Chapter 3
NON-EUCLIDEAN GEOMETRIES

In the previous chapter we began by adding Euclid’ s Fifth Postulate to his five common
notions and first four postulates. This produced the familiar geometry of the * Euclidean’
plane in which there exists precisely one line through a given point paralel to agivenline
not containing that point. In particular, the sum of the interior angles of any triangle was
always 180° no matter the size or shape of the triangle. In this chapter we shall study
various geometriesin which paralel lines need not exist, or where there might be more than
one line through a given point parallel to agiven line not containing that point. For such
geometries the sum of theinterior angles of atriangle isthen always greater than 180° or
alwayslessthan 180°. Thisinturnisreflected in the area of atriangle which turns out to be
proportional to the difference between 180° and the sum of the interior angles.

First we need to specify what we mean by a geometry. Thisistheideaof an Abstract
Geometry introduced in Section 3.1 along with several very important examples based on
the notion of projective geometries, which first arose in Renaissance art in attempts to
represent three-dimensiona scenes on atwo-dimensional canvas. Both Euclidean and
hyperbolic geometry can be realized in thisway, as later sectionswill show.

3.1 ABSTRACT AND LINE GEOMETRIES. One of the weaknesses of Euclid's
development of plane geometry was his‘ definition’ of points and lines. He defined a point
as*“... that which hasno part” and alineas*“... breadthless length”. These really don’t
make much sense, yet for over 2,000 years everything he built on these definitions has been
regarded as one of the great achievementsin mathematical and intellectua history! Because
Euclid’ s definitions are not very satisfactory in this regard, more modern devel opments of
geometry regard points and lines as undefined terms. A model of amodern geometry then
consists of specifications of points and lines.

3.1.1 Definition. An Abstract Geometry G consists of apair { P, L} where P isaset
and L isacollection of subsets of . The eements of P are called Points and the elements

of L arecaled Lines. Wewill assume that certain statements regarding these points and

lines are true at the outset. Statements like these which are assumed true for a geometry are



called Axioms of the geometry. Two Axiomswe require are that each pair of points P, Q in
P belongsto at least onelinel in £, and that each linel in £ contains at least two elements

of P.

We can impose further geometric structure by adding other axioms to this definition as
the following example of afinite geometry - finite because it contains only finitely many
points - illustrates. (Here we have added athird axiom and dightly modified the two
mentioned above.)

3.1.2 Definition. A 4-POINT geometry is an abstract geometry G = { P, L} inwhichthe
following axioms are assumed true:
Axiom 1: P contains exactly four points,

Axiom 2: each pair of distinct pointsin 2P belongsto exactly oneline;

Axiom 3: eachlinein £ contains exactly two distinct points.

The definition doesn't indicate what objects points and lines are in a 4-Point geometry,
it smply imposes restrictions on them. Only by considering amodel of a 4-Point geometry
can we get an explicit description. Look at atetrahedron.

It has 4 vertices and 6 edges. Each pair of verticeslieson
exactly one edge, and each edge contains exactly 2 vertices.
Thus we get the following result.

3.1.3 Example. A tetrahedron contains amodel of a4-
Point geometry in which
P ={vertices of thetetrahedron} and £ = {edges of the tetrahedron}.

This exampleis consistent with our usua thinking of what a point in ageometry should
be and what aline should be. But points and linesin a 4-Point geometry can be anything so
long asthey satisfy al the axioms. Exercise 3.3.2 provides avery different model of a4-
Point geometry in which the points are opposite faces of an octahedron and the lines are the
vertices of the octahedron!



Why do we bother with models? Well, they give us something concrete to look at or
think about when we try to prove theorems about a geometry.

3.1.4 Theorem. In a4-Point geometry there are exactly 6 lines.

To prove this theorem synthetically all we can do is use the axioms and argue logically
from those. A model helps us determine what the stepsin the proof should be. Consider the
tetrahedron model of a 4-Point geometry. It has 6 edges, and the edges are the lines in the
geometry, so the theorem is correct for this model. But there might be a different model of a
4-Point geometry in which there are more than 6 lines, or fewer than 6 lines. We have to
show that there will be exactly 6 lines whatever the model might be. Let’ s use the
tetrahedron model again to see how to provethis.

Label thevertices A, B, C, and D. These are the 4 points in the geometry.

Concentrate first on A. There are 3 edges passing through A, one containing B, one
containing C, and one containing D; these are obvioudly distinct edges. This exhibits 3
distinct lines containing A.

Now concentrate on vertex B. Again there are 3 distinct edges passing through B, but we
have already counted the one passing a so through A. So there are only 2 new lines
containing B.

Now concentrate on vertex C. Only the edge passing through C and D has not been
counted aready, so thereis only one new line containing C.

Finally concentrate on D. Every edge through D has been counted already, so there are
no new lines containing D.

Since we have looked at al 4 points, there are atotal of 6 linesin all. This proof applies
to any 4-Point geometry if we label the four points A, B, C, and D, whatever those points are.
Axiom 2 saysthere must be one line containing A and B, one containing A and C and one
containing A and D. But the Axiom 3 saysthat the line containing A and B must be distinct
from the line containing A and C, aswell astheline containing A and D. Thus there will
always be 3 distinct lines containing A. By the same argument, there will be 3 distinct lines
containing B, but one of these will contain A, so there are only 2 new lines containing B.
Similarly, there will be 1 new line containing C and no new lines containing D. Hencein
any 4-Point geometry there will be exactly 6 lines.

Thisis usualy how we prove theorems in Axiomatic Geometry: look at amodel, check
that the theorem istrue for the model, then use the axioms and theorems that follow from

3



these axiomsto give alogically reasoned proof. For Euclidean plane geometry that model
isawaysthe familiar geometry of the plane with the familiar notion of point and line. But it
isnot be the only model of Euclidean plane geometry we could consider! To illustrate the
variety of forms that geometries can take consider the following example.

