fast - plays back the script so quickly you cannot follow the steps in the construction.

Step - plays back the script step-by-step as you keep pressing the Step button.

You can also access your scripts through the toolbar.  This is especially useful when you

are using many scripts and find it tedious to keep track of all the windows.  In order to make the

Script Tool appear on your toolbar you need to direct Sketchpad to the appropriate directory.

For this reason, it is probably best to save all of your scripts to the same directory.  Sketchpad

comes with a set of useful Sample Scripts that we will load now.

• Under the Display menu select “Preferences” and then click on More…

• Under the Script Tool Folder heading click on “Set”. (If the Script Tool Folder had been

previously set you would need to “Clear” it first.)

• Find the Directory entitled “Sample Scripts” which comes with Geometer’s Sketchpad and

click on the “Select Sample Scripts” button.

• Click on Continue and then Okay.

You should now see the Script Tool icon in your toolbox. Press the button to see the tools

available. The first line of the comment box is displayed as the name. Select a script to use it

and you can select the givens one at a time by pointing to existing or new objects in your

sketch.
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End of Script Demonstration 1.7.2.

1.7.2a  Exercise:  Write scripts to construct each of the following, given the vertices A, B, and

C of ABC∆ :

             a)  the circumcenter of ABC∆

             b)  the centroid of ABC∆

             c)  the orthocenter of ABC∆

             d)  the incenter  of ABC∆ .

1.7.2b Exercise:  In a new sketch draw triangle ∆ABC .  Construct the circumcenter of ∆ABC

and label it O.  Construct the centroid of ∆ABC  and label it G.  Construct the orthocenter of

∆ABC  and label it H. What do you notice? Confirm your observation by dragging each of the

vertices A, B, and C.  Complete Conjectures 1.7.3 and 1.7.4  and also answer the questions

posed in the text between them.

1.7.3 Conjecture.  (Attributed to Leonhard Euler in 1765) For any ∆ABC  the circumcenter,

orthocenter, and centroid are

______________________________.

Hopefully you will not be satisfied to stop there!    Conjecture 1.7.3 suggested O, G, and H

are collinear, that is they lie on the so-called Euler Line  of a triangle.  What else do you notice

about O, G, and H?  Don’t forget about your ability to measure lengths and other quantities.

What happens when ∆ABC  becomes obtuse?   When will the Euler line pass through a vertex

of ∆ABC ?

1.7.4 Conjecture.  The centroid of a triangle _bisects / trisects  (Circle one)  the segment

joining the circumcenter and the orthocenter.

End of Exercise 1.7.2b.

 Another classical theorem in geometry is the so-called Simson Line of a triangle, named

after the English mathematician Robert Simson (1687-1768).  The following illustrates well

how Sketchpad can be used to discover such results instead of being given them as accepted

facts. We begin by exploring Pedal triangles.
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1.7.5  Demonstration on the Pedal Triangle:

• In a new sketch construct three non-collinear points labeled A, B, and C and then construct

the three lines containing segments AB , BC , and AC .  (We want to construct a triangle but

with the sides extended.)  Construct a point P anywhere in your sketch.

• Construct the perpendicular from P to the line containing BC  and label the foot of the

perpendicular as D. Construct the perpendicular from P to the line containing AC  then and

the foot of the perpendicular as E.  Construct the perpendicular from P to the line containing

AB  and label the foot of the perpendicular as F.

• Construct ∆DEF .  Change the color of the sides to red. ∆DEF  is called the pedal triangle

of ∆ABC  with respect to the point P.

A

B

C

P

F

ED

End of Demonstration 1.7.5.

1.7.5a  Exercise:  Make a Script which constructs the Pedal Triangle ∆DEF  for a given point

P and the triangle with three given vertices A, B and C.  (Essentially, save the script constructed

in Demonstration 1.7.5 as follows:   Hide everything except the pedal triangle ∆DEF  and the

point P.  Select those objects with the Selection tool.  Then choose “Make Script” from the

Work menu.  Note that in running this script, the points A, B, and C must be selected first and

then point P must be selected.)

Now you can start exploring with your pedal triangle script.

