Chapter 4

TRANSFORMATIONS

4.1 TRANSFORMATIONS, ISOMETRIES. The term transformation has several
meanings in mathematics. It may mean any change in an equation or expression to simplify
an operation such as computing a derivative or an integral. Another meaning expresses a
functional relationship because the notion of afunction is often introduced in terms of a
mapping

f-A® B

between sets A and B; for instance, the functiony = x* can be thought of as a mapping

f: x® x° of one number lineinto another. On the other hand, in linear algebra courses a
linear transformation maps vectors to vectors and subspaces to subspaces. When we use
the term transformation in geometry, however, we have all of these interpretationsin mind,
plus another one, namely the ideathat the transformation should map a geometry to a
geometry. A formal definition makesthis precise.

Recall firstthat if f: A® B isamapping such that every point in the range of f has a
unique pre-image in A, then f is said to beone to oneor injective. If therange of fis all of B,
then f is said to be onto or surjective. When the function is both one to one and onto, it is
caled abijection or is said to bebijective. The figures below illustrate these notions
pictorialy.
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4.1.1 Definition. LetG, = (P,,L,) andG, = (P,, L,) be two abstract geometries, and let f :
P, ® P, afunction that is bijective. Then we say that f is ageometric transformationif f

also mapsL, onto L,.

In other words, a 1-1 transformation f : P, ® P, isgeometric if takes the set P, of all
pointsin G, onto the set P, of all pointsin G,, and takesthe set L, of al linesin G, onto the
set L, of al linesin G,. It isthislast property that distinguishes geometric transformations
from more generd transformations. A more sophisticated way of formulating definition
4.1.1issmplytosay that f: G, ® G, ishijective. Notice that the definition makes good
sense for models of both Euclidean and hyperbolic geometries. For instance, we shall see
later that there is geometric bijection from the model H? of hyperbolic geometry in terms of
lines and planes in three space and the Poincaré disk model D in terms of points and arcs of
circles.

Some simple examples from Euclidean plane geometry make the formalism much
clearer. Let G, and G, both be models of Euclidean plane geometry so that P, and P, can be
identified with &l the pointsin the plane. For f : P, ® P, to be geometric it must map the

plane onto itself, and do so in a1-1 way, aswell asmap any straight linein the planeto a
straight line. It will be important to see how such transformations can be described both
algebraically and geometrically. It iseasy to come up with functions mapping the plane
onto itself, but it is much more restrictive for the function to map a straight line to a straight

line. For example, (x,y)® (x,y’) maps the plane onto itself, but it maps the straight line

y =X tothecubic y= x°.

4.1.2 Examples. (a) Let

f:(xy)® (v,%)
be the function mapping any point P =(X, y) inthe planeto itsreflection P¢= (y, X) in the
line y = x. Since successive reflectionsP ® P¢® P maps P back to itself, this mapping is
1-1 and maps the plane onto itself. But doesit map a straight line to astraight line? Well the
equation of anon-vertica straight lineis y = mx + b. The mapping f interchanges x and y,
so f mapsthe straight line y = mx + b tothe straight line y = (x - b)/ m. Algebraically, f
maps a non-vertical straight lineto itsinverse Geometrically, f maps the graph of the
straight line y = mx + b to the graph of its straight lineinverse y = (x - b)/ m asthefigure
below shows



y=(x-b)/m

One can show also that f maps any vertical straight line to a horizontal straight line, and
conversely. Hence f maps the family of al linesin Euclidean plane geometry onto itself -
hencef is ageometric transformation of Euclidean plane geometry.

(b) More generally than in (a), given any fixed line m, let f be the mapping defined by
reflectionin the line m. In other words, f maps any point in the plane to its ‘ mirror image
with respect to the mirror linem. For instance, when mis the x-axis, then f takes the

pointP =(X,Y) in the plane to itsmirror image P¢= (X, - y) with respect to the x-axis. In
generd it is not so easy to express an arbitrary reflection in agebraic terms (see Exercise
Set 4.3), but it is easy to do so in geometric terms. Given apoint P, let m¢be the straight line
through P that is perpendicular to m. Then P¢ isthe point on m¢ on the opposite side of m
to P that is equidistant from m. Again afigure makes this much clearer
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What isimportant to note here isthat all these geometric notions make sensein hyperbolic
geometry, so it makes good sense to define reflections in a hyperbolic line. Thiswill be



donein Chapter 5 where we will see that this hyperbolic reflection can beinterpreted in
terms of theidea of inversion as hinted at in the last section of Chapter 3.