3.1.5 Example. Denote by P? the geometry in which the ‘points  (here called P-points)
consist of al the Euclidean lines through the origin in 3-space and the P-lines consist of all
Euclidean planes through the origin in 3-space.

Since exactly one plane can contain two given lines through the origin, there exists
exactly one P-line through each pair of P-pointsin P? just asin Euclidean plane geometry.

But what about parallel P-lines? For an abstract geometry G we shall say that two lines m,

and| in G areparallel when| and m contain no common points. This makes good sense

and is consistent with our usual idea of what parallel means. Since any two planes through
the origin in 3-space must always intersect in aline in 3-space we obtain the following
result.

3.1.6 Theorem. In P? there are no parallel P-lines.

Actually, P* isamode of Projective plane geometry. The following figureillustrates
some of the basic ideas about P?.



The two Euclidean lines passing through A and the origin and through B and the origin
specify two P-pointsin P?, while the indicated portion of the plane containing these lines

through A and B specify the ‘ P-line segment’ AB.

Because of Theorem 3.1.6, the geometry P? cannot be amode! for Euclidean plane
geometry, but it comes very ‘close’ . Fix a plane passing through the origin in 3-space and
cal it the Equatorial Plane by analogy with the plane through the equator on the earth.

3.1.7 Example. Denote by E? the geometry in which the E-points consist of all lines
through the origin in 3-space that are not contained in the equatorial plane and the E-lines
consist of al planes through the origin save for the equatorial plane. In other words, E? is
what isleft of P* after one P-line and all the P-points on that P-linein P* are removed.

The claimisthat E? can be identified with the Euclidean plane. Thus there must be
parallel E-linesin this new geometry E*. Do you see why? Furthermore, E* satisfies
Euclid’ s Fifth Postul ate.

The figure below indicates how E? can be identified with the Euclidean plane. Look at a
fixed sphere in Euclidean 3-Space centered at the origin whose equator is the circle of
intersection with the fixed equatorial plane. Now look at the plane which is tangent to this
sphere at the North Pole of this sphere.



Every line through the origin in 3-space will intersect this tangent plane in exactly one point
unlessthelineis paralel in the usua 3-dimensiona Euclidean sense to the tangent plane at
the North Pole. But these parallél lines are precisely the lines through the origin that liein
the equatoria plane. On the other hand, for each point A in the tangent plane at the North
Pole there is exactly one line in 3-space passing through both the origin and the given point
Ain the tangent plane. Thusthereisa 1-1 correspondence between the E-pointsin E? and
the pointsin the tangent plane at the North Pole. In the same way we see that thereisa 1-1
correspondence between E-linesin E? and the usual Euclidean linesin the tangent plane.

The figure above illustrates the 1-1 correspondence between E-line segment AB in E? and

the line ssgment AB in Euclidean plane geometry.

For reasons, which will become very important later in connection with transformations,
this 1-1 correspondence can be made explicit through the use of coordinate geometry and
ideas from linear algebra. Let the fixed sphere centered at the origin having radius 1. Then
the point (X, y) in the Euclidean plane isidentified with the point (X, y, 1) in the tangent plane
at the North Pole, and this point is then identified with theline{ o (X, y, 1): - ¥ <a <¥ }
through the origin in 3-space.

Since there are no parallel linesin P? it is clear that the removal from P? of that one P-
line and al P-points on that P-line must be very significant.

3.1.8 Exercise. What points do we need to add to the Euclidean plane so that under the
identification of the Euclidean plane with E? the Euclidean plane together with these
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additional points are in 1-1 correspondence with the pointsin P*? What line do we need to
add to the Euclidean plane so that we get a 1-1 correspondence with all the linesin P*?

Note first that by restricting further the points and linesin P> we get amodel of a
different geometry. The set of al lines passing through the origin in 3-space and through
the 45" parallel in the Northern Hemisphere of the fixed sphere model determines aconein
3-space to be denoted by L.

3.1.9 Definition. Denote by H* the geometry whose h-points consists of Euclidean lines
through the origin in 3-space that liein the inside the cone L and whose h-lines consist of
theintersections of theinterior of L and planes through the origin in 3-space.

Again the Euclidean lines through A and B represent h-points A and Bin H? and the ‘ h-

line segment’ AB is (asindicated in the above figure by the shaded region) the sector of a
plane containing the Euclidean lines through the origin which are passing through points
on the line segment connecting A and B. H? isamodel of Hyperbolic plane geometry. The
reason why it'samodel of a'plane geometry is clear because we have only defined points
and lines, but what isnot at all obviousiswhy the name 'hyperbolic' is used. To understand
that let's try to use H? to create other models. For instance, our intuition about 'plane
geometries suggests that we should try to find modelsin which h-points really are points,



not lines through the origin! One way of doing thisis by looking at surfaces in 3-space,
which intersect the linesinside the cone L exactly once. There are two natural candidates,
both presented here. The second one presented realizes Hyperbolic plane geometry as the
points on a hyperboloid, - hence the name 'Hyperbolic' geometry. Thefirst one presented
realizes Hyperbolic plane geometry as the pointsinside adisk. Thisfirst one, known asthe
Klein Model, is very useful for solving the following exercise because its h-lines are realized
as open Euclidean line segments. In the next section we study athird model known asthe
Poincare Disk

3.1.10 Exer cise. Given an h-line | in Hyperbolic plane geometry and an h-point P not on
the h-line, how many h-lines parallel to | through P are there?

3.1.11 Klein Model. Consider the tangent plane M, tangent to the unit sphere at its North
Pole, and let the origin in M be the point of tangency of M with the North Pole. Then M
intersectsthe coneL inacircle, cal it S, and it intersects each lineinside L in exactly one
point inside S. In fact, thereis a 1-1 correspondence between the linesinside L and the
pointsinside S. On the other hand, the intersection of M with planesis aEuclidean line, so
thelinesin H? arein 1-1 correspondence with the chords of S, except that we must
remember that pointson circle S correspond to lineson L.  So the linesin the Klein model
of Hyperbolic plane geometry are exactly the chords of S, omitting the endpoints of a
chord. In other words, the hyperbolic h-linesin this model are open line segments. The
following picture contains some points and linesin the Klein model,

the dotted line on the circumference indicating that these points are omitted.
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3.1.11a Exercise. Solve Exercise 3.1.10 using the Klein model.