1.7.5b Exercise:  When is ∆DEF  similar to ∆ABC ?  Can you find a position for P for which

∆DEF  is equilateral?  Construct the circumcircle of  ∆ABC  and place P close to or even on the

circumcircle.  Complete Conjecture 1.7.6 below.
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1.7.6 Conjecture. P lies on the circumcircle of ∆ABC  if and only if the pedal triangle is

_______________________.

We shall turn to the proof of some of these results in Chapter 2.

1.8  Exercises. In these exercises we continue to work with Sketchpad, including the use of

scripts.  We will look at some problems introduced in the last few sections as well as discover

some new results.  Later on we’ll see how Yaglom’s Theorem and Napoleon’s Theorem both

relate to the subject of tilings.

Exercise 1.8.1,  Some algebra: Write down the formula for the distance between two points P

= (x1, y1) and Q =  (x2, y2) in the coordinate plane.  Now use coordinate geometry to prove the

assertion in Conjecture 1.6.3 (regarding the locus of  P  when  dist(P, A) = 2 dist(P, B)) that the

locus is a circle. To keep the algebra as simple as possible assume that A = (-a, 0) and B = (a, 0)

where a is fixed. Set P = (x, y) and compute dist(P, A) and dist(P, B). Then use the condition

dist(P, A) = 2 dist(P, B) to derive a relation between x and y. This relation should verify that the

locus of P is the conjectured figure.

Exercise 1.8.2,  Locus Problems.

(a) Given points A, B in the plane, use Sketchpad to construct the locus of the point P which

moves so that

dist(P, A) - dist(P, B) = constant.

(b) Given point A and line l  in the plane, use Sketchpad to construct the locus of the point P

which moves so that

dist(P, A) = dist(P, l).

Hint: Construct a random point Q on the line l . Then think about relationship between Q and A

to P and use that to find the corresponding point P on the parabola.
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Exercise 1.8.3,  Yaglom’s Theorem. In a new sketch construct any parallelogram ABCD.

A B

CD

• On side AB  construct the outward pointing square having AB  as one of its sides.

Construct the center of this square and label it Z.

• Construct corresponding squares on the other sides BC , CD , and DA , and label their

centers X, U, and V respectively.

What do you notice? Confirm your observation(s) by dragging the vertices of the original

parallelogram.

Exercise 1.8.4,  Miquel Point. In a new sketch draw an acute triangle ∆ABC .

• On side AB  select a point and label it D. Construct a point E on side BC , and a point F on

sideCA .

• Construct the circumcircles of ∆ADF , ∆BDE , and ∆CEF .

What do you notice? Confirm your observation(s) by dragging each of the points A, B, C, D, E,

and F. Now drag vertex A so that ∆ABC  becomes obtuse. Do your observation(s) remain valid

or do they change for obtuse triangles?  What happens if the three points D, E, and F are

collinear (allow D, E, and F to be on the extended sides of the triangle)?

Exercise 1.8.5,  Napoleon’s Theorem.  In a new sketch draw any acute triangle ∆ABC .

• On side AB  construct the outward pointing equilateral triangle having AB  as one of its

sides. Construct the corresponding equilateral triangle on each of BC , and CA .

• Construct the circumcircle of each of the equilateral triangles just constructed.

What do you notice? Confirm your observation(s) by dragging the vertices of ∆ABC .

Exercise 1.8.6. Open a new sketch and construct an equilateral triangle ∆ABC . Select any

point P on the triangle or in its interior.

• Construct the perpendicular segment from P to each of the sides of ∆ABC .
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• Measure the length of the segment from P to BC ; call it ra. Measure the length of the

segment from P to CA ; call it by rb. Measure the length of the segment from P to AB ; call it

rc. Compute the sum ra+rb+rc.

Drag P around to see how the value of ra+rb+rc changes as P varies. What do you notice?

Explain your answer by relating the value you have obtained to some property of ∆ABC . (Hint:

look first at some special locations for P.)

Exercise 1.8.7. Confirm your observation in Conjecture 1.7.3 regarding the Euler Line for the

special case of the triangle ∆ABC  in which A = (-2, -1), B = (2, -1), and C = (1, 2). That is, find

the coordinates of the circumcenter O,  the centroid G and the orthocenter H using coordinate

geometry and show that they all lie on a particular straight line.