(c) Let f be arotation through 90° counter-clockwise about the some fixed point in the
plane. In algebraic terms, when the fixed point isthe origin, f is given agebraically by
f:(X,¥Y)® (-y,x).Sofis1-1and maps the plane onto itself. What does f do to the
straight line y = mx + b? (see Exer cise Set 4.3)

(d) Letf be atrandation of the plane in some direction. Then fisgiven algebraicaly by
f:(x,y)® (x+a,y+b) for somerea numbersaandb. Again,itisclear that fis1-1 and
maps the plane onto itself.

Sketchpad is particularly useful for working with transformations because the basic
transformations are al built into the program. We can use Sketchpad to look at the
properties of reflections, rotations, and trandations.

4.1.2a Demonstr ation.

Open anew sketch on Sketchpad and draw aline. Thiswill be the mirror line.

Construct a polygon in the general shape of an “ [F~. Coloritsinterior.

To reflect the polygon across the mirror line, select the line and use the Transform
menu to select “Mark Mirror”. Under the Edit menu, select “Select All”. Then under
the Transform menu, select “ Reflect”.

Try dragging some of the vertices of the polygon to investigate the properties of
reflection in the mirror line. What happens when the mirror line is dragged?

Y our figure should ook like the following:



The orientation of the reflected“[F ” is said to be oppositeto that of the origina «[F

because the clockwise order of the vertices of the image isthe reverse of the clockwise order
of the vertices of the pre-image. In other words, a reflection rever ses orientation.

Measure the area of each image polygon and its pre-image. Measure corresponding side
lengths. M easure corresponding angles. Check what happens to your measurements as
the vertices of the pre-image are dragged. What happens to the measurements when the
mirror lineis dragged? Now, complete Conjecture4.1.3.

End of Demonstration 4.1.2a.

4.1.3 Conjecture. Reflections distance, angle measure and area.

4.1.4 Definition. A geometric transformation f of the Euclidean planeis said to be an
isometry when it preserves the distance between any pair of pointsin the plane. In other

words, fisan isometry of the Euclidean plane, when the equality d(f (a), f (b)) = d(a,b)
holds for every pair of points a, b in the plane.

By using triangle congruences one can prove the following.

4.1.5 Lemma. Any isometry preserves angle measure.



The earlier Sketchpad activity supports the conjecture that every reflection of the
Euclidean planeisan isometry. A proof of this can be given using congruence properties.

4.1.6 Theorem. Every reflection of the Euclidean planeis an isometry.

Proof. In the figure below P and Q are arbitrary points, while P¢ and Qdare their respective
images with respect to reflection in the mirror linem. D and E are the intersection points

between the mirror line and the segmentsPP¢andQQ¢. For convenience we have assumed
that P, Q lie on the same side of the mirror line. Use the definition of areflection to show

first that DEDQ is congruent to DEDQC, and hencethat DQ is congruent to DQ¢. Now use

thisto show that DPDQ is congruent to DPMQCQ. HencePQ is congruent to Pd.
QED

How would this proof have to be modified if P, Q lie on opposite sides of the mirror line?
Notice by combining Lemma4.1.5 with Theorem 4.1.6 we now have a proof of Conjecture
4.1.3.

Two other very familiar transformations of the Euclidean plane are rotations through a
given angle about a given fixed point, and trandation in agiven direction by afixed amount.



The most precise definition of these are terms of compositions of reflections (aswe'll seein
the next section), but direct geometric definitions can be given.