3.1.12 Hyperboloid model. Consider the hyperbola 2% - x* = 1 inthe x,z-plane. Its
asymptotes are the lines z= £ x. Now rotate the hyperbola and its asymptotes about the z-
axis. The asymptotes generate the cone L, and the hyperbola generates a two-sheeted
hyperboloid lying inside L ; denote the upper hyperboloid by B. Then every line through the
origin in 3-space intersects B exactly once— see Exercise 3.1.13; infact, thereisa

1-1 correspondence between the points on B and the pointsin H2. Thelinesin H?
correspond to the curves on B obtained by intersecting the planes though the originin 3-
gpace. With this model, the hyperboloid B is aredlization of Hyperbolic plane geometry.

3.1.13 Exercise. Provethat every linethrough the origin in 3-space intersects B (in the
Hyperbolic model above) exactly once.

3.2 POINCARE DI SK. Although the line geometries of the previous section provide a
very convenient, coherent, and illuminating way of introducing models of non-Euclidean
geometries, they are not convenient onesin which to use Sketchpad. More to the point, they
are not easy to visualize or to work with. The Klein and Hyperboloid models are more
satisfactory ones that conform more closely to our intuition of what a ‘ plane geometry’
should be, but the definition of distance between points and that of angle measure conform
lessso. We instead focus on the Poincaré Model D, introduced by Henri Poincaré in 1882,
where ‘h-points are points as we usually think of them - pointsin the plane - while ‘h-
lines arearcsof particular Euclidean circles. Thistoo fitsin with our usual experience of
Euclidean plane geometry if one thinks of a straight line through point A asthe limiting
case of acircle through point A whose radius approaches ¥ asthe center moves out aong
aperpendicular line through A. The Poincaré Disk Model alows the use of standard
Euclidean geometric ideas in the development of the geometric properties of the models and
hence of Hyperbolic plane geometry. We will seelater that D isactually amodel of the
"same"' geometry as H? by constructing a 1-1 transformation from H? onto D.

Let C beacirclein the Euclidean plane. Then D isthe geometry in which the ‘ h-points
arethe pointsinside C and the *h-lines’ arethe arcsinside C of any circle intersecting C at
right angles. This means that we omit the points of intersection of these circleswith C. In
addition, any diameter of the bounding circle will aso be an h-line, since any straight line
through the center of the bounding circle intersects the bounding circle at right angles and
(as before) can be regarded as the limiting case of a circle whose radius approaches infinity.
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Asinthe Klein model, points on the circle are omitted and hyperbolic h-lines are open --
- inthis case, open arcs of circles. Aswe arereferring to pointsinside C as h-points and
the hyperbolic linesinside C as h-lines; it will also be convenient to call C the bounding
circle. Thefollowing figure illustrates these definitions:

A,B,E,F, and G are
h-points.

F

mh/ G
E h-segment

o h-ra

h-line

More technically, we say that acircle intersecting C at right anglesis orthogonal to C. Just
as for Euclidean geometry, it can be shown that through each pair of h-points there passes
exactly one h-line. A coordinate geometry proof of thisfact isincluded in Exercise 3.6.2.
We suggest a synthetic proof of thisin Section 3.5. Thus the notion of h-line segment
between h-points A and B makes good sense: it is the portion between A and B of the unique
h-line through A and B. Inview of the definition of h-lines, the h-line segment between A
and B can aso be described as the arc between A and B of the unique circle through A and B
that is orthogonal to C. Similarly, an h-ray starting at an h-point Ain D is either one of the
two portions, between A and the bounding circle, of an h-line passing through A.

Having defined D, thefirst two thingsto do are to introduce the distance, d, (A, B),
between h-points A and B as well as the angle measure of an angle between h-rays starting
at some h-point A. The distance function should have the same properties as the usual
Euclidean distance, namely:

(Pogitive-definiteness): For all pointsAandB (At B),
d,(A/B)>0 and d,(AA)=0;
(Symmetry): For al points A and B,
dy(A, B) = d,(B, A);
(Triangle inequality): For all points A, B and C,
d.(A,B) £ d (AC) +d(C,B).
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Furthermore the distance function should satisfy the Ruler Postulate.

3.2.0. Ruler Postulate: The pointsin each line can be placed in 1-1 correspondence to the
real numbersin such away that:
each point on the line has been assigned a unique real number (its coordinate);
each real number is assigned to a unique point on the ling;
for each pair of pointsA, B ontheline, d. (A, B) = |a- b|, wherea and b are the
respective coordinates of A and B.

The function we adopt for the distance looks very arbitrary and bizarre at first, but good
sense will be made of it later, both from a geometric and transformational point of view.
Consider two h-points A, Bin D and let M, N be the points of intersection with the bounding
circle of the h-linethrough A, B asin the figure:

We set

4 (AB) = i EAM)I(B, N)j
ed(A N)d(B,M)

where d(A, M) isthe usua Euclidean distance between points A and M. Using properties
of logarithms, one can check that the role of M and N can be reversed in the above formula
(see Exercise 3.3.7).

3.2.1 Exercise. Show that d, (A, B) satisfies the positive-definiteness and symmetry
conditions above.
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We now introduce angles and angle measure in D. Just asin the Euclidean plane, two
h-rays starting at the same point form an angle. In the figure below we see two intersecting
h-lines forming DBAC .

To find the hyperbolic measure m DBAC of BDBAC we appeal to angle measure in

Euclidean geometry. To do that we need the tangents to the arcs at the point A. The
hyperbolic measure of the angle DBAC is then defined to be the Euclidean measure of the
Euclidean angle between these two tangents, i.e. mDBAC = mb# .