1.9   SKETCHPAD AND COORDINATE GEOMETRY.  Somewhat surprisingly perhaps,

use of coordinate geometry and some algebra is possible with Sketchpad. For instance, graphs

defined by y = f (x)  or parametrically by (x(t),y(t))  can be drawn by regarding the respective

variable x or t as a parameter on a fixed curve. Graphs can even be drawn in polar coordinates.

1.9.1  Demonstration:  As an illustration let’s consider the problem of drawing the graph of y

= 2x + 1; it is a straight line having slope 2 and y-intercept 1 and the points on the graph have

the form (x,2x +1) . Sketchpad draws this graph by constructing the locus of (x,2x +1)  as x

varies over a portion of the x-axis. This can be done via the Trace Point or Locus feature

described earlier, but is can also be done using the Animation feature as follows.

• Open a new sketch and from the Graph menu and choose “Create Axes”. Select the x-axis

and construct a point on this axis using the “Construct Point on Object” tool from the

Construct menu.  Label this point A.

• To graph the function we want to let A vary along the x-axis so let’s illustrate the animation

feature first.  Select A and the x-axis. From the Edit menu choose “Action ” and then

move the cursor over to the right and select “Animation”. A menu called Path Match will

appear - by default the menu will read “Point A moves bidirectionally along the x-axis

quickly”. Select “Animate”.  An animation button will appear in the sketch. Double click

on it to start or stop the animation. Try this.

• Select point A and then select “Coordinates” from the Measure menu. The coordinates of

A will appear on the screen. Select these coordinates and then select the “Calculator” from

the Measure menu. Drag down the ‘Values’ icon until you reach ‘x’-coordinate. The x-

coordinate of A will now appear on the screen.
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• You are now ready to begin graphing. Open the “Calculator”. This is used to define

whatever function is to be graphed, say the function 2x + 1. Type in the box on the

calculator whatever function of x you want to graph, clicking on the xA-coordinate on the

screen for the x-variable in your function.

• To plot a point on the graph of y = 2x + 1 select xA and 2xA +1 from the screen and then

select “Plot as (x, y)” from the Graph menu. This plots a point on the coordinate plane on

your screen. Select this point and then select “Trace Point” from the Display menu. If you

want, you can color the point so that the graph will be colored when you run the animation!

Now double click on the “Animate” button on screen and watch the graph evolve.

• Notice that Cartesian or polar coordinates can be chosen. For Cartesian coordinates we used

the x-axis as driver, but any other line would do; for polar coordinates the natural curve to

choose is a circle centered at the origin. For simplicity we stuck to the Cartesian case of a

point on the x-axis.

End of Demonstration 1.9.1.
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1.9.1a Exercise. Use the construction detailed above to draw the graph of

y = x(x2 −1)ex  as shown below.

2

1

-1 1A

A: (-0.06, 0.00)
xA = -0.06

xA xA
2 – 1)( exA = 0.06

Further examples are given in the later exercises.

1.10 AN INVESTIGATION VIA SKETCHPAD. As a final illustration of the possibilities

for using Sketchpad before we actually begin the study of various geometries, let us see how it

might be used in problem-solving and then be supplemented by more traditional coordinate

geometry and synthetic methods.

1.10.1 Demonstration. Let A, B,C  and D be four distinct points on a circle Σ whose center is

O. Now let P,Q, R  and S  be the mirror images of O in the respective chords AB, BC,CD  and

DA  of Σ . Investigate the properties of the quadrilateral PQRS. Justify algebraically or

synthetically any conjecture you make. Investigate the properties of the corresponding triangle

∆PQR  when there are only three distinct points on Σ .

One natural first step in any problem-solving situation is to draw a picture if at all possible - in

other words to realize the problem as a visual one.
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• Open a new sketch. Draw a circle and label it Σ . Note the point on the circle which when

dragged allows the radius of the circle to be varied - this will be useful in checking if a

conjecture is independent of a particular Σ .

• Construct four random points on Σ  and label them A, B,C  and D. Construct the

corresponding chords AB, BC,CD  and DA  of Σ . Make sure that A, B,C  and D can be

moved freely and independently of each other - this will be important in testing if a

conjecture is independent of the location of A, B,C  and D.