A
o

) P’
A “p

A ¢)

P
Rotation )
Translation

Formaly, arotation p,, about the point Athrough adirected angle 6 isthe

transformation that fixes A and otherwise sends a point P to the point P¢such that AP is
congruent to APdand 0 isthe directed angle measure of DPAPC. A trandation T, isthe

transformation that sends every point P the same distance direction, as determined by a
givenvector v. Again, Sketchpad makestheideaclear.

4.1.6a Demonstr ation.

Open anew sketch and draw an o[F

First we'll look at rotations. Construct apoint and label it A. Thiswill be the ‘ center’
of therotation, i.e., the fixed point. Select the point A and then use the Transform menu
to select “Mark Center A".

Under the Edit menu, select “ Select All”. Then under the Transform menu select
“Rotate”. The rotate screen will pop up with the angle of rotation 6 selected. You can
change the degrees in a positive or negative direction.

Investigate if rotation preserves distance, angle measure and area. Does rotation preserve
or reverse orientation?

Now for translations. Open anew sketch and draw an “[F~. construct aline segment
in acorner of your sketch and label the endpoints A and B. First select the endpointsin
that order and the use the Transform menu to “Mark Vector A->B”.



Using the Marquee (Arrow Tool) select the «[F'»_ Under the Transform menu sdlect
“Trandate’. The trandate screen will pop up with “By Marked Vector” selected.
Click on “OK”.
Investigate if trandation preserves distance, angle measure and area. Does rotation
preserve or reverse orientation?  Now, complete Conjecture 4.1.7.

End of Demonstration 4.1.6a.

4.1.7 Conjecture. Therotation p,, is and also

orientation. Thetrandation T, ; is and aso

orientation.

4.2 COMPOSITIONS. The usua composition of functions plays avery important rolein
the theory of transformations. Recall the general idea of composition of functions. Given
functionsf: A® Bandg: B® C, mappingaset Aintoaset BandBintoaset C
respectively, then the composition

(9o f)(@)=9(f(a)), @l A
mapsAinto C. Pictorialy, composition can be represented by the figure below
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Noticethat if f: A® Bandg: B® C arebijective, then the composition will also be
bijective.

4.2.1 Exercise. Show that if f: G, ® G, and g: G, ® G, are hijective, then the composition
go f ishijective from G, onto G,. In other words, the composition of geometric

transformationsis again geometric.



The concept of geometric transformation is very general. What we do isimpose
restrictions on atransformation f: G; ® G, by imposing extra structure on G, and G, and
then requiring that f preserve this extra structure. For instance, when a distance function is
defined on G, and G, we can look only at geometric transformationsf: G, ® G, that preserve
the distance between points - what we called isometries in the case of Euclidean geometry.

If anotion of angle measure is defined on then we could look only at geometric
transformations that preserve the angle between lines; such transformations are called
conformal transformations. A complex-valued functionf: W® W whichis1-1 and
invertible on aset Win the complex planeis conformal whenever fisanalytic. Thisisone
reason why analytic function theory is closely connected with geometry. (There are many
interesting ideas for semester projects hereif one knows something about complex
numbers and analytic function theory.)

4.2.2 Theorem. Let f and g be isometric transformations of the Euclidean plane. Then the
composition go f of fand g also isan isometric transformation of the Euclidean plane.

Proof. Let P and Q be arbitrary pointsin the plane. Sincef isan isometry,
dist(P,Q) =dist(f(P), f (Q)).
But g also isan isometry, so
dist(f(P), f(Q) =dist(g(f(P),9(f(Q))).
Combining these two results we see that
dist(P,Q) =dist((g- f)(P).(g° f)(Q)).

Hence the composition go f preserves lengths and so is an isometry. QED

This theorem shows why there are close connections between geometry and group
theory. For if f: G ® G isageometric transformation, then f will have aninverse

f1:G® G, and f * will beageometric transformation; in addition, if f is an isometry, then

f* will be anisometry. Thus the set of all geometric transformationsf: G ® G isagroup
under composition, while the set of al isometriesisasubgroup of this group. Now let's
look more closely at the set of all isometries of the Euclidean plane - in more elaborate
language, we are going to study the Isometry Group of the Euclidean plane. In the previous
section we saw that any reflection is an isometry. Theorem 4.2.2 ensures that the
composition of two reflections will be an isometry, and hence the composition of three, four
or more reflections will be isometries aswell. But how can we describe the composition of



reflectionsin geometric terms? Let’ sfirst use Sketchpad to see what happens for the
composition of two reflections.