Just asthe notions of points, lines, distance and angle measure are defined in Euclidean
plane geometry, these notions are dl defined in D. And, we can exploit the hyperbolic tools
for Sketchpad, which correspond to the standard Euclidean tools, to discover facts and
theorems about the Poincaré Disk and hyperbolic plane geometry in generd.

Load the “Poincar€” folder of scripts by changing the Script Tool Directory setting in
the preferencesif necessary. The following scripts are available:

Angle Bisector — Constructs an h-angle bisector.

Circle By Center +Point - Constructs an h-circle by center and point.

Circle By Center +Radius— Constructs an h-circle by center and radius.

M easur e Angle — Gives the hyperbolic angle measure of an h-angle.
Equilateral Triangle - Given two vertices, constructs a hyperbolic equilatera
triangle.

M easur e Distance - Gives the measure of the hyperbolic distance between two
h-points.

Line - Constructs an h-line through two h-points.

Perpendicular Bisector - Constructs the perpendicular bisector between two h-
points.
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Perpendicular thru Pt on Line - Constructs the perpendicular through the
first point on the h-line.

Perpendicular thru Pt off Line - Constructs the perpendicular of an h-line
through athird point.

Rhombus - Given two vertices, constructs a hyperbolic rhombus.

Segment - Given two points, constructs the h-segment joining them.

Defect — Measures the “defect” of an h-triangle.

In the “Poincar€” folder, open the file named “ poincare.gsp” or “Poindis.gsp”. We
will call this sketch the Poincaré Disk Starter. The disk in the Poincaré Disk Starter hasa
specially labeled center called, * P-Disk Center’, and point on the disk called, ‘ P-Disk
Radius. The scriptslisted above work by using Auto-Matching to these two labdls, so if
you change the labelsthen your scriptswon’t work! We are now ready to investigate
properties of the Poincaré Disk. Use the line script to investigate how the curvature of h-
lines changes as the line moves from one passing close to the center of the Poincaré disk to
one lying close to the bounding circle. Notice that this line tool never produces h-lines
passing through the center of the bounding circle for reasons that will be brought out in the
next section. The following scripts deal with this exceptiona case.

Distance (2 Pts On Diam) - Given two points on the diameter of the disk, calculates
the distance between the points.

Distance (Cent to Pt) - Given apoint in the interior of the disk, cal culates the distance
between the point and the center of the circle.

Perp Bis (2 ptson Diam) - Constructs the perpendicular bisector between two h-
points on adiameter of the bounding circle.

Perp Bis (Origin+Pt) - Constructs the perpendicular bisector between the origin and
any h-point.

(Thereis another very good software simulation of the Poincaré disk available on the web at
http://math.rice.edu/~joel/NonEuclid.

Y ou can download the program or run it online. The site also contains some background
material that you may find interesting.)
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3.2.2 Demonstration: Parallel Lines. Asin Euclidean geometry, two h-linesin D are said
to be parallel when they have no h-pointsin common.

In the Poincaré disk construct an h-linel and an h-point P not on |. Use the h-linescript
to investigate if an h-linethrough P pardlel to | can be drawn. Can more than one be
drawvn? How many can be drawn? End of Demonstration 3.2.2.

3.2.3 Shortest Distance. In Euclidean plane geometry the line segment joining points P
and Q isthe path of shortest distance; in other words, a line segment can be described both
in metric terms and in geometricterms. More precisely, there are two natural definitions of

aline segment PQ, one as the shortest path between P and Q, a metric property, the other as
all points between P, Q on the unique line | passing through P and Q - ageometric property.
But what do we mean by between? That is easy to answer in terms of the metric: theline

segment PQ consists of all pointsRon | such that d, (P, R) + d,. (R, Q) = d, (P, Q). Thislast
definition makes good sense also in D since there we have defined anotion of distance.

3.2.3a Demonstration: Shortest Distance.
In the Poincaré disk select two points A and B. Use the “ distance between two points
script” to investigate which points C minimize the sum
d.(C,A) +d.(C,B).
What does your answer say about an h-line segment between A and B?
End of Demonstration 3.2.3a.

3.2.4 Demonstration: Hyperbolic Versus Euclidean Distance. Since Sketchpad can
measure both Euclidean and hyperbolic distances we can investigate hyperbolic distance and
compare it with Euclidean distance.
Draw two h-line segments, one near the center of the Poincaré disk, the other near the
boundary. Adjust the segments until both have the same hyperbolic length. What do
you notice about the Euclidean lengths of these arcs?
Compute theratio

d,(A B)
d(A B)

of the hyperbolic and Euclidean lengths of the respective hyperbolic and Euclidean line
segments between points A, B in the Poincaré disk. What is the largest value you can
obtain? End of Demonstration 3.2.4.

3.2.5 Demonstration: Investigating d, further.
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Does this definition of d, depend on where the boundary circle liesin the plane?
What isthe effect on d, if we change the center of the circle?
What isthe effect on d,, of doubling the radius of the circle?

By changing the size of the disk, but keeping the points in the same proportion we can

answer these questions. Draw an h-line segment AB and measureits length.

Over on the toolbar change the select arrow to the Dilate tool. Select “P-Disk
Center”, then Transform “Mark Center.” Under the Edit menu “Select All,” then
deselect the “Distance =" (while holding down the Shift key). Now, without deselecting
these objects, drag the P-Disk Radius to vary the size of the P-Disk and of al the Euclidean
distances between objects inside proportionally. What effect does changing the size of the
P-Disk proportionally (relative to the P-Disk Center) have on the hyperbolic distance
between the two endpoints of the hyperbolic segment?