• To construct the mirror image P of O in AB  select AB  and then double click on it - the

small squares denoting that AB  has been selected should ‘star-burst’. Alternatively, drag

down on the Transform menu and select “mark mirror” indicating that reflections can be

made with respect to AB .

• Select O and drag down on the Transform menu until “Reflect” is highlighted. The

mirror image of O in the mirror AB  will be constructed. Label it P. Repeat this to construct

the respective mirror images Q, R and S. Draw line segments to complete the construction of

the quadrilateral PQRS. Your figure should look similar to the following

O

CD

A

Q

R

S

P

The problem is to decide what properties quadrilateral PQRS has. Sketchpad is a

particularly good tool for investigating various possibilities. For example, as drawn, it looks as

if its side-lengths are all equal. To check this, measure the lengths of all four sides of PQRS.

Immediately we see that adjacent sides do not have the same length, but opposite sides do. Drag

each of A, B,C  and D as well as the point specifying the radius of Σ  to check if the equality

PQ=RS does not depend on the location of these points or the radius of Σ . In the figure as
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drawn the side SP  looks to be parallel to the opposite side RQ . To check this measure angles

∠RSP  and ∠SRQ . Your figure should now look like:

O

CD

A

Q

R

S

P
m QR = 1.69 inches

m SR = 1.87 inches

m SP = 1.69 inches

m PQ = 1.87 inches

m RSP = 86°

m SRQ = 94°

Since m∠RSP + m∠SRQ = 180 °, this provides evidence that SP  is parallel to RQ  though it

does not prove it of course (why?). To check if the sum is always 180° drag each of A, B,C  and

D as well as the point specifying the radius of Σ .

End of Demonstration 1.10.1.

All this Sketchpad activity thus suggests the following result.

1.10.2 Theorem. Let A, B,C  and D be four distinct points on a circle Σ whose center is O.

Then the mirror images P,Q,R and S of O in the respective chords AB, BC,CD  and DA  of Σ

are always the vertices of a parallelogram PQRS.

While Sketchpad has provided very strong visual support for the truth of Theorem 1.10.2, it

hasn’t supplied a complete proof (why?). For that we have to use synthetic methods or

coordinate geometry. Nonetheless, preliminary use of Sketchpad often indicates the path that a

formal proof may follow. For instance, in the figure below
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O

A

D C

P

S

R

Q

a number of line segments have been added.  In particular, the lengths of the line segments

OA,OB,OC  and OD  are equal because each is a radial line of Σ . This plus visual inspection

suggests that each of

OAPB,   OBQC,   OCRD,   ODSA

is a rhombus and that they all have the same side length, namely the radius of Σ . Assuming that

this is true, how might it be used to prove Theorem 1.10.2? Observe first that to prove that

PQRS is a parallelogram it is enough to show that PS=QR and PQ=SR (why?). To prove that

PS=QR it is enough to show that ∆SAP ≅ ∆RCQ . This is a good point to draw a clear diagram
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O

CD

A

Q

R

S

P

illustrating what has been discussed because a good diagram isolating the key features of a

figure often helps with a proof. One may color the interior of each rhombus for example, by

selecting the vertices in order then by choosing “Polygon Interior” from the Construct menu.

You may construct the interior of any polygon in this manner.  You can change the color of the

interior by selecting the interior and then by using the Display menu. Indeed, to show that

∆SAP ≅ ∆RCQ  we can use (SAS) because

SA=RC, AP=CQ

since all four lengths are equal to the radius of Σ , while

m∠SAP = m∠DOB = m∠RCQ .

Consequently, the key property needed in proving Theorem 1.10.2 is the fact that each of

OAPB,   OBQC,   OCRD,   ODSA

is a rhombus. Although this still doesn’t constitute a complete proof (why?), it does illustrate

how drawing accurate figures with Sketchpad can help greatly in visualizing the steps needed in

a proof.
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Proof of Theorem 1.10.2. (Synthetic) Recall the earlier figure

O

CD

A

Q

R

S

P

To prove that PQRS is a parallelogram it is enough to show that PS=QR and PQ=SR. We prove

first that PS=QR by showing that ∆SAP = ∆RCQ .