4.2.2a Demonstration. The Composition of Two Reflections.
Open anew sketch and draw two mirror linesl and|’. Draw an “ [F" somewherein the
plane.
Now reflect this“[F " first in the mirror linel and then in the mirror line I”, producing a
new image of «[F
Describe carefully the position of the final image “[F' in relation to the first “[F .
What happensif thelines| and I’ are paralel. What if they are not paralel?

Y ou should now be able to complete Conjecture 4.2.3.
End of Demonstration 4.2.2a.

4.2.3 Conjecture. The composition of reflectionsin two mirror linesisa
when the mirror lines are parallel. The composition of reflections
intwo mirror linesisa when the mirror lines intersect.

To investigate this more carefully, let’s go once more to Sketchpad.

4.2.3a Demonstration.

Open a new sketch and draw intersecting lines by first choosing three points A, B, and C
then drawing two line segments AB and AC. The reason for constructing the mirror lines
in thisway isthat dragging on B or C changes the angle between the mirror lines by
rotating one of them about the vertex A.

Now draw an “[F” on one side of amirror line and then reflect it successively in the
two mirror lines, producing a new image “[F which should appear to be arotation of
the first “IF . Measurefirst the angle between the mirror lines and then measure the

angle by line segments joining the vertex A to corresponding points on the first “ [F
and itsimage. Compare the two values. This suggeststhat Theorem 4.2.4 istrue.

End of Demonstration 4.2.3a.
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4.2.4 Theorem. Successive reflection in two intersecting mirror lines produces arotation
about the point of intersection through twice the angle between the mirror lines.

Proof. Consider the following figure, where P isfirst reflected in the mirror line AB with
image P'. Then P' isreflected in the mirror line AC withimage P". There are two pairs of
congruent triangles. By construction PD = DP", so DPAD is congruent to DP®D by the
SAS criterion. Thus DPAD = DPCAD . By asimilar argumentD PCAE = DP®AE.
Combining these two equalities we see that DPAP@=2DDAE. QED

P

Now lets go back to Sketchpad and look at the case of paralel mirror lines.

Open a new sketch and draw two paralel lines. On one side of these lines draw an

“[F~ and then reflect this successively in the two mirror lines. Drag one of the mirror
lines so that it remains parallel to the other mirror line - you can do this by grabbing the

line and then dragging. Theimage “ [ should then appear to be atrandate of the first
one.

M easure the distance between the paralel mirror lines and then measure the distance

between corresponding points on the first “[F and the image «[F Compare the two
va ues.
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4.2.5 Theorem. Successive reflection in parallel mirror lines produces atrandationin a
direction perpendicular to the mirrors through a distance equal to twice the distance between
the mirrors.

Proof. See Exercise Set 4.3.

Next it makes senseto look at the composition of three reflections and see if we can
describe the result in terms of rotations and trandations aswell. First we need to introduce
one more Euclidean motion of the plane.

4.2.6 Definition. A glide reflection is the composition of areflection with atrandation
parald to theline of reflection.

We should note that sketchpad does not have the glide reflection transformation built
into the program. But we could easily build our own using scripts or custom
transformations. We'll see how to use custom transformations in the next section.

A transformation in the plane has dir ect orientation if it preserves the orientation of
any triangle. If the transformation does not preserve the orientation but reversesit then it has
opposite orientation. Thusif amotion isthe product of an even number of reflections
then it will have direct orientation. If amotion isthe product of an odd number of
reflections then it will have opposite orientation. Rotations and trand ations are exampl es of
orientation while reflections and glide reflections show
orientation. This observation will help us when trying to describe the results of composing
three reflections.

