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Chapter 2

EUCLIDEAN PARALLEL POSTULATE

2.1 INTRODUCTION. There is a well-developed theory for a geometry based solely on the

five Common Notions and first four Postulates of Euclid.  In other words, there is a geometry

in which neither the Fifth Postulate nor any of its alternatives is taken as an axiom. This

geometry is called Absolute Geometry, and an account of it can be found in several textbooks -

in Coxeter’s book “Introduction to Geometry”, for instance, - or in many college textbooks

where the focus is on developing geometry within an axiomatic system. Because nothing is

assumed about the existence or multiplicity of parallel lines, however, Absolute Geometry is not

very interesting or rich. A geometry becomes a lot more interesting when some Parallel

Postulate is added as an axiom! In this chapter we shall add the Euclidean Parallel Postulate to

the five Common Notions and first four Postulates of Euclid and so build on the geometry of

the Euclidean plane taught in high school. It is more instructive to begin with an axiom different

from the Fifth Postulate.

2.1.1 Playfair’s Axiom. Through a given point, not on a given line, exactly one line can be

drawn parallel to the given line.

Playfair’s Axiom is equivalent to the Fifth Postulate in the sense that it can be deduced from

Euclid’s five postulates and common notions, while, conversely, the Fifth Postulate can deduced

from Playfair’s Axiom together with the common notions and first four postulates.

2.1.2 Theorem. Euclid’s five Postulates and common notions imply Playfair’s Axiom.

Proof.  First it has to be shown that if P is a given point not on a given line l, then there is at

least one line through P that is parallel to l.   By Euclid's Proposition I 12, it is possible to draw

a line t through P perpendicular to l.  In the figure below let D be the intersection of l with t.
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By Euclid's Proposition I 11, we can construct a line  m  through P perpendicular to t .   Thus

by construction t is a transversal to l and m such that the interior angles on the same side at P

and D are both right angles. Thus m is parallel to l because the sum of the interior angles is

180°.  (Note:  Although we used the Fifth Postulate in the last statement of this proof, we could

have used instead Euclid's Propositions I 27 and I 28.  Since Euclid was able to prove the first

28 propositions without using his Fifth Postulate, it follows that the existence of at least one

line through P that is parallel to l, can be deduced from the first four postulates.  For a complete

list of Euclid's propositions, see “College Geometry” by H. Eves, Appendix B.)

To complete the proof of 2.1.2, we have to show that m is the only line through P that is

parallel to l. So let n be a line through P with m ≠ n  and let E ≠  P be a point on  n.  Since m

≠ n, ∠ EPD cannot be a right angle.  If m∠ EPD  < 90°,  as shown in the drawing, then

m∠ EPD + m ∠ PDA is less than 180°.  Hence by Euclid’s fifth postulate, the line n must

intersect  l on the same side of  transversal t as E,  and so n is not parallel to l.  If m∠ EPD  >

90°,  then a similar argument shows that n and l must intersect on the side of  l opposite E.

Thus, m is the one and only line through P that is parallel to l.   QED
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A proof that  Playfair’s axiom implies Euclid’s fifth postulate can be found in most

geometry texts. On page 219 of his “College Geometry” book, Eves lists eight axioms other

than Playfair’s axiom each of which is logically equivalent to Euclid’s fifth Postulate, i.e., to the

Euclidean Parallel Postulate.  A geometry based on the Common Notions, the first four

Postulates and the Euclidean Parallel Postulate will thus be called Euclidean (plane) geometry.

In the next chapter Hyperbolic (plane) geometry will be developed substituting Alternative B for

the Euclidean Parallel Postulate (see text following Axiom 1.2.2)..

2.2 SUM OF ANGLES. One consequence of the Euclidean Parallel Postulate is the well-

known fact that the sum of the interior angles of a triangle in Euclidean geometry is constant

whatever the shape of the triangle.

2.2.1 Theorem. In Euclidean geometry the sum of the interior angles of any triangle is always

180°.

Proof: Let ∆ABC  be any triangle and construct the unique line DE  through A, parallel to the

side BC , as shown in the figure

D E

A

B C

Then m∠EAC = m∠ACB and m∠DAB = m∠ABC by the alternate angles property of parallel

lines, found in most geometry textbooks. Thus m∠ACB + m∠ABC + m∠BAC = 180°.   QED

Equipped with Theorem 2.2.1 we can now try to determine the sum of the interior angles of

figures in the Euclidean plane that are composed of a finite number of line segments, not just

three line segments as in the case of a triangle. Recall that a polygon is a figure in the Euclidean

plane consisting of points P1, P2,..., Pn, called vertices, together with line segments P1P2 , P2P3 ,

...,PnP1 , called edges or sides. More generally, a figure consisting of the union of a finite

number of non-overlapping polygons will be said to be a piecewise linear figure. Thus
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is a piecewise linear figure as is the example of nested polygons.

This example is a particularly interesting one because we can think of it as a figure

containing a ‘hole’. But is it clear what is meant by the interior angles of such figures? For

such a polygon as the following:

we obviously mean the angles indicated. But what about a piecewise linear figure containing

holes? For the example above of nested polygons, we shall mean the angles indicated below
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This makes sense because we are really thinking of the two polygons as enclosing a region

so that interior angle then refers to the angle lying between two adjacent sides and inside the

enclosed region. What this suggests is that for piecewise linear figures we will also need to

specify what is meant by its interior.

The likely formula for the sum of the interior angles of piecewise linear figures can be

obtained from Theorem 2.2.1 in conjunction with Sketchpad. In the case of polygons this was

probably done in high school. For instance, the sum of the angles of any quadrilateral, i.e., any

four-sided figure, is 360°. To see this draw any diagonal of the quadrilateral thereby dividing

the quadrilateral into two triangles. The sum of the angles of the quadrilateral is the sum of the

angles of each of the two triangles and thus totals 360°. If the polygon has n sides, then it can

be divided into n-2 triangles and the sum of the angles of the polygon is equal to the sum of the

angles of the n-2 triangles.  This proves the following result.

2.2.2 Theorem. The sum of the interior angles of an n-sided polygon, n ≥ 3 , is (n − 2) ⋅180° .

2.2.2a Demonstration.

We can use a similar method to determine the sum of the angles of the more complicated

piecewise linear figures.  One such figure is a polygon having “holes”, that is, a polygon

having other non-overlapping polygons (the holes) contained totally within its interior.  Open a

new sketch and draw a figure such as
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An interesting computer graphics problem is to color in the piecewise linear figure between the

two polygons. Unfortunately, computer graphics programs will only fill polygons and the

interior of the figure is not a polygon. Furthermore, Sketchpad measures angles greater than

180° by using directed measurements. Thus Sketchpad would give a measurement of -90° for a

270° angle. To overcome the problem we use the same strategy as in the case of a polygon: join

enough of the vertices of the outer polygon to vertices on the inner polygon so that the region is

sub-divided into polygons. Continue joining vertices until all of the polygons are triangles as in

the figure below. Color each of these triangles in a different color so that you can distinguish

them easily.

We call this a triangular tiling of the figure. Now use Theorem 2.2.2 to compute the total

sum of the angles of all these new polygons. Construct a different triangular tiling of the same

figure and compute the total sum of angles again. Do you get the same value? Hence complete

the following result.
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2.2.3 Theorem. When an n-sided piecewise linear figure consists of a polygon with one

polygonal hole inside it then the sum of its interior angles is ________________________.

Note: Here, n equals the number of sides of the outer polygon  plus the number of sides of the

polygonal hole.

End of Demonstration 2.2.2a.

Try to prove Theorem 2.2.3 algebraically using Theorem 2.2.2. The case of a polygon

containing h polygonal holes is discussed in Exercise 2.4.1.