Step 1. The construction of P ensures that OAPB is a rhombus. Indeed, in the figure

O

B

A

P

E

OA=OB, m∠AEO = 90°  and OE=EP. Thus, by (HL),

∆AEO = ∆BEO = ∆AEP = ∆BEP .
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Consequently, OA=OB = AP=AQ and so OAPB is a rhombus. Similarly, each of OBQC,

OCRD and ODSA is rhombus; in addition, they all have the same side length since

OA=OB=OC=OD.

Step 2. Now consider ∆SAP  and ∆RCQ . By step 1, SA=AP and RC=CQ. On the other hand,

because Step 1 ensures that SA  is parallel to both DO  and RC , while PA  is parallel to BO

and QC , it follows that

m∠SAP = m∠DOB = m∠RCQ .

Hence ∆SAP ≅ ∆RCQ  by (SAS).

Step 3. In exactly the same way as in Step 2, by showing that ∆PBQ ≅ ∆SCR , we see that

PQ=SR. Hence PQRS is a parallelogram, completing the proof of Theorem 1.10.2.       QED

As often happens, a coordinate geometry proof of Theorem 1.10.2 is shorter than a

synthetic one - that’s one reason why it’s often a smart idea to try first using algebra when

proving a given result! Nonetheless, an algebraic proof often calls for good algebra skills!

Proof of Theorem 1.10.2. (Algebraic) Now the idea is to set up the algebra in as simple a

form as possible. So take the unit circle x2 + y2 =1  for Σ ; the center O of Σ  is then the origin.

As any point on Σ  has the form (cos ,sin )  for a choice of  with 0 ≤ < 2 , we can

assume that

A = cos 1( ,sin 1), B = (cos 2 ,sin 2 ) C = (cos 3,sin 3) D = (cos 4 ,sin 4 ) ,

and if we assume that 0 ≤ 1 < 2 < 3 < 4 < 2 , then points on Σ  will be in counter-clockwise

order. The first thing to do now is calculate the coordinates of the mirror images of the origin in

the respective chords AB, BC,CD  and DA  of Σ ; again a picture helps:
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Then

)sinsin,coscos( 22
1

12
1

22
1

12
1 ++=E ,

since E is the midpoint of AB , while

)sinsin,cos(cos 2121 ++=P ,

-2 2

2

-2

O

A

B
P
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since OE=EP. (Notice that here again we are really using the fact OAPB is a rhombus.)

Similarly,

)sinsin,cos(cos 3232 ++=Q , )sinsin,cos(cos 4343 ++=R

and

)sinsin,cos(cos 1414 ++=S .

To show that PQRS is a parallelogram it is enough to show that PQ  and SR  have equal slope,

and that QR  and PS  have equal slope. But

slope PQ = sin 3 − sin 1

cos 3 − cos 1

=  slopeSR .

Similarly,

slopeQR = sin 4 − sin 2

cos 4 − cos 2

=  slope PS .

Hence PQRS is a parallelogram completing an algebraic proof of Theorem 1.10.2.     QED

The algebraic proof is undoubtedly simpler than the synthetic proof, but neither gives an

explanation of why the result is true which is what a good proof should do. For this we shall

have to wait until Chapter 2. Other investigative problems of a similar nature are given in the

problems for this chapter.
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1.11 FALSE THEOREMS We all know the power a figure can provide when trying to

understand why certain geometry results are true.  In fact, they seem to be essential for

understanding and providing proofs. One of the most crucial features of dynamic geometry

software is the possibility it provides for ‘dragging’ a given construction to provide many

different views of the same setting. This can be used for investigation of a given problem with a

view to formulating a conjecture or it can be used in the proof of a given conjecture. There is,

however, a danger in relying on sketches, extra assumptions may be added by relying on the

sketch, special cases may be omitted, or absurd results can be derived from an inaccurate sketch.

We’ll look at two examples of where figures can be deceiving.