Over on the toolbar change the select arrow to the Rotate tool. Select “P-Disk
Center”, then Transform “Mark Center.” Under the Edit menu “Select All,” then
deselect the “Distance =" (while holding down the Shift key). Now, without deselecting
these objects, drag the P-Disk Radius to rotate the orientation of the P-Disk. What effect
does changing the orientation of the P-Disk uniformly have on the hyperbolic distance
between the two endpoints of the hyperbolic segment?

Over on the toolbar, change the Rotate tool back to the select arrow. Under the Edit
menu “ Select All,” then deselect the “ Distance =" (While holding down the Shift key).
Grab the P-Disk Center, and drag the Disk around the screen. What effect does changing
the location of the P-Disk have on the hyperbolic distance between the two endpoints of the
h-line segment?

End of Demonstration 3.2.5.

3.3 Exercises. ThisExercise set contains questions related to Abstract Geometries and
properties of the Poincaré Disk.

Exercise 3.3.1. Prove that in a4-Point geometry there passes exactly 3 lines through each
point.

15



Exercise 3.3.2. Thefigureto theright isan
octahedron. Use thisto exhibit amodel of a4-Point
geometry that is very different from the tetrahedron
model we used in class. Four of the faces have been
picked out. Use these as the 4 points. What must the
lines beif the octahedron isto be amodel of a 4-
Point geometry? Make sure you check that all the
axioms of a 4-Point geometry are satisfied.

Exercise 3.3.3. We have stated that our definition for the hyperbolic distance between two
points satisfies the ruler postulate, but it is not easy to construct very long h-line segments
say ones of length 10. The source of this difficulty isthe rapid growth of the exponential
function. Suppose that the radius of the bounding circleis 1 and let A be an h-point that has
Euclidean distancer from the origin (r <1, of course). The diameter of the bounding circle
passing through Aisan h-line  Show the hyperbolic distance from the center of the
bounding circleto Ais

@0
(1-r1)
Find r when the hyperbolic distance from A to the center of the bounding circleis 10.

Exercise 3.3.4. Use Exercise 3.3.3 to prove that the second statement of the ruler postulate
holds when the hyperbolic lineis a diameter of the bounding circle and if to each point we
assign the hyperbolic distance between it and the center of the bounding circle. That is, why
are we guaranteed that each real number is assigned to a unique point on the line? Hint:
Show your function for r from Exercise 3.3.3 is 1-1 and onto the interval (-1,1).

Exercise 3.3.5. Explain why the ruler postul ate disallows the use of the Euclidean distance
formulato compute the distance between two points in the Poincaré Disk.

Exer cise 3.3.6. Using Sketchpad open the Poincaré Disk Starter and find a counterexample
within the Poincaré Disk to each of the following.

(a) If alineintersects one of two paralléel lines, then it intersects the other.

(b) If two lines are parald to athird line then the two lines are paralel to each other.
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Exercise 3.3.7. Using properties of logarithms and properties of absolute value, show that,
with the definition of hyperbolic distance,

1 ER(A M)A(B, N)j (A N)I(B M)g

d.(AB) =
ed(A N)d(B,M) &d(A M)d(B, N)

i.e, theroles of M and N can be reversed and the same distance value results.

34 CLASSIFYING THEOREMS. For many years mathematicians attempted to deduce
Euclid'sfifth postulate from the first four postulates and five common notions. Progress
came in the nineteenth century when mathematicians abandoned the effort to find a
contradiction in the denid of the fifth postulate and instead worked out carefully and
completely the consequences of such adenial. It was found that a coherent theory arises if
one assumes the Hyperbolic Parallel Postulate instead of Euclid's fifth Postulate.

Hyperbolic Parallel Postulate: Through a point P not on agiven linel there exists at
least two lines paralld to .

The axioms for hyperbolic plane geometry are Euclid’s 5 common notions, the first
four postulates and the Hyperbolic Parallel Postulate. Three professional mathematicians
are credited with the discovery of Hyperbolic geometry. They were Carl Friedrich Gauss
(1777-1855), Nikolai Ivanovich Lobachevskii (1793-1856) and Johann Bolyai (1802-
1860). All three developed non-Euclidean geometry axiomatically or on a synthetic basis.
They had neither an analytic understanding nor an analytic model of non-Euclidean
geometry. Fortunately, we have amodel now; the Poincaré disk D isamodel of hyperbolic
plane geometry, meaning that the five axioms, consisting of Euclid’ sfirst four postulates
and the Hyperbolic Parallel Postulate, are true statements about D, and so any theorem that
we deduce from these axioms must hold truefor D. In particular, there are severa lines
though a given point parallel to agiven line not containing that point.

Now, an abstract geometry (in fact, any axiomatic system) is said to be categorical if
any two models of the system are equivalent. When ageometry is categorical, any
statement which is true about one model of the geometry istrue about all models of the
geometry and will be true about the abstract geometry itself. Euclidean geometry and the
geometries that result from replacing Euclid’ sfifth postulate with Alternative A or
Alternative B are both categorical geometries.

In particular, Hyperbolic plane geometry is categorical and the Poincaré disk D isa
model of hyperbolic plane geometry. So any theorem valid in D must be true of Hyperbolic
plane geometry. To prove theorems about Hyperbolic plane geometry one can either
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deduce them from the axioms (i.e, give asynthetic proof) or prove them from the model D
(i.e, give an andytic proof).

Since both the model D and Hyperbolic plane geometry satisfy Euclid’ sfirst four
postulates, any theorems for Euclidean plane geometry that do not require the fifth postulate
will also betrue for hyperbolic geometry. By comparison, any theorem in Euclidean plane
geometry whose proof used the Euclidean fifth postulate might not be valid in hyperbolic
geometry, though it is not automatically ruled out, as there may be a proof that does not use
the fifth postul ate.

We could spend awhole semester devel oping hyperbolic geometry axiomatically! Our
approach in this chapter is going to be either anaytic or visual, however, and in chapter 5 we
will begin to devel op some transformation techniques once the idea of Inversion has been
adequately studied. For the remainder of this section, therefore, various objectsin the
Poincaré disk D will be studied and compared to their Euclidean counterparts.