2.3 INSCRIBED ANGLE THEOREM: One of the most useful properties of a circle is

related to an angle that is inscribed in the circle and the corresponding subtended arc.  In the

figure below, ∠ABC  is inscribed in the circle and Arc ADC is the subtended arc. We will say

that ∠AOC  is a central angle of the circle because the vertex is located at the center O.  The

measure of  Arc ADC is defined to be the angle measure of the central angle, ∠AOC .

D

O A

C

B

2.3.0 Demonstration.  Investigate the relationship between an angle inscribed in a circle and

the arc it intercepts (subtends) on the circle.

• Open a new script in Sketchpad and draw a circle, labeling the center of the circle by O.



8

O

A

B

D

C

m BDA = 53°
m BOA = 106°

m BCA = 53°

• Select an arbitrary pair of points A, B on the circle. These points specify two possible arcs -

let’s choose the shorter one in the figure above, that is, the arc which is subtended by a

central angle of measure less than 180°.   Now select another pair of points C, D on the

circle and draw line segments to form ∠BCA and ∠BDA. Measure these angles. What do

you observe?

• If you drag C or D what do you observe about the angle measures? Now find the angle

measure of ∠BOA. What do you observe about its value?

• Drag B until the line segment AB  passes through the center of the circle. What do you now

observe about the three angle measures you have found?

Use your observations to complete the following statements; proving them will be part of later

exercises.

2.3.1 Theorem. (Inscribed Angle Theorem): The measure of an inscribed angle of a circle

equals _____________________ that of its intercepted (or subtended) arc.

2.3.2 Corollary. A diameter of a circle always inscribes  _____________________ at any

point on the circumference of the circle.

2.3.3 Corollary.  Given a line segment AB , the locus of a point P such that   ∠APB = 90o  is a

circle having AB  as diameter.
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End of Demonstration 2.3.0.

The result you have discovered in Corollary 2.3.2 is a very useful one, especially in

constructions, since it gives another way of constructing right-angled triangles. Exercises   2.4.4

and  2.4.5  below are good illustrations of this. The Inscribed Angle Theorem can also be used

to prove the following theorem, which is useful for proving more advanced theorems.

2.3.4 Theorem. A quadrilateral is inscribed in a circle if and only if the opposite angles are

supplementary. (A quadrilateral that is inscribed in a circle is called a cyclic quadrilateral.)

2.4  Exercises.  Exercise 2.4.1 studies further the formula for the sum of the angles of

polygons having holes in them.  Exercises 2.4.2 – 2.4.6 are related to the Inscribed Angle

Theorem.  Exercises 2.4.7 and 2.4.8 are for fun.

Exercise 2.4.1. Use Sketchpad as in Section 2 to complete the following conjecture: if a

piecewise linear figure consisting of a polygon containing  h  holes (non-overlapping polygons

in the interior of  the outer polygon) has a total of n edges, where n incudes both the interior and

the exterior edges,  then the sum of its interior angles is (n        ) 180°.

Note that  your answer must depend on both n and h ..   Prove your result is true.

Exercise 2.4.2. Prove that if a quadrilateral is cyclic, then the opposite angles of the

quadrilateral are supplementary, i.e., the sum of opposite angles is 180°.  [ This will provide half

of the proof of Theorem 2.3.4. ]

Exercise 2.4.3. Give a synthetic proof of the Inscribed Angle Theorem 2.3.1 using the

properties of isosceles triangles in theorem 1.4.6. Hint: there are three cases to consider: here

ψ is the angle subtended by the arc and is the angle subtended at the center of the circle. The

problem is to relate ψ to .

Case 1: The center of the circle lies on the subtended angle.
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Case 2: The center of the circle lies within the interior of the inscribed circle.

Case 3: The center of the circle lies in the exterior of the inscribed angle.

End of Exercise 2.4.3.

For Exercises 2.4.4, 2.4.5, and 2.4.6, recall that any line tangent to a circle at a particular

point must be perpendicular to the line connecting the center and that same point.  For all three

of these exercises, the Inscribed Angle Theorem is useful.

Exercise 2.4.4. Use the Inscribed Angle Theorem to devise a Sketchpad construction that will

construct the tangents to a given circle from a given point P outside the circle. Carry out your

construction. (Hint: Remember Corollary 2.3.2).
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Exercise 2.4.5. In the following figure

O

P

B

A

the line segments PA  and PB  are the tangents to a circle centered at O from a point P outside

the circle. Prove that PA  and PB  are congruent.

Exercise 2.4.6. Let l and m be lines intersecting at some point P and let Q be a point on l. Use

the result of Exercise 2.4.5 to devise a Sketchpad construction that constructs a circle tangential

to l and m that passes through Q. Carry out your construction.

For Exercises 2.4.7 and 2.4.8, we consider regular polygons again, that is, polygons with

all sides congruent and all interior angles congruent.   If a regular polygon has n sides we shall

say it is a regular n-gon. For instance, the following figure

E

A

F

D

C

B

is a regular octagon above, i.e., a regular 8-gon. By Theorem 2.2.2 the interior angle of a regular

n-gon is

  

n − 2

n
 
 

 
 180o.

The measure of any central angle is 
360°

n
.  In the figure ∠DEF  is an interior angle and

∠ABC is a central angle.



12

Exercise 2.4.7. Prove that the vertices of a regular polygon always lie on a circumscribing

circle.

Exercise 2.4.8.  Now suppose that the edge length of a regular n-gon is l and let R be the

radius  of the circumscribing circle for the n-gon. The Apothem  of the n-gon is the

perpendicular distance from the center of the circumscribing circle to a side of the n-gon.

 

A 

l 

R 

The Apothem

 (a)  With this notation and terminology  and using some trigonometry complete the following

R = l _____________ ,   l = R ______________,   Apothem = R__________ .

Use this to deduce

(b) area of n-gon = 
1

2
nR2 sin

2

n
 
 

 
 ,     (c) perimeter of n-gon = 2nR sin

n
 
 

 
 .

(d) Then use the well-known fact from calculus that

                                                         1
sin

lim
0

=
→

to derive the formulas for the area of a circle of radius R as well as the circumference of such a

circle.

End of Exercise 2.4.8.

2.5 SIMILARITY AND THE PYTHAGOREAN THEOREM. The mathematical notion of

similarity describes the idea of change of scale that is found in such forms as map making,

perspective drawings, photographic enlargements and indirect measurements of distance. Recall

from high school that geometric figures are similar when they have the same shape, but not

necessarily the same size. More precisely, triangles ∆ABC  and ∆DEF  are said to be similar,
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written ∆ABC ~ ∆DEF , when all three pairs of corresponding angles are congruent and the

lengths of all three pairs of corresponding sides are proportional. To establish similarity of

triangles, however, it is not necessary to establish congruence of all pairs of angles and

proportionality of all pairs of sides. The following results are part of high school geometry.

2.5.1 Theorem. (AA) If two angles of one triangle are congruent to two angles of another

triangle, then the triangles are similar.

2.5.2 Theorem. (SSS)  If three sides of one triangle are proportional respectively to three sides

of another triangle, then the triangles are similar.

2.5.3 Theorem. (SAS) If two sides of one triangle are proportional respectively to two sides of

another triangle and the angles included by these sides are congruent, then the triangles are

similar.

Of the many important applications of similarity, there are two that we shall need on many

occasions in the future. The first is perhaps the best known of all results in Euclidean plane

geometry, namely Pythagoras’ theorem. This is frequently stated in purely algebraic terms as

a2 + b2 = c2 , whereas in more geometrically descriptive terms it can be interpreted as saying

that, in area, the square built upon the hypotenuse of a right-angled triangle is equal to the

sum of the squares built upon the other two sides. There are many proofs of Pythagoras’

theorem, some synthetic, some algebraic, and some visual as well as many combinations of

these.  Here you will discover an algebraic/synthetic proof based on the notion of similarity.

Applications of Pythagoras’ theorem and of its isosceles triangle version to decorative tilings of

the plane will be made later in this chapter.