1.11.1 False Theorem: All triangles are isosceles.

Proof: Let ∆ABC be a triangle with l the angle bisector of ∠ A, m the perpendicular bisector of

BC cutting BC at midpoint E, and D the intersection of l and m.  From D, draw perpendiculars

to AB and AC, cutting them at F and G, respectively.  Finally, draw DB and DC.  The following

figure shows a sketch of the situation.

l

m

D

CB

A

E

F
G

∆ADF ≅ ∆ADG  (AAS), so AF ≅ AG  and DF ≅ DG .  ∆BDE ≅ ∆CDE  (SAS), so BD ≅ CD .

This implies ∆BDF ≅ ∆CDG  (HL), so FB ≅ GC .  Thus AB ≅ AF + FB ≅ AG + GC = AC ,

and so ∆ABC  is isosceles. QED
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1.11.2 Exercise: What is wrong with the proof of Theorem 1.11.1?  Absolutely nothing is

wrong with the chain of reasoning, so where does the problem lie?  Try constructing the given

configuration on Sketchpad.  What do you observe?

1.11.3 False Theorem:  Any rectangle inscribed in a square must itself be a square.

Proof. Consider the following picture of a rectangle MNPQ inscribed in a square ABCD

O

D

A B

C

M

Q

N

P

S

R

The rectangle PQMN certainly looks like a square doesn’t it? To prove that it is we’ll show that

the diagonals of PQMN are perpendicular since the only rectangles having perpendicular

diagonals are squares. Construct the point of intersection of the diagonals of rectangle MNPQ;

label it O. Construct the perpendicular PR  to AB ; construct also the perpendicular QS  to BC .

ThenPR  ≅ QS . Since the diagonals of any rectangle are congruent, PM ≅ QN . So ∆PMR

≅ ∆QNS , and hence ∠PMR≅∠QNS . Now consider the quadrilateral MBNO. Its exterior angle

at vertex N is congruent to the interior angle at vertex M, so the two interior angles at vertices N

and M are supplementary. Thus the interior angles at vertices B and O must be supplementary.

But ∠ ABC is a right angle and hence ∠ NOM must also be a right angle. Therefore the

diagonals of the rectangle MNPQ are perpendicular; ensuring that MNPQ is a square. 

QED

1.11.4  Exercise.  What is wrong with the proof of Theorem 1.11.4?  Nothing actually; every

step is logically correct! We could use Sketchpad to explore the various possibilities for

inscribing a rectangle in a square by using the ‘dragging’ feature.

1.11.5  Demonstration:  Construct a figure to reveal the error in the proof of Theorem 1.11.1.

Open a new sketch and draw a square ABCD; draw also the diagonals of this square and label
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their point of intersection by O.  To vary the inscribed rectangle MNPQ of the proof by

dragging we want to construct fixed opposite vertices, say P and Q, but construct opposite

vertices M and N so that they vary as we drag N say.  Select a point P on side CD  and draw the

line passing through O and P; label by M its point of intersection with AB . Hide the line and

then construct PM . Now select a point N on BC .  The idea now is that everything constructed

starting from N will move as the point N is dragged along BC , while nothing that was

constructed before will move.  Draw the line through N and O to determine the remaining vertex

Q on DA ; hide the line through N and O. Construct NQ ; this ensures that vertex Q will move

as N moves.  Finally, draw the line segments PN , NM , QP , and QM  as well as the

perpendiculars PR  and QS .   This gives the following figure

A B

D C

O

P

M

N

Q S

R
m PNM = 95.7°

To check if the inscribed figure is a rectangle, measure the angle ∠ PNM.

Drag the point N along BC .   Does the figure MNPQ move? Investigate when MNPQ is a

square. When is it a rectangle, but not a square? When is it neither a square nor a rectangle?

Formulate a conjecture describing conditions under which MNPQ is a rectangle. Prove your

conjecture! Why are all the steps in the proof of the theorem above correct, yet the result is

incorrect?

End of Demonstration 1.11.5.
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The previous two examples should not suggest the banning of any figures but instead stress the

need for accurately drawn figures, rather than quick sketches. By using Sketchpad we construct

accurate figures and consider many different cases, thus reducing the likelihood of overlooking

something.  The first false theorem (all triangles are isosceles) could have been totally avoided if

we had started with an accurately drawn figure.  The second false theorem (any rectangle

inscribed in a square is itself a square) can be avoided by the use of the dragging feature.