3.4.1 Demonstration: Circles. A circleisthe set of points equidistant from a given point
(the center).
Open the Poincaré Disk Starter, construct two points, and label them by Aand O.
Mesasure the hyperbolic distance between A and O, d, (A, O), Select the point A and
under theDisplay menu select Trace Points. Now drag A while keeping d, (A, O)
constant.
Can you describe what a hyperbolic circle in the Poincaré Disk should look like?
To confirm your results, use the circle script to investigate hyperbolic circlesin the
Poincaré Disk. What do you notice about the center? End of Demonstration 3.4.1.

3.4.2 Demonstration: Triangles. A triangleisathree-sided polygon; two hyperbolic
triangles are said to be congruent when they have congruent sides and congruent interior
angles. Investigate hyperbolic triangles in the Poincaré Disk.

Construct a hyperbalic triangle DABC and use the “Measure angle” script to measure
the hyperbolic angles of DABC (keep in mind that three points are necessary to name
the angle, the vertex should be the second point clicked).

Calculate the sum of the three angle measures. Drag the vertices of the triangle around.
What is alower bound for the sum of the hyperbolic angles of atriangle? What isan
upper bound for the sum of the hyperbolic angles of atriangle? What is an appropriate
conclusion about hyperbolic triangles? How does the sum of the angles change asthe
triangleis dragged around D?
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The proofs of SSS, SAS, ASA, and HL asvalid shortcuts for showing congruent
triangles did not require the use of Euclid’s Fifth postulate. Thusthey areall valid
shortcuts for showing triangles are congruent in hyperbolic plane geometry. Use SSSto
produce two congruent hyperbolic trianglesin D. Drag one triangle near the boundary and
one triangle near the center of D. What happens?

We also had AA, SSS, and SAS shortcuts for similarity in Euclidean plane geometry.
Isit possible to find two hyperbolic triangles that are smilar but not congruent? Y our
answer should convince you that it isimpossible to magnify or shrink atriangle without
distortion! End of Demonstration 3.4.2.

3.4.3 Demonstration: Special Triangles. An equilatera triangleisatriangle with 3 sides
of equal length. An isosceles triangle has two sides of equal length.
Y ou have a script available that constructs hyperbolic equilatera trianglesin the Poincaré
disk. Isan equilateral triangle equiangular? Are the angles always 60° asin Euclidean
plane geometry? Can you construct a hyperbolic equilateral triangle without using the
specia script?
Can you construct a hyperbolic isoscel es triangle? Are angles opposite the congruent
sides congruent? Does the ray bisecting the angle included by the congruent sides bisect
the side opposite? Isit aso perpendicular? How do your results compare to Theorem
1.4.6 and Corollary 1.4.7? End of Demonstration 3.4.3.

3.4.4 Demonstration: Polygons.
A rectangle isaquadrilateral with four right angles. Isit possible to construct a
rectanglein D?
A regular polygon has congruent sides and congruent interior angles.
To construct aregular quadrilateral in the Poincaré Disk start by constructing an h-circle
and any diameter of the circle. Label the intersection points of the diameter and the circle
asAand C. Next construct the perpendicular bisector of the diameter and label the

intersection points with the circle as B and D. Construct the line segments AB, BC,
CD, and DA.
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ABCD is a regular quadrilateral.

Then ABCD isaregular quadrilateral. Why does thiswork?

The following theorems are true for hyperbolic plane geometry as well as Euclidean

plane geometry: Any regular polygon can beinscribed in acircle. Any regular polygon

can be circumscribed about a circle. Consequently, any regular n-gon can be divided
into n congruent isoscelestriangles just as in Euclidean plane geometry.

Modify the construction to produce a regular octagon and regular 12-gon.

End of Demonstration 3.4.4.

By now you may have started to wonder how one could define area within hyperbolic
geometry. In Euclidean plane geometry there are two natural ways of doing this, one
geometric, the other analytic. In the geometric definition we begin with the area of afixed
shape, asquare, and then build up the area of more complicated figures as sums of squares
so that we could say that the area of afigureisn square inches, say. Since squares don’t
exist in hyperbolic plane geometry, however, we cannot proceed in thisway.

Now any definition of area should have the following properties:

Every polygonal region has one and only one area, (a positive real number).

Congruent triangles have equal area.

If apolygonal regionis partitioned into a pair of sub regions, the area of the region will

equal the sum of the areas of the two sub regions.

Recall, that in hyperbolic geometry we found that the sum of the measures of the angles of
any triangle isless than 180. Thus we will define the defect of atriangle as the amount by
which the angle sum of atriangle misses the value 180.

3.4.5 Definition. The defect of triangle D ABC isthe number
6(DABC) =180 - mbA- mbB- mbC

More generally, the defect can be defined for polygons.
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3.4.6 Definition. The defect of polygon RP,...P, isthe number
8 (DP,P,...P,) =180(n- 2) - mDP, - mPP, - ...- mBP,

It may perhaps be surprising, but thiswill allow us to define a perfectly legitimate area
function where the area of apolygon RP,...P,isktimesits defect. The value of k can be

specified once a unit for angle measure is agreed upon. For exampleif our unit of angular
measurement is degrees, and we wish to express angles in terms of radians then we use the

constant k =m/180". It can be shown that this area function defined below will satisfy all
of the desired propertieslisted above.

3.4.7 Definition. Thearea Area,(RR ...P) of apolygon RP,...P, isdefined by
Area, (RR...P)=kd(RR,...R)
wherek is a positive constant.

Note, that this puts an upper bound on the area of al triangles, namely 180 k. (More
generally, 180 x(n- 2) >k for n-gons.) This definition becomes even stranger when we look
at particular examples.