2.5.4 Theorem. (The Pythagorean Theorem) In any triangle containing a right angle, the

square of the length of the side opposite to the right angle is equal to the sum of the squares of

the lengths of the sides containing the right angle. In other words, if the length of the

hypotenuse is c  and the lengths of the other two sides area  andb , then a2 + b2 = c2 .

Proof: Let ∆ABC  be a right-angled triangle with right angle at C, and let CD  be the

perpendicular from C to the hypotenuse AB  as shown in the diagram below.
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• Show∆CAB  is similar to ∆DAC .

• Show∆CAB  is similar to ∆DCB .

•  Now let BD  have length x , so that AD  has length c − x .  By similar triangles,

x

a
=

a

c
     and   

c − x

b
= ?

• Now eliminate x  from the two equations to show a2 + b2 = c2 .

There is an important converse to the Pythagorean theorem that is often used.

2.5.5 Theorem. (Pythagorean Converse) Let ∆ABC  be a triangle such that a2 + b2 = c2 .

Then ∆ABC  is right-angled with ∠ ACB a right angle.

2.5.5a Demonstration (Pythagorean Theorem with Areas)

You may be familiar with the geometric interpretation of Pythagoras’ theorem.  If we build

squares on each side of ∆ABC  then Pythagoras’ theorem relates the area of the squares.

• Open a new sketch and draw a right-angled triangle ∆ABC . Using the ‘4/Square (By

Edge)’ script construct an outward square on each edge of the triangle having the same edge

length as the side of the triangle on which it is drawn. 

• Measure the areas of these 3 squares: to do this select the vertices of a square and then

construct its interior using “Construct Polygon Interior” tool. Now compute the area of

each of these squares and then use the calculator to check that Pythagoras’ theorem is valid

for the right-angled triangle you have drawn.

End of Demonstration 2.5.5a.

This  suggests a problem for further study because the squares on the three sides can be

thought of as similar copies of the same piecewise linear figure with the lengths of the sides
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determining the edge length of each copy. So what does Pythagoras’ theorem become when the

squares on each side are replaced by, say, equilateral triangles or regular pentagons?

2.5.5b Demonstration (Generalization of Pythagorean Theorem)

• Draw a new right-angled triangle ∆ABC  and use the ‘5/Pentagon (By Edge)’ script to

construct an outward regular pentagon on each side having the same edge length as the side

of the triangle on which it is drawn. As before measure the area of each pentagon. What do

you notice about these areas?

• Repeat these constructions for an octagon instead of a pentagon. (Note: You can create an

“Octagon By Edge” script from your construction for Exercise 1.5.5(b).) What do you

notice about the areas in this case?

Now complete the statement of Theorem 2.5.6 below for regular n-gons.

End of Demonstration 2.5.5b.

2.5.6 Theorem. (Generalization of Pythagoras’ theorem) When similar copies of a regular

n-gon, n ≥ 3 , are constructed on the sides of a right-angled triangle, each n-gon having the same

edge length as the side of the triangle on which it sits, then ____________________

______________________________________________________.

The figure below illustrates the case of regular pentagons.



16

2.5.6a Exercise. Use Exercise 2.4.8 together with the usual version of Pythagoras’ theorem to

give an algebraic proof of Theorem 2.5.6.

2.5.7 Demonstration. Reformulate and prove the result corresponding to Theorem 2.5.6 when

the regular n-gons constructed on each side of a right-angled triangle are replaced by similar

triangles.

This demonstration presents an opportunity to explain another feature of scripts called

Auto-Matching.  We will be using this feature when we use Sketchpad to explore the Poincaré

Disk model of the hyperbolic plane.  In this problem we can construct the first isosceles triangle

and then we would like to construct two other similar copies of the original one.  Here we will

construct a “similar triangle script” based on the AA criteria for similarity.

---------------------------  Script Composition using Auto-Matching  --------------------------

• Open a new sketch and construct ∆ABC  with the vertices labeled. Then open a new script

and press the record button.

B A

C

E D

• Next construct the line (not a segment) DE . (You should have pressed the record button

before you do this.) Your sketch should look like the figure above.

• Select the vertices B-A-C in order and choose "Mark Angle B-A-C" from the Transform

Menu. Click the mouse to deselect those points and then select the point D.  Choose

“Mark Center D” from the Transform Menu. Deselect the point and then select the

lineDE .   Choose “Rotate…” from the Transform Menu and then rotate by Angle B-A-

C.

• Select the vertices A-B-C in order and choose “Mark Angle A-B-C” from the Transform

Menu. Click the mouse to deselect those points and then select the point E.  Choose “Mark

Center E” from the Transform Menu. Deselect the point and then select the line DE .

Choose “Rotate…” from the Transform Menu and rotate by Angle A-B-C.
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• Construct the point of intersection between the two rotated lines and label it F. ∆DEF  is

similar to ∆ABC .  Hide the three lines connecting the points D, E, and F and replace them

with line segments.

• Now in the Script Window double click on the Given “Point A” and change the label from

“ A” to “Auto-A”.  Also change the label on “Point B” from “B” to “Auto-B” and the

label on “Point C” from “C” to “Auto-C” .

• Now you can stop recording, add comments to your script, and save it.

---------------------   End of Script Composition using Auto-Matching  -----------------------

-

In the future, to use your script you need to have three points labeled A, B, and C already

constructed in your sketch where you want to construct the similar triangle.  Then you only

need to click on or construct the points corresponding to D and E each time you want to use the

script.  Your script will automatically match the points labeled A, B, and C in your sketch with

those that it needs to run the script.

• Now open a new sketch and construct a triange with vertices labeled  A, B, and C.

• In the same sketch, construct a right triangle.   After setting the Script Directory

appropriately, use the “similar triangle” script to build triangles similar to  ∆ABC  on each

side of the right triangle.  For each similar triangle, select the three vertices and then in the

Construct menu, choose “construct polygon interior”.   Measure the areas of the similar

triangles and see how they combine together.

End of Demonstration 2.5.7.

2.6 RESULTS REVISITED.  In this section we will see how the Inscribed Angle Theorem

can be used to prove results involving the Simson Line, the Miquel Point, and the Euler Line.

Recall that we discovered the Simson Line in Section 1.7 while exploring Pedal Triangles.

2.6.1 Theorem (Simson Line). If P lies on the circumcircle of ∆ABC , then the perpendiculars

from P to the three sides of the triangle intersect the sides in three collinear points.

Proof. Use the notation in the figure below.

• Why do P, D, A, and E all lie on the same circle?  Why do P, A, C, and B all lie on another

circle?  Why do P, D, B and F all lie on a third circle? Verify all three of these statements

using Sketchpad.
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• In circle PDAE, PACmPAEmPDEm ∠=∠≅∠ . Why?

• In circle PACB, PBFmPBCmPACm ∠=∠≅∠ . Why?

• In circle PDBF, PDFmPBFm ∠≅∠ . Why?

Since PDFmPDEm ∠≅∠ , points D, E, and F must be collinear. QED

In Exercise 1.8.4, the Miquel Points of a triangle were constructed.

2.6.2 Theorem (Miquel Point) If three points are chosen, one on each side of a triangle, then

the three circles determined by a vertex and the two points on the adjacent sides meet at a point

called the Miquel Point.

Proof.  Refer to the notation in the figure below.

B

C

A

D

E

F

G

Let D, E and F be arbitrary points on the sides of ∆ABC .  Construct the three circumcircles.
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Suppose the circumcircles for ∆AFD and ∆BDE  intersect at point G.  We need to show the

third circumcircle also passes through G.   Now, G may lie inside ∆ABC , on ∆ABC , or outside

∆ABC .  We prove the theorem here in the case that G lies inside ∆ABC , so we  assume that G

lies inside the triangle.

• ∠FGD  and ∠DAF  are supplementary. Why?