12



There are different cases that need to be considered when looking the possible outcomes
of reflecting in three mirror lines.
4.2.6a Demonstration.
Three Parallel Lines: What do you get when you reflect something in three paralléel
lines? Draw three paralld lines and a ssmple polygona figure. Reflect the figure
successively about the 3 lines. (Hide intermediate figures to avoid confusion)
What sort of transformation is this? What do the connected midpoints create?
Draw at least 3 segments joining corresponding points on the pre-image to the find
image. For each adjoining segment construct a midpoint and connect them together.
Ignoring the three original lines what does this line suggest? How does your answer
depend on the order of the lines? Investigate what happens when you change the order
of reflection. (Drag the lines, say from #1 to #2)

Two Parallel Linesand One Non Parallel: What is this a composition of ?

Draw two parald lines and one that crosses them both. Now draw asimple figure on
the outside of the pardlldl line and below the transverse line. Reflect it about the parallel
line, then again about the other parald line. What kind of motion isthis? Now reflect it
in the transversal. What isthis motion called and what is the result of the two combined?
Doesit make any difference where the figure ends if you reflect it in another sequence,
say reflecting it in the transversal first? Doesit matter if the transversal is perpendicular
to the pardld lines?

No Parallel Lines: What sort of transformation does this case result in?

Draw three linesthat only intersect each other in one place. They should look like a
triangle with its sides extended. Pick aplace and draw yourself asmall figure. Begin
reflecting over the lines. What is the end result?

Three Concurrent Lines: What isthe line of reflection for this case? To construct
concurrent lines make sure the lines intersect at one point. Draw such lines. Draw a
small figure between two of thelines. (It will be contained in aV shaped segment)
Begin your reflections here. What sort of transformation isthis? If you reflect a point
all the way around the six lines what do you get? Start with a point where you had
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drawn your figure. Reflect it around each of the lines until you get back to the start. Is
the last point is the same place asthe first?

What happensiif two of the mirror lines are identical? What happensif al three are
identical?
Y ou should be able to complete the following:
Product of Two Reflections If the 2 lines of the reflection are parallée
then themotionisa

Product of Two Reflections If the 2 lines of the reflection are not parallel
then themotionisa

Product of Three Reflections If dl 3 of the lines of the reflection are
parald then the motionisa

Product of Three Reflections If 2 of the lines of the reflection are parallel th
themotionisa

Product of Three Reflections If the 3 lines of the reflection are concurrent
then themotionisa

Product of Three Reflections If the 3 lines of reflection intersect each
other only once then the motionisa

End of Demonstration 4.2.6a.
With these notes in mind we can realize two of the most important theoremsin the
theory of isometric transformations of the Euclidean plane.

4.2.7 Theorem. Any isometry of the Euclidean plane can be written as a composition of no
more than 3 reflections.

As a consequence of our exploration on composition of reflections we get the
following as well.
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4.2.8 Theorem. Any isometry of the Euclidean plane can be written as one of the following
transformations: reflection, rotation, trandation or glide reflection.

Crucial to the proof of Theorem 4.2.7 will be the following. To show if we are given an
isometry and three points A, B, and C with image points D, E, and F we can take the
composition of (at most) three reflectionsand also map A, B,and Cto D, E, and F
respectively. If the orientation of the pointsis preserved it will take two reflections, and
otherwiseit will take three reflections.

Open the “ composition3ref” sketch. Notice DABC can be mapped to DDEF by a
glide reflection. The midpoints of the segmentsjoining pre-image points to their
corresponding image points define the line of reflection. Then thefinal imageisa
trandation of the reflected image. We will show we can also map DABC to itsimage
by the composition of three reflections.

Draw aline segment between A and D and find the midpoint. Consgtruct the linel
perpendicular to the line segment and through the midpoint. Reflect DABC inl and A
will be mapped onto D. So there is one point in the correct position and one reflection.

If B and C also land on E and F then you would be done. If thisis not this case, then
we areto map B¢to E by reflecting through the perpendicular bisector of BEE where
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B¢ istheimage of B under the first reflection. This maps B¢ to E and keeps D fixed.
Why does D stay fixed?

Thisleaves you with only C" (from the original C) to be mapped. If it falls on F after
the second reflection then you would be done, but if it does not, map C" to map to F by

reflecting about theline DE . Why is DE  the perpendicular bisector of FC@ ?