3.4.7a Demonstration: Areasof Triangles.
Open the Poincare disk starter in anew sketch. Construct a hyperbolic ‘triangle
D,OMN having one vertex O at the origin and the remaining two vertices M, N on the
bounding circle. Thisis not atriangle in the strict sense because points on the bounding
circleare not points in the Poincare disk. Nonetheless, it isthe limit of a hyperbolic
triangle D,OAB as A, B approach the bounding circle.

21



Disk Radius

The'triangle’ D,OMN is called a Doubly-Asymptotic triangle.

Determine the length of the hyperbolic line ssgment AB using the length script. Then
measure each of the interior angles of the triangle and computer the areaof D,OAB (use

k=1). Thiswill be more“informative” than just producing the result with the defect
script. What happens to these values as A, B approach M, N aong the hyperbolic line
through A, B? Set

Area, (D,OMN) =lim Area, (D, OAB)

Explain this value by relating it to properties of D,OMN .
Repeat this construction, replacing the center O by any point C in the Poincaré disk.
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P-Disk Center

Wheat value do you obtain for Area, (D, CAB)? Now let A, B approach M, N along the
hyperbolic line through A, B and set

Area, (D,CMN) = lim Area, (D,CAB);
again we say that D,(CMN) isadoubly-asymptotic triangle. Relate the value of
Area, (D,CMN) to propertiesof D,CMN .
Select an arbitrary point L on the bounding circle and let C approach L. We call
D,LMN atriply-asymptotic triangle. Now set

Area, (D,LMN) = lim Area,(D,CMN).

Explain your value for Area, (D,LMN) interms of the propertiesof D,LMN .
End of Demonstration 3.4.7a.

Use the results you have obtained above to complete the following statements.
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3.4.8 Theorem.

(a) The areaof ahyperbolic triangle is at most 180k even though the lengths of its sides
can be arbitrarily large.

(b) The area of atriply-asymptotic triangle is always 180Kk irrespective of the location of
its vertices on the bounding circle.

By contrast, in Euclidean geometry the area of atriangle can become unboundedly large
asthe lengths of its sides become arbitrarily large. In fact, it can be shown that Euclid’s
Fifth Postulate is equivalent to the statement: there is no upper bound for the areas of
triangles

3.4.9 Summary. The following results are true in both Euclidean and Hyperbolic
geometries:

SAS, ASA, SSS, HL congruence conditions for triangles.

| sosceles triangle theorem (Theorem 1.3.5 and Corollary 1.3.6)

Any regular polygon can beinscribed in acircle.

Thefollowing results are strictly Euclidean
Sum of the interior angles of atriangle is180°.
Rectangles exist.

The following results are strictly Hyperbolic
The sum of theinterior angles of atriangleislessthan 180°.
Parallel lines are not everywhere equidistant.
Any two similar triangles are congruent.

Further entriesto thislist are discussed in Exercise set 3.6.

As calculus showed, there is dso an anaytic way introducing the area of aset Ain the
Euclidean plane asadoubleintegra

(‘!‘) dxdy.
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An entirely analogous analytic definition can be made for the Poincaré disk. What is needed
is asubstitute for dxdy. If we use standard polar coordinates (r,0) for the Poincaré disk,
then the hyperbolic area of aset Aisdefined by

« 4rdrdoe .
Area,(A) = 7

Of course, when Ais an n-gon, it has to be shown that thisintegral definition of area
coincides with the value defined by the defect of A up to afixed constant k independent of
A. Caculating areas with thisintegral formula often requires a high degree of algebraic
ingenuity, however.

3.50RTHOGONAL CIRCLES. Orthogondl circles, i.e. circlesintersecting at right
angles, arise on many different occasions in plane geometry including the Poincaré disk
model D of hyperbolic plane geometry introduced in the previous section. In fact, their
study constitutes a very important part of Euclidean plane geometry known as Inversion
Theory. Thiswill be studied in some detail in Chapter 5, but here we shall develop enough
of the underlying ideas to be able to explain exactly how the scripts constructing h-lines and
h-segments are obtai ned.

Note first that two circlesintersect at right angles when the tangents to both circles at
thelr point of intersection are perpendicular. Another way of expressing thisis say that the
tangent to one of the circles at their point of intersection D passes through the center of the
other circle asin the figure below.

Does this suggest how orthogonal circles might be constructed?
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3.5.1 Exercise. Givenacircle C, centered at O and apoint D on thiscircle, construct a
circle C, intersecting C, orthogonally at D. How many such circles C, can be drawvn?

It should be easily seen that there are many possibilitiesfor circle C,. By requiring extra
properties of C, there will be only one possible choice of C,. In thisway we see how to
construct the unigue h-line through two points P, Q in D.

3.5.2 Demonstration. Given acircle C, centered at O, apoint Anot on C, , aswell asa

point D on C,, construct acircle C, passing through A and intersecting C, at D
orthogonally. How many such circles C, can be drawn?

C1 Q

Sketchpad provides avery illuminating solution to this problem.
Open anew sketch. Draw circle C,, labeling its center O, and construct point A not on
thecircleaswell asapoint D onthecircle.

Construct the tangent line to the circle C, at D and then the segment AD.

Construct the perpendicular bisector of AD. Theintersection of this perpendicular

bisector with the tangent line to the circle at D will be the center of acircle passing

through both A and D and intersecting the circle C, orthogonally at D. Why?
Thefigure below illustrates the construction when A isoutside circle C,
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What turns out to be of critical importanceisthe locus of circle C, passing through Aand D
and intersecting the given circle C, orthogonally at D, asD moves. Use Sketchpad to
explore the locus.

Sdlect the circle C,, and under the Display menu select trace circle. Drag D.
Alternatively you can select the circle C,, then select the point D and under the
Construct menu select locus.

The following figure was obtained by choosing different D on the circle C, and using a
script to construct the circle through A (outside C,) and D orthogonal to C,. Thefigureyou
obtain should look similar to this one, but perhaps more cluttered if you have traced the
circle.
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Y our figure should suggest that all the circles orthogonal to the given circle C, that pass
through A have a second common point on the line through O (the center of C,) and A. In
the figure above this second common point islabeled by B. [Does the figure remind you of
anything in Physics - the lines of magnetic force in which the points A and B are the poles
of the magnet. say?] Repeat the previous construction when Aisinside C, and you should
see the same result.