• ∠EGD  and ∠DBE  are supplementary. Why?

Notice m∠FGD + m∠DGE + m∠EGF = 360° . Combining these facts we see the following.

(180°− m∠A) + (180°− m∠B) + m∠EGF = 360° . So m∠EGF =180 − m∠C  or ∠C  and

∠EGF  are supplementary. Thus C, E, G, and F all lie on a circle and the third circumcircle

must pass through G.   To complete the proof, the argument can be modified to prove the

theorem for the cases where the Miquel point is outside of the triangle or on one of the sides.

(See Exercise 2.8.1)                            QED

     The proof of Theorem 2.6.3 below uses two theorems on the geometry of triangles, which

are proven in most geometry texts.  The first theorem required states that the line segment

between the midpoints of two sides of a triangle is parallel to the third side of the triangle and it

is _ the length of the third side  (see Exercise 2.8.6).   The second theorem required states that

the point which is 2/3 the distance from a vertex (along a median) to the midpoint of the

opposite side is the centroid of the triangle.

2.6.3 Theorem (Euler Line). For any triangle, the centroid, the orthocenter, and the

circumcenter are collinear, and the centriod trisects the segment joining the orthocenter and the

circumcenter.  The line containing the centroid, orthocenter, and circumcenter of a triangle is

called the Euler Line .
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O

Z

C

A

B

I

A'

GH

Proof.   If the triangle is equilateral, the three points coincide and so they are trivially collinear.

We use the figure above.   Here, H is the orthocenter and O is the circumcenter.  Let G be the

point where the line containing OH  intersects the line containing the median AA ′  from vertex A,

and so points O, G and H are collinear.  This assumes that these two lines are distinct, but if

they are not distinct, then the line containing OH  must (unless the triangle is equilateral) be

distinct from the lines containing one of the other two medians. In that case, we would proceed

as below using that median instead of AA ′ .   We prove the theorem with the assumption that

point G lies between O and H and in the interior of ∆ABC .   Although it is tedious to prove,

this in fact always occurs unless O and H coincide, and in that case O, H and the centroid all

coincide and ∆ABC  is equilateral.

      First notice that quadrilateral AHBI is a parallelogram. (Why?)   Now, OGAAHG ′∆∆ ~

(by AAA) .  Since OA’ / AH  =  OA’ / IB  =  _ , the ratio of similarity is _ . Therefore

 GA’ / GA  =  _ .  Thus,  AG / AA’  =  2/3 . This implies that G is the centroid of  ∆ABC , by the

remarks above.  By similarity of triangles, OG / HG = _ , so the centroid G trisects the segment

OH , the segment joining the orthocenter and the circumcenter.   Note: the assumption in the

figure is that  m CAB∠  <  90º .   A similar argument can be used to prove the theorem for the

case that  m CAB∠  > 90º  (see Exercise 2.6.3a)  and the argument can easily be modified for

the case that  m CAB∠  =  90º. QED

2.6.3a Exercise.  Sketch the figure used in Theorem 2.6.3 for the case that  m CAB∠  > 90º

and then prove the theorem for that case.  Using Sketchpad can help here.
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2.7 THE NINE POINT CIRCLE.  Another surprising triangle property is the so-called Nine-

Point Circle, sometimes credited to K.W. Feuerbach (1822). Sketchpad is particularly well

adapted to its study.  The following Demonstration will lead you to its discovery.

2.7.0 Demonstration: Investigate the nine points on the Nine Point Circle.

The First set of Three points:

• In a new sketch construct ∆ABC . Construct the midpoints of each of its sides; label these

midpoints D, E, and F.

• Construct the circle that passes through D, E, and F. (You know how to do this!)

• This circle is called the Nine-Point Circle. Complete the statement: The nine-point circle

passes through _________________________________.

The Second set of Three points: In general the nine-point circle will intersect ∆ABC  in three

more points. If yours does not, drag one of the vertices around until the circle does intersect

∆ABC  in three other points. Label these points J, K, and L.

• Construct the line segment joining J and the vertex opposite J. Change the color of this

segment to red. What is the relationship between the red segment and the side of the triangle

containing J? What is an appropriate name for the red segment?

• Construct the corresponding segment joining K and the vertex opposite K and the segment

joining L to the vertex opposite L. Color each segment red. What can you say about the

three red segments?

• Place a point where the red segments meet; label this point M and complete the following

statement: The nine-point circle also passes through ____________________________.

.

The Third set of Three points: The red segments intersect the circle at their respective

endpoints (J, K, or L). For each segment there exists a second point where the segment

intersects the circle. Label them N, O and P.

• To describe these points measure the distance between M and each of A, B, and C. Measure

also the distance between M and each of N, O, and P. What do you observe? Confirm your

observation by dragging the vertices of ∆ABC .

• Complete the following statement: The nine-point circle also passes through ___________

You should notice that Sketchpad comes equipped with a Nine Point Circle script in the Sample

Scripts Folder.
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End of Demonstration 2.7.0.

     To understand the proof of Theorem 2.7.1 below, it is helpful to recall some results

discussed earlier.  As in the proof of the existence of the Euler Line, it is necessary to use the

fact that the segment connecting the midpoints of two sides of a triangle is parallel to the third

side of the triangle.  Also, we recall that a quadrilateral can be inscribed in a circle if and only if

the opposite angles in the quadrilateral are supplementary.  It is not difficult to show that an

isosceles trapezoid has this property.  Finally, recall that a triangle can be inscribed in a circle

with a side of the triangle coinciding with a diameter of the circle if and only if the triangle is a

right triangle.

2.7.1 Theorem (The Nine-point Circle) The midpoints of the sides of a triangle, the points

of intersection of the altitudes and the sides, and the midpoints of the segments joining the

orthocenter and the vertices all lie on a circle called the nine-point circle.

Your final figure should be similar to

C

B

A

F

E

D

J

L

K

N

P

O

Proof:

(See Figure 1)    In ∆ABC  label the midpoints of BC ,
Figure 1
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CA ,  and AB , by A', B' and C' respectively. There is a

circle containing A', B' and C'. In addition, we know

A'C'AB' is a parallelogram, and so A'C' = AB'.

(See Figure 2)     Construct the altitude from A

intersecting BC  at D. As C' B' is parallel to BC  and

AD  is perpendicular to BC , then AD  must be

perpendicular to B' C' . Denote the intersection of B' C'

and AD  by P.  Then∠APB' ≅ ∠DPB' , PB' ≅ PB'  and

AP ≅ DP .

(See Figure 3)    Consequently, ∆APB' ≅∆ DPB'  by

SAS. So AB' = B'D. By transitivity with A'C' = AB'

we have B'D = A'C'.  Thus A'C'B'D  is an isosceles

trapezoid. Hence, by the remarks preceding this

theorem,  A', C', B', and D are points which lie on one

circle. (See Figure 4)

By a similar argument, the feet of the other two

altitudes belong to this circle.

A

B

C

C'

A'
B'

Figure 2

A

B

C

C'

A'
B'

D

P

Figure 3

A

B

C

C'

A'
B'

D

P

Figure 4

A

B

C

C'

A'
B'

D

P

(See Figure 5)  Let J denote the midpoint of the

Figure 5



24

segment joining vertex A and the orthocenter H. Then,

again by the connection of midpoints of the sides of a

triangle, C' J  is parallel to BH .

(See Figure 6)  Now BHACandACAC ⊥||''  but

BH ||C' J .   Hence JCAC ''' ⊥ .

(See Figure 7)  Therefore C' lies on a circle with

diameter A' J .

A similar argument shows that B' lies on the circle

with diameter A' J , and hence J lies on the circle

determined by A', B', and C'. Likewise, the other two

midpoints of the segments joining the vertices with the

orthocenter lie on the same circle.