1.12 Exercises. The following provide multiple viewpoints on geometry: synthetic, algebraic

and dynamic.

The various circles associated with a triangle may seem to involve interesting but non-practical

ideas. This is not the case as the following problems show. Indeed, one of the points we shall be

emphasizing throughout this course is that the study of geometry is important as a study in

logical analysis, but it is also very important for the uses that can be made of geometry. We

look first at a problem involving the incircle of a triangle.

Exercise 1.12.1. What is the largest sphere that will pass through a triangular hole whose sides

are 7 in., 8 in., and 9 in. long?

The next problem involves the circumcircle of a triangle.

Exercise 1.12.2. A thin triangular-shaped iron plate is accidentally dropped into a

hemispherical tank, which is 10 ft. deep and full of water. It is noticed that the iron triangle is

lying parallel to the surface of the water, so it is proposed to retrieve the triangle by lowering a

powerful magnet into the tank at the end of a rope. What is the minimum length of rope needed

if the shortest side of the triangle is 10 ft. long and the angles of the triangle are 45, 60, and 75

degrees

Exercise 1.12.3.  Using Sketchpad, open a new sketch and draw a triangle ∆ABC .

• On side BC  construct the outward pointing square having BC  as one of its sides; construct

the center of this square and label it X.

• Construct the corresponding outward pointing squares on CA  and AB ; label their

respective centers Y and Z.

• Construct the segments AX  and YZ .

What properties do AX  and YZ  have?  Check your conjecture by dragging the vertices of

ABC∆ around.
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Exercise 1.12.4. Quadratic equations:  The Greeks used geometry where now we would use

algebra. For instance, they knew how to construct the roots of the quadratic equation

x2 − ax + b = 0  for given values of a,b  when a2 > 4b . Let’s use Sketchpad to illustrate their

method. Draw a pair of perpendicular lines, which we’ll think of as the x- and y-axes. On the y-

axis choose a fixed point and label it 1; the distance of this point from the point of intersection

of the two perpendicular lines is to be thought of as specifying what unit length means. Given a,

b draw the point C having (a, b) as coordinates as well as the point on the y-axis having y-

coordinate 1. Now draw the circle having the line segment from this point on the y -axis to C as

a diameter. Finally, label the points of intersection of this circle with the x-axis by A and B. You

should have a figure looking like

1

A B

C = (a, b)

Show that the x-coordinates of A, B are the roots of the equation x2 − ax + b = 0 . Where did the

condition a2 > 4b  get used? What is the equation of the circle you drew? This all looks pretty

straightforward to us now that we have the analytic geometry of circles available to us, but it

should be remembered that almost 2,000 years elapsed after the Elements were written before

Descartes combined algebra with geometry!

Exercise 1.12.5.  A gardener cut a piece of sod to fill a triangular hole in a grass lawn. When

he came to put the grass sod in the hole he found that it fit perfectly, but only with the wrong

side up. To fit the sod in the triangular hole with the right side up he had to cut it. How did he

cut it into three pieces so that the shape of each piece was unchanged when he turned it over?

Exercise 1.12.6. Birthday Cake: For her birthday party, Sally’s father baked a chocolate cake

in the shape of a triangular prism. Sally will have eight of her friends at her birthday party, and
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everyone likes chocolate cake and icing. How is Sally to cut the cake efficiently so that she and

each of her friends get equal shares of cake and icing?

Exercise 1.12.7.  Using Sketchpad, in a new sketch draw any convex quadrilateral ABCD.

Recall that a convex quadrilateral is one that has all interior angles less than 180 ° .

• On side AB  construct the outward pointing square having AB  as one of its sides.

Construct the center of this square and label it Z.

• Construct corresponding squares on the other sides BC , CD , and DA , and label their

centers X, U and V respectively.

• Draw the line segments ZU  and XV .   Make a conjecture about the properties of ZU  and

XV .   Check these properties by dragging the vertices of the quadrilateral ABCD. Drag one

of the vertices so that the quadrilateral becomes concave. Do the properties of ZU  and XV

still hold true or do they change for concave quadrilaterals?