End of Demonstration 3.5.2.

At this moment, Theorem 2.9.2 and its converse 2.9.4 will come into play.

3.5.3 Theorem. Fix acircle C, with center O, apoint A not on the circle, and point D on the
circle, Now let B be the point of intersection of the line through O with the circle through A
and D that is orthogonal to C,. Then B satisfies

OAOB =0D".
In particular, the point B isindependent of the choice of point D. The figure below
illustrates the theorem when Ais outside C, .
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OA = 1.65 inches
OB = 0.52 inches

OA-OB = 0.86 inches?
0D? = 0.86 inches?

Proof. By construction the segment OD istangential to the orthogonal circle. Hence
OAOB =0D? by Theorem 2.9.2. QED

Theorem 3.5.3 has an important converse.

3.5.4 Theorem. LetC, beacircleof radiusr centered at O. Let Aand B be pointsonaline

through O (neither Aor Bon C,). If OAOB =r? then any circle through A and B will
intersect the circle C, orthogonally.

Proof. LetD denoteapoint of intersection of the circle C, with any circle passing through
Aand B. Then OAOB = OD?. So by Theorem 2.9.4, the line segment OD will be tangential
to the circle passing through A, B, and D. Thus the circle centered at O will be orthogonal to
the circle passing through A, B, and D. QED

Theorems 3.5.3 and 3.5.4 can be used to construct a circle orthogonal to agiven circle
C, and passing through two given points P, Q inside C,. In other words, we can show how
to construct the unique h-line through two given points P, Q in the hyperbolic plane D.

3.5.5 Demonstration.
Open anew sketch and draw the circle C,, labeling its center by O. Now select arbitrary
pointsP and Q insideC,.
Choose any pointD on C,.
Construct the circle C, passing through P and D that is orthogonal to C,. Draw the ray
starting at O and passing through P. Let B be the other point of intersection of thisray
with C,. By Theorem 3.5.3 OP.OB = OD?. Confirm this by measuring OP, OB, and

OD inyour figure.
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Congtruct the circumcircle passing through the vertices P, Q and B of DPQB. By
Theorem 3.3.4 this circumcircle will be orthogonal to the given circle.

OP-OB = 1.15 inches?
0OD? = 1.15 inches?

Cy

If Pand Q lie on adiameter of C, then the construction described above will fail. Why?
This explains why there had to be separate scripts in Sketchpad for constructing h-lines
passing through the center of the bounding circle of the Poincaré model D of hyperbolic
plane geometry.

The pointsA, B described in Theorem 3.5.3 are said to be Inver se Points. The mapping
taking Ato B is said to belnversion. The properties of inversion will be studied in detail in
Chapter 5 in connection with tilings of the Poincaré model D. Before then in Chapter 4, we
will study transformations. Emd of Demonstration 3.5.5.

3.6 Exercises. In this set of exercises, we'll look at orthogonal circles, aswell as other
results about the Poincaré Disk.

Exercise 3.6.1. To link up with what we are doing in class on orthogonal circles, recal first
that the equation of acircle C in the Euclidean plane with radiusr and center (h, K) is
(x-h)*+ (y-K?>=r?
which on expanding becomes
X -2hx+y -2ky+ 2 + K= r2
Now consider the special case when C has center at the origin (0, 0) and radius 1. Show
that the equation of the circle orthogonal to C and having center (h, k) is given by
X -2hx+y?-2ky+1=0.

Exercise 3.6.2. One very important use of the previous problem occurs when C isthe
bounding circle of the Poincaré disk. Let A= (a,,a,) and B = (b,, b,) be two pointsinside
thecircleC, i.e., two h-points. Show that there is one and only one choice of (h, k) for which
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the circle centered at (h, k) is orthogonal to C and passes through A, B. Thisgivesa
coordinate geometry proof of the basic Incidence Property of hyperbolic geometry saying
that there is one and only one h-line through any given pair of pointsin the Poincaré Disk.
Assume that A and B do not lie on adiagonal of C.

Exercise 3.6.3. Open the Poincaré Disk starter and construct a hyperbolic right triangle. (A
right triangle has one 90° angle.) Show that the Pythagorean theorem does not hold for the
Poincaré disk D. Where does the proof of Theorem 2.5.4 seem to go wrong?

Exer cise 3.6.4. Open the Poincaré Disk starter. Find atriangle in which the perpendicular
bisectors for the sides do not intersect. In Hyperbolic plane geometry, can any triangle be
circumscribed by acircle? Do you think that any triangle can be inscribed by acircle?

Exer cise 3.6.5. Find a counterexample in the Poincaré Disk model for each of the

following theorems. That is show each theorem is strictly Euclidean.

() The opposite sides of a parallelogram are congruent. (A paralelogram is a quadrilateral
where opposite sides are paralld.)

(b) The measure of an exterior angle of atriangle is equal to the sum of the measure of the
remote interior angles.

Exercise 3.6.6. Using Sketchpad open the Poincaré Disk starter. Construct a point P and
any diameter of the disk not through P. Devise a script for producing the h-line through P

perpendicular to the given diameter (also an h-line).

Exercise 3.6.7. The defect of a certain regular hexagon in hyperbolic geometry is 12. (k=1)

Find the measure of each angle of the hexagon.
If O isthe center of the hexagon, find the measure of each interior angle of each sub-
triangle making up the hexagon, such as DABO as shown in the figure.
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Are each of these sub-triangles equilateral triangles, as they would beif the geometry
were Euclidean?

Exercise 3.6.8. Given DABC as shown with 8, and 9, as defects of the sub triangles
DABD and DADC

prove 8 (DABC) =9, +9,.
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