QED

A

B

C

C'

A'
B'

D

H

J

F

E

Figure 6

A

B

C

C'

A'
B'

D

H

J

F

E

Figure 7

A

B

C

C'

A'
B'

D

H

J

F

E

2.8 Exercises.  In this exercise set, Exercise 2.8.3 – 2.8.7 are related to the nine point circle.

Exercise 2.8.1. Using Sketchpad, illustrate a case where the Miquel Point lies outside the

triangle. Prove Theorem 2.6.2 in this case.

Exercise 2.8.2. Prove the converse to the Pythagorean Theorem stated in Theorem 2.5.5.

Exercise 2.8.3. For special triangles some points of the nine-point circle coincide. Open a new

sketch and draw an arbitrary∆ABC . Explore the various possibilities by dragging the vertices of
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∆ABC . Describe the type of triangle (if it exists) for which the nine points of the nine-point

circle reduce to:

4 points: _____________________               5 points: ________________________

6 points: _____________________               7 points: ________________________

8 points: _____________________

Exercise 2.8.4. Open a new sketch and draw an arbitrary triangle ∆ABC .

• Construct the circumcenter O, the centroid G, the orthocenter H, and the center of the nine-

point circle N for this triangle.  What do you notice?

•  Measure the length of ON , NH , NG , and OH . What results for a general triangle do your

calculations suggest?

• Measure the radius of the nine-point circle of ∆ABC . Measure the radius of the

circumcircle of ∆ABC .  What results for a general triangle do your calculations suggest?

Drag the vertices of the triangle around. Do your conjectures still remain valid?

Exercise 2.8.5. Open a new sketch and draw an arbitrary ∆ABC . Let H be the orthocenter and

O be the circumcenter of ∆ABC .  Construct the nine-point circles for ∆OHA , ∆OHB , and

∆OHC .   Use sketchpad to show that these nine-point circles have two points in common. Can

you identify these points?  Check your observation by dragging the vertices A, B, and C around.

End of Exercise 2.8.5.

     If one starts with given vertices A, B, and C, then the locations of the midpoints P, Q, and R

of the sides of ∆ABC are uniquely determined.  Similarly, the locations of the feet of the

altitudes D, E, and F will be determined once A, B, and C are given. The remaining two problems

in this exercise set use the geometric properties we have developed so far to reverse this process,

i.e., we construct the vertices A, B, and C knowing the midpoints or the feet of the altitudes. Use

the notation from the following figure.
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E

D

F

QR

P C
B

A

Exercise 2.8.6.   

(a) Prove the line segment PQ  is parallel to side AB .

(b) Given points P, Q, and R, show how to construct points A, B, and C so that P, Q, and R are

the midpoints of the sides of ∆ABC .

(c) Formulate a conjecture concerning the relation between the centroid G of ∆ABC  and the

centroid of ∆PQR .

Exercise 2.8.7.

 (a) Assume ∆ABC  is acute (to ensure the feet of the altitudes lie on the sides of the triangle).

Prove that PC = PB = PE = PF and that P lies on the perpendicular bisector of the line segment

EF .

(b) Given points D, E, and F, show how to construct points A, B, and C so that D, E, and F are

the feet of the altitudes from the vertices of ∆ABC  to the opposite sides. (Hint: remember the

nine-point circle).

2.9 THE POWER OF A POINT AND SYNTHESIZING APOLLONIUS.  Another

application of similarity will be to a set of ideas involving what is often called the power of a

point with respect to a circle. The principal result will be decidedly useful later in connection

with the theory of inversion and its relation to hyperbolic geometry.

Demonstration 2.9.0.  Discover the formula for the power of point P with respect to a given

circle.

• Open a new sketch and draw a circle. Select any point P outside the circle and let A, B be the

points of intersection on the circle of a line l through P.
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• Compute the lengths PA, PB of PA , and PB  respectively; then compute the product PA·PB

of PA and PB.  Drag l while keeping P fixed. What do you observe?

• Investigate further by considering the case when l is tangential to the given circle. Use this

to explain your previous observation.

•  What happens to the product PA·PB when P is taken as a point on the circle?

• Now let P be a point inside the circle, l a line through P and A, B its points of intersection

with the circle.  Again compute the product PA·PB  of PA and PB. Now vary l.

• Investigate further by considering the case when l passes through the center of the given

circle.

• Can you reconcile the three values of the product PA·PB for P outside, on and inside the

given circle? Hint: consider the value of   OP 2  –  r 2   where O is the center of the given

circle and r is its radius.

End of Demonstration 2.9.0.

The value of PA·PB   in Demonstration 2.9.0 is often called the power of P with respect to

the given circle. Now complete the following statement.

2.9.1 Theorem. Let P be a given point, Σ a given circle, and l a line through P intersecting Σ at

A and B. Then

1. the product PA·PB of the distances from P to A and B is ________________ whenever P is

outside, whenever it is inside or when it is on Σ ;

2. the value of the product PA·PB is equal to _________________  where O is the center of Σ

and r is the radius of Σ .

 The proof of part 2 of Theorem 2.9.1 in the case when P is outside the given circle is an

interesting use of similarity and the inscribed angle theorem. In the diagram below let C be a

point on the circle such that PC  is a tangent to the circle. By the Pythagorean Theorem

OP2 − r2 = PC2  so it suffices to show that PA·PB = PC 2.

2.9.2 Theorem. Given a circle Σ  and a point P outside Σ , let l be a ray through P intersecting

Σ  at points A and B. If C is a point on the circle such that PC  is a tangent to Σ  at C then

PA·PB = PC2.
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Proof.  The equation PA·PB = PC2suggests use of similar triangles, but which ones?

O

PC

B

D

A

Let CD  be a diameter of the circle. By the Inscribed Angle Theorem m∠PAC = m∠BDC and

∠CBD  is a right angle. Thus m∠BDC + m∠DCB = 90°  and as PC  is tangent to the circle

m∠DCB + m∠PCB = 90° .  Therefore, m∠PAC = m∠PCB .  By AA similarity ∆PAC is

similar to ∆PCB  proving PA/PC = PC/PB or PA·PB = PC2.                             QED

Theorem 2.9.3.  Given a circle Σ  and a point P inside Σ , let l be a line through P intersecting

Σ  at points A and B.  Let CD be the chord perpendicular to the segment OP . Then the value of

the product PA·PB is equal to r 2 − OP2 = PC2  where O is the center of Σ  and r is the radius of

Σ .

Proof.

l

P

O
A

BC

D

By AA similarity ∆ACP  is similar to ∆DBP  so that PA/PC = PD/PB. Thus PA ·PB=PC·PD.
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By HL, ∆CPO  is congruent to ∆DPO  so that PC=PD. By the Pythagorean Theorem

PD2 + OP2 = OD2 . Re-arranging and substituting, we obtain PC ⋅ PD = r2 − OP2.  Therefore,

PA ⋅ PB = r 2 − OP2  as desired. QED

There is a converse to theorem 2.9.2 that also will be useful later. You will be asked to

provide the proof in Exercise 2.11.1 below.

2.9.4 Theorem. Given a circle Σ  and a point P outside Σ , let l be a ray through P intersecting

Σ  at points A and B. If C is a point on Σ  such that PA·PB = PC2, then PC  is a tangent to Σ  at

C.

In Chapter 1 we used Sketchpad to discover that when a point P moves so that the distance

from P to two fixed points A, B satisfies the condition PA = 2PB then the path traced out by P is

a circle.  In fact, the locus of a point P such that PA = mPB  is always a circle, when m is any

positive constant not equal to one.  From restorations of Apollonius’ work ‘Plane Loci ‘ we

infer that he considered this locus problem, now called the “Circle of Apollonius”.  However,

this is a misnomer since Aristotle who had used it to give a mathematical justification of the

semicircular form of the rainbow had already known the result.

 That this locus is a circle was confirmed algebraically using coordinate geometry in

Chapter 1.  However, it can be also be proven by synthetic methods and the synthetic proof

exploits properties of similar triangles and properties of circles. Since the synthetic proof will

suggest how we can construct the Circle of Apollonius with respect to fixed points A, B through

an arbitrary point P we shall go through the proof now.
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2.9.5 Lemma Given ∆ABC , let D be on AB , and E on AC  such thatDE  is parallel to BC .

Then

AD

DB
=

AE

EC
 and 

AB

DB
=

AC

EC
.

A

B C

D E

F

Proof. Let F be the intersection of BC  with the line parallel to AB  passing through E. Then

∆AED ~ ∆ECFby AA similarity and 
AD

EF
=

AE

EC
. The quadrilateral EFBD is a parallelogram,

therefore EF=DB and 
AD

DB
=

AE

EC
. A similar argument shows

AB

DB
=

AC

EC
.    QED

2.9.5a Lemma (Converse of  Lemma 2.9.5).  Given ∆ABC , let D be on AB , and E on AC

such that  
AD

DB
=

AE

EC
 or 

AB

DB
=

AC

EC
   (see figure below), thenDE  is parallel to BC .

                                                     

    

A

B C

D E

F

Proof.  Assume 
AB

DB
=

AC

EC
.  The line through

D parallel to BC  intersects AC  at point F with

DF  parallel to BC .  By Lemma 2.9.5,

FC

AC

DB

AB = .  But 
AB

DB
=

AC

EC
 also, so

EC

AC

FC

AC =  which implies that F  =  E.  Thus

DE   =  DF  is parallel to BC .

If  
AD

DB
=

AE

EC
, the proof is similar.  QED
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2.9.6 Theorem The bisector of the internal angle ∠ABC  of ∆ABC  divides the opposite side

AC  in the ratio of the adjacent sides BA  and BC .  In other words,

AD

DC
=

AB

BC
.

Proof. Suppose BD  bisects ∠ABC  in ∆ABC . At C construct a line parallel to BD , intersecting

AB  at E, producing the figure below.

But then ∠ABD ≅ ∠CBD  and ∠BEC ≅ ∠ABD

since they are corresponding angles of parallel lines.

In addition, ∠BCE ≅ ∠CBD  since they are alternate

interior angles of parallel lines. Hence ∆CBE  is

isosceles and BE = BC.  By the previous lemma

AB

BE
=

AD

DC
.

But BE = BC,  so

AB

BC
=

AD

DC
.

This completes the proof.

QED

2.9.7 Exercise. The converse to Theorem 2.9.6 states that if

AB

BC
=

AD

DC
,

then BD  bisects ∠ABC  in the figure above. Prove this converse. You may use the converse to

Lemma 2.9.5, proven in Lemma 2.9.5a.

C

B

A D

E
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2.9.8. Theorem The bisector of an external angle of ∆ABC  cuts the extended opposite side at a

point determined by the ratio of the adjacent sides. That is to say, if AB  is extended and

intersects the line containing the bisector of the exterior angle of C at E, then

AC

BC
=

AE

BE
.

Proof:   There are two cases to consider.

              Either  m BAC∠   <  m ABC∠   or m BAC∠   >  m ABC∠ .   (If m BAC∠  =m ABC∠ ,

then the bisector of the exterior angle at C  is parallel to AB .)

    Assume that  m BAC∠   <  m ABC∠ . Then (as shown in the figure) the bisector of  BCG∠

will intersect  the extension of AB  at E,  and AE > AB.   At B, construct a line parallel to CE ,

intersecting AC  at F.

Then ECGBFC ∠≅∠
since they are

corresponding angles

of parallel lines;

And  BCEECG ∠≅∠

since   CE    bisects

BCG∠ ;  and

∠BCE ≅ ∠CBF  since they are alternate interior angles of parallel lines.

Hence ∆ BFC is isosceles and FC = BC.  Now by a previous lemma, 
AC

FC
=

AE

BE
.  But

FC = BC; so   
AC

BC
=

AE

BE
.

This proves the assertion for the case that  m BAC∠   <  m ABC∠ .

     If   m BAC∠   >  m ABC∠ ,  then the line containing the bisector of  BCG∠   intersects the

extension of AB  at point E on the other side of  A, with A between E and B.  A similar argument

proves the assertion for this case as well and the theorem is proved.    QED

2.9.9 Exercise. The converse to Theorem 2.9.8 states that if

A B

C

G

E

F
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P

BA C D

AC

BC
=

AE

BE

in the figure above, then CE  bisects the external angle of ∆ABC  at C. Prove this conjecture.

We are now able to complete the proof of the main theorem.

2.9.10 Theorem (Circle of Apollonius). The set of all points P such that the ratio of the

distances to two fixed points A and B (that is PA
PB ) is constant  (but not equal to 1) is a circle.

Proof: Assume the notation above and that PA = mPB where m >1 is a constant. There are two

points on AB  indicated by C and D in the figure with the desired ratio.  By the converse to

Theorem 2.9.6 and the converse to Theorem 2.9.8, PC and PD  are the internal and external

angle bisectors of the angle at P.  Thus they are perpendicular (why?), so ∠CPD is a right

angle.  This means that P lies on a circle with diameter CD . QED

In the previous proof what happens in the case where m <1?     Also, see Exercise 2.11.2 .

 2.10 TILINGS OF THE EUCLIDEAN PLANE. The appeal of many of the most interesting

decorations or constructions we see around us, whether manufactured or in nature, is due to

underlying symmetries. Two good illustrations of this are the so-called ‘Devils and Angels’
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designs by the Dutch graphic artist M. C. Escher. Underlying both is the idea of tilings of the

plane, in the first example the Euclidean plane, in the second example the hyperbolic plane.
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But examples can be found everywhere from floor coverings, to wallpaper, to the mosaics of

Roman villas and to decorations of structures as varied as Highway 183 in Austin and Islamic

mosques. An understanding of the geometry underlying these designs and their symmetries

increases our understanding and appreciation of the artistic design as well as geometry itself.

The classification of these symmetries is actually a fascinating problem linking both algebra and

geometry, as we shall see later.

Some of the simplest, yet most striking designs come from ‘tilings’ by regular polygons or

by congruent polygons. Examples can be found everywhere in Islamic art because of the ban

imposed by the Koran on the use of living forms in decoration and art. This style of

ornamentation is especially adapted to surface decoration since it is strongly rooted in Euclidean

plane geometry. Sketchpad will enable us to reproduce these complicated and colorful designs.

Once the underlying geometry has been understood, however, we can make our own designs

and so learn a lot of Euclidean plane geometry in the process. Four examples illustrate some of

the basic ideas.
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Example 1

The above example shows a typical Arabic design.  This was drawn starting from a regular

hexagon inscribed in a circle.

Demonstration 2.10.0.   Construct the design in Example 1 using Sketchpad.

• First draw a regular hexagon and its circumscribing circle. Now construct a regular 12-

sided regular polygon having the same circumscribing circle to give a figure like the one

below.

• To construct a second 12-sided regular polygon having one side adjacent to the first regular

hexagon, reflect your figure in one of the sides of the first regular hexagon. Now complete

the construction of the previous Arabic design.

End of Demonstration 2.10.0.
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2.10.1 Exercise.  If the radius of the circumscribing circle of the initial regular hexagon is R,

determine algebraically the area of the six-pointed star inside one of the circles.

Continuing this example indefinitely will produce a covering of the plane by congruent

copies of three polygons - a square, a rhombus and a six-pointed star. Notice that all these

congruent copies have the same edge length and adjacent polygons meet only at their edges, i.e.,

the polygons do not overlap. The second example

Example  2

if continued indefinitely also will provide a covering of the plane by congruent copies of two

regular polygons - two squares, in fact. Again adjacent polygons do not overlap, but now the

individual tiles do not meet along full edges.

The next example

Example  3

is one very familiar one from floor coverings or ceiling tiles; when continued indefinitely it

provides a covering of the plane by congruent copies of a single, regular polygon - a square.

But now adjacent polygons meet along the full extent of their edges. Finally, notice that

continuations of the fourth example
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Example 4

will produce a covering of the plane by congruent copies of two regular polygons, one a square

the other an octagon; again the covering is edge-to-edge.

To describe all these possibilities at once what we want is a general definition of coverings

of the plane by polygons without overlaps. Specializations of this definition can then be made

when the polygons have special features such as the ones in the first four examples.

2.10.2. Definition. A tiling or tessellation of the Euclidean plane is a collection T1, T2, ... , Tn,

of polygons and their interiors such that

• no two of the tiles have any interior points in common,

• the collection of tiles completely covers the plane.

When all the tiles in a plane tiling are congruent to a single polygon, the tiling is said to have

order one, and the single region is called the fundamental region of the tiling. If each tile is

congruent to one of n different tiles, also called fundamental regions, the tiling is said to have

order n.

Now we can add in special conditions on the polygons. For instance, when the polygons are

all regular we say that the tiling is a regular tiling. Both the second, third and fourth examples

above are regular tilings, but the first is not regular since neither the six-pointed polygon nor the

rhombus is regular. To distinguish the second example from the others we shall make a crucial

distinction.

2.10.3. Definition. A tessellation is said to be edge-to-edge if two tiles intersect along a full

common edge, only at a common vertex, or not at all.

Thus examples one, three and four are edge-to-edge, whereas example two is not edge-to-

edge. The point of this edge-to-edge condition is that it reduces the study of regular tilings to
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combinatorial problems for the interior angles of the regular polygons meeting at a vertex. It is

in this way that the Euclidean plane geometry of this chapter, particularly the sums of angles of

polygons, comes into play. So from now on a tiling will always mean an edge-to-edge tiling

unless it is explicitly stated otherwise.

A major problem in the theory is to determine whether a given polygon can serve as

fundamental region for a tiling of order one, or if a collection of n polygons can serve as

fundamental regions for a tiling of order n. The case of a square is well-known from floor

coverings and was given already in example 3 above.

2.10.4. Demonstration. Investigate which regular polygons could be used to create an edge-to-

edge regular tiling of order one.

 Use the ‘3/Triangle (By Edge)’ script to show that an equilateral triangle can tile the plane

meaning that it can serve as fundamental region for a regular tiling of order one. Try the same

with a regular hexagon using the ‘6/Hexagon (By Edge)’ script - what in nature does your

picture remind you of?  Now use the ‘5/Pentagon (By Edge) to check if a regular pentagon can

be used a fundamental region for a regular tiling of order one. Experiment to see what patterns

you can make. One example is given below; can you find others?

End of Demonstration 2.10.4.

    Can you tile the plane with a regular pentagon? To see why the answer is no we prove the

following result.
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2.10.5. Theorem. The only regular polygons that tile the plane are equilateral triangles, squares

and regular hexagons. In particular, a regular pentagon does not tile the plane.

Proof. Suppose a regular p-sided polygon tiles the plane with q tiles meeting at each vertex.

Since the interior angle of a regular p-sided polygon has measure 180
p − 2

p

 
 
  

 
, it follows that

q180(1− 2/ p) = 360 . But then

1

p
+

1

q
=

1

2
,     i.e., (p − 2)(q − 2) = 4 .

The only integer solutions of this last equation that make geometric sense are the pairs

),( qp = (3,6), (4,4), or (6,3).

These correspond to the case of equilateral triangles meeting 3 at each vertex, squares meeting 4

at each vertex and regular hexagons meeting 3 at each vertex.                              QED

Tilings of the plane by congruent copies of a regular polygon does not make a very

attractive design unless some pattern is superimposed on each polygon - that’s a design

problem we shall return to later. What we shall do first is try to make the tiling more attractive

by using more than one regular polygon or by using polygons that need not be regular. Let’s

look first at the case of an equilateral triangle and a square each having the same edge length.

Demonstration 2.10.5a.  Construct a regular tiling of order 2 where the order of the polygons

is preserved at each vertex.

• Open a new sketch and draw a square (not too big since this is the starting point) and draw

an equilateral triangle on one of its sides so that the side lengths of the triangle and the

square are congruent. Use the scripts to see if these two regular polygons can serve as the

fundamental regions of a regular tiling of order 2 where the order of the polygons is

preserved at each vertex. Here’s one such example.
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Notice that the use of colors can bring out a pattern to the ordering of the polygons at each

vertex. As we move in counter-clockwise order around each vertex we go from

 S(green) →S(yellow) →T(white) →T(blue) →T(white)

 (and then back to S(green)) where S = square and T = equilateral triangle.  This is one example

of an edge-to-edge regular tiling of order two.  Consider how many are there.

 End of Demonstration 2.10.5a.

 

 2.10.6 Theorem. Up to similarity there are exactly eight edge-edge regular tilings of order at

least 2, where the cyclic order of the polygons is preserved at each vertex.

Keeping the order S→S→T→T→T of squares and triangles produced one such tiling.

Convince yourself that S→T→T→S→T produces a different tiling. Why are these the only

two possible orderings for two squares and three triangles? How many permutations are

possible for the letters S, S, T, T, and T?

 What are the other six tilings?  Algebraic conditions limit drastically the possible patterns so

long as the tiling is edge-to-edge and that the order of the polygons is the same at each vertex.

Using the angle sum formulas for regular polygons one can easily see that you need at least

three polygons around a vertex, but can have no more than six. In the case of a p-gon, a q-gon,

and an r-gon at each vertex, you get the equation

 
  
180

p− 2

p

 

 
  

 

 
  +180

q − 2

q

 

 
  

 

 
  + 180

r − 2

r

 

 
  

 

 
  = 360

 You can check that (4,8,8), (4,6,12), and (3,12,12) are solutions. (There are a few other solutions

as well, but they will not make geometric sense.)  Thus S→O→O, S→H→D, and T→D→D

all produce tilings, where O stands for Octagon, H for hexagon, and D for Dodecahedron. We
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are still missing three tilings, but you can have fun looking for them!  (See Exercise 2.11.3.)

Now we will take a look at some less regular tilings.

It is surprising how much of geometry can be related to tilings of the plane. Let’s consider

two instances of this, the second being Pythagoras’ theorem.  The first instance is a theorem

known familiarly as Napoleon’s theorem after the famous French general though there is no

evidence that he actually had anything to do with the theorem bearing his name! Recall that

earlier we proved the form of Pythagoras’ theorem saying that the area of the equilateral triangle

on the hypotenuse is equal to the sum of the areas of the equilateral triangles on the other two

sides. On the other hand, Napoleon’s theorem says that the centers of these three equilateral

triangles themselves form an equilateral triangle, as we saw in Exercise 1.8.5. The figure below

makes this result clearer.

b

c

a

E

D

F

Here D, E, and F are the centers of the three equilateral triangles where by center is meant

the common circumcenter, centroid and orthocenter of an equilateral triangle. Napoleon’s

theorem says that ∆DEF  is equilateral - it certainly looks as if its sides are congruent and

measuring them on Sketchpad will establish congruence.  You will provide a proof of the result

in Exercise 2.11.5.  The question we consider here is how all this relates to tilings of the plane.

Notice now that we have labeled the interior angles of the triangle because we are going to allow

polygons which are not necessarily regular.  Since the interior can then be different, the

particular interior angle of polygons that appears at a vertex is going to be just as important as
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which polygon appears. Now we will see how we can continue the figure above indefinitely and

thus tile the plane.

One should notice that the edge-to-edge condition imposes severe restrictions on the angles

that can occur at a vertex. Label the angles in the original figure as follows.

e

b

a

d

d f

f

e

c

e

fd

Of course, the angles of the equilateral triangles are all the same but we have used different

letters to indicate that they are the interior angles of equilateral triangles of different size. Since

a + b + c +  d +  e + f  = 360˚, three copies of the right-angled triangle and one copy of each of

the three different sizes of equilateral triangle will fit around a vertex with no gaps or overlaps.

The figure can thus be constructed indefinitely by maintaining the same counter-clockwise

order a → e → c → f → b → d  at each vertex. Now draw the figure for yourself! It may be

instructive to use a different color for each equilateral triangle to highlight the fact that the

equilateral triangles are not necessarily congruent.

2.10.6a Demonstration.

• Open a new sketch and in the top left-hand corner of the screen draw a right-angled triangle

as shown in the figure above.  Make sure that your construction is dynamic in the sense that

the triangle remains right-angled whenever any one of the vertices is dragged.

• Use the ‘Circle By Center + Radius’ construction to construct a congruent copy of your

triangle in the center of the screen. Draw an outwardly pointing equilateral triangle on each

side of this right-angled triangle.

• Continue adding congruent copies of the right-angled triangle and the equilateral triangles to

the sides of the triangles already in your figure. (One way to add congruent copies of the
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right triangle is to use your ‘Auto-Matching’ similar triangle script.   Just label your

original right triangle appropriately.)

• Experiment a little to see what figures can be produced. Check that your construction is

dynamic by dragging the vertices of the first right-angled triangle you drew.

End of Demonstration 2.10.6a.

Here’s one that looks as if it might tile the plane if continued indefinitely.
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p37
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CB

Napoleon Tiling

Hide

Show

The figure above of the Napoleon Tiling has an overlay of hexagons over it. To see where it

came from, apply Napoleon’s Theorem to the tiling. That is around each right triangle connect

the centers of the equilateral triangle to create a new equilateral triangle. Six of those new

equilateral triangles make up each hexagon above. Thus Napoleon’s theorem brings out an

underlying symmetry in the design because it showed that a regular tiling of the plane by

regular hexagons could be overlaid on the figure. The same design could have been obtained by

putting a design on each regular hexagon and then tiling the plane with these patterned regular

hexagons.

This brings out a crucial connection between tilings and the sort of designs that are used for

covering walls, floors, ceilings or any flat surface. A design is said to be wallpaper design if a

polygonal portion of it provides a tiling of the plane by translations in two different directions.

Thus all the examples obtained in this section except for the last one are wallpaper designs

because translations in two different directions of a regular hexagonal portion of the design will

tile the plane precisely because of Napoleon’s theorem. It is very clear that the Islamic design in
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problem 2.10.1 is a wall-paper design because the portion of the design inside the initial regular

hexagon will tile the plane as the figure below clearly shows.

2.10.7. Exercise.  Find a square portion of  Example  4 in Seection 2.10 that tiles the plane. In

other words, show that that example is a wallpaper design.

Example 2 is sometimes called the “Pythagorean Tiling”. It is created by a translation of

two adjacent non-congruent squares. This tiling occurs often in architectural and decorative

designs as seen in this sidewalk tiling.  To see why this tiling might be called a “Pythagorean

Tiling” open a new sketch and draw the tiling as it appears in example 2 using two squares of

different sizes. Construct an overlaying of this design by a tiling, which consists of congruent

copies of a single square. Construct several such squares. What is the area of your squares?

Use Pythagoras’ theorem to relate this area to the area of the two original squares you used to

construct your pattern.

2.11 Exercises.

Exercise 2.11.1.  Prove Theorem 2.9.4.  Given a circle Σ  and a point P outside Σ ,  let l be a

ray through P intersecting Σ  at points A and B. If C is a point on Σ  such that  PA·PB  =  PC2,

then PC  is tangent to Σ  at C.
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Exercise 2.11.2: Given points A, B and P use Sketchpad to construct the Circle of Apollonius

passing through P.  In other words, construct the set of points Q such that QA = mQB  where

PA PB = m .

Exercise 2.11.3. Produce two different order-preserving edge-to-edge regular tilings of order 2,

just using triangles and hexagons.  Produce an edge-to-edge regular tiling of order 3 using

triangles, squares, and hexagons. (We now have the eight tilings mentioned in Theorem 2.10.5!)

Exercise 2.11.4. Using Sketchpad construct the Napoleon Tiling.  Choose a regular hexagon in

your figure and describe its area in terms of the original triangle and the three equilateral

triangles constructed on its sides. Now choose a different (larger or smaller area) regular

hexagon having a different area and describe the area of this hexagon in terms of the original

triangle and the three equilateral triangles.

Exercise 2.11.5. While the tiling above makes a very convincing case for the truth of

Napoleon’s theorem it doesn’t prove it in the usual meaning of ‘proof’. Here is a coordinate

geometry proof based on the figure on the following page and on the notation in that figure.

(a) The points D, E, and F are the centers of the equilateral triangles constructed on the sides

of the right-angled triangle ∆ABC . Show that length BF = c 3 . Determine also the lengths of

AD  and BE .

(b) If ∠ABC =  and ∠CAB = , write the values of sin , cos , sin , and cos  in terms

of a, b, and c.

(c) Write down the addition formulas for sine and cosine.

cos(u + v) =                                  , sin(u + v) =                              .

(d) Let the lengths of FE , DF , and DE  be x, y and z respectively. Use the Law of Cosines

to show that

( )30cos2
3

1 222 °++= abbaz .

Determine corresponding values for x and y. Deduce that x = y  = z.
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Use all the previous results to finish off a coordinate geometry proof of Napoleon’s theorem.

Exercise 2.11.6. Instead of starting with a right-angled triangle, start with an arbitrary ∆ABC

and draw equilateral triangles on each of its sides and repeat the previous construction.

• Open a new sketch and draw a small triangle near the top corner of the screen; label the

vertices A, B, and C. By using the ‘Circle By Center+Radius’ tool you can construct

congruent copies of this triangle.

• Draw one congruent copy of ∆ABC in the center of the screen. Draw an equilateral triangle

on each of its sides.

• Continue this construction preserving cyclic order at each vertex to obtain a tiling of the

plane.  The following figure is one such example.

• Construct the centers of all the equilateral triangles and draw hexagons as in the case of

right-angled triangles. Do you think Napoleon’s theorem remains valid for any triangle, not

just right-angled triangles?
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Exercise 2.11.7.  Can the plane be tiled by copies of the diagram for Yaglom’s Theorem (given

below) as in the manner of the tiling corresponding to Napoleon’s Theorem? If so, produce the

tiling using Sketchpad.  Recall that Yaglom’s Theorem said if we place squares on the sides of

a parallelogram, the centers of the squares also form a square.
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2.12  One final Exercise.

Exercise 2.12.1. To the left in the figure below are two triangles, one obtuse, the other right-

angled. The interior angles of the two triangles have been labeled. Since the sum of these six

angles is 360˚ there should be a tiling of the plane by congruent copies of these two triangles in

which the cyclic order of the angles at each vertex is the same as the one shown in the figure to

the right.

f
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a
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e
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e
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• Open a new sketch and continue this construction to provide a tiling of the plane. Unlike the

previous tilings, the triangles in this tiling are not congruent. Explain why this tiling is more

like a Nautilus Shell.

• Construct the circumcenters of the three outwardly pointing obtuse triangles on the sides of

one of the right-angled triangles and join these circumcenters by line segments. What, if

any, is the relation of the triangle having these three circumcenters as vertices and the

original obtuse triangle? Is there any relation with the original right-angled triangle? Use

Sketchpad if necessary to check any conjecture you make. (Don’t forget to drag!)

Investigate what happens if you construct instead the three circumcenters of the right-angled

triangles on the sides of one of the obtuse triangles? Draw the triangle having these

circumcenters as vertices. What, if any, is the relation between the original right-angled triangle

and the triangle having the three circumcenters as vertices? Is there any relation with the original
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obtuse triangle? Again use Sketchpad if necessary to check visually any conjecture you make.

(Don’t forget to drag!)