Now you are done and it has taken 3 reflections to get from the pre-image to the final
image.

Before proving Theorem 4.2.7 we need to establish another property of isometries.

4.2.9 Lemma. An isometry maps any three non-collinear points into non-collinear points.

Proof. Let A, B, and C be non-collinear points. Then by the triangle inequality the non-
collinearity means that

16



dist(A B) +dist(B,C) > dist(A,C).
Now let A B¢and C( betheimagesof A, B, and C. Since the isometry preserves distances,
dist(A¢BQ + dist(BE¢CQ > dist( AGCH.

But thisensuresthat A¢ B¢and C¢ cannot be collinear, proving thelemma.  QED

Proof of Theorem 4.2.7. Given an isometry F, choose a set of non-collinear points A, B,
and C. Let A¢=F(A),B¢=F(B), and C¢=F(C) betheir images. Supposethat F has
preserved orientation of DABC. Then the Sketchpad activity on * Composition of reflections
shows that there exist reflections § and S, so that their composition § oS has the
properties

(8 S)(A)=AL, (§-S)(B)=B¢ (§ - S)(C)=Cu.
Wewill prove that
(§ 2 S)(P) =F(P).
holds for every point P. So set
(S > S)(P) =P¢, F(P)= Pg.
We haveto show that P¢= P&l Because § S and F are isometries
dist(AGPQ = dist( AG P#), dist(B¢PQ = dist(B¢P®, dist(CE¢PG = dist(Ct P .

Thus Ad, B¢, and C¢will all lie on the perpendicular bisector of the segment PP if

P¢t Pd. But this can happen only if Ad, B¢, and Cdare collinear. But A, B, and C are not
collinear, so A¢, B¢, and C( are not collinear. Hence P¢= P& showingthat S-S =F.If F
does not preserve the orientation of DABC then the same proof will show that F can be
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written as the composition of either one reflection or three reflections. This completes the
proof. QED

4.3 Exercises. The problemsin this assignment are a combination of algebraic and
geometric ones.

Exercise 4.3.1. Show that the function f :(x,y)® (- y,X) mapsthe straight line
y=mx + b tothestraight line y = - (x+ b)/ m. Explain the relationship between the dopes
of these two linesin terms of the transformation in 4.1.2 ().

Exercise 4.3.2. Show that reflection in theline y = mx isgiven by

e 2m 4 Eﬂ‘nz-l('j a®?2m g Emf-lob
fi(xy ® € -5 X, ~ X+ S <.
%y éem2+1ij ént +19 'ent +19 em2+1ﬂy;a

Hint: Let thereflection of the point P = (x,y) be P' = (X, y). You need to find two equations
and then solvefor X, y. Let Q be the midpoint of PP'; so what are its coordinates? The point
Q adso lieson themirror liney = mx; so what does this say about the coordinates of Q'?
Usethisto get the first equation for X, y. Theline PP is perpendicular to the mirror line =
mx. How can we use thisto get a second equation for X, y? Now solve the two equations
you have obtained.

Exercise 4.3.3. Prove synthetically that every rotation p,, isanisometry.

Exercise 4.3.4. Provethat successivereflectionsin parallel mirror lines produce a
trandation in adirection perpendicular to the mirrors through a distance equal to twice the
distance between the mirrors.

Exer cise 4.3.5. Suppose you wish to join the two towns A(1,5) and B(8,2) viaapipeline. A
pumping station isto be placed along a straight river bank (the x-axis). Determine the
location of a pumping station, P(x,0), that minimizes the amount of pipe used? Solvethis
by transformations.
by calculus.
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A(1,5)

B(8,2)

P(x,0)

Exercise 4.3.6 Buried Treasure. Among his great-grandfather’ s papers, José found a
parchment describing the location of a hidden treasure. The treasure was buried by a band
of pirates on a deserted idand which contained an oak tree, apine tree, and agalows where
the pirates hanged traitors. The map looked like the accompanying figure and gave the
following directions.

“Count the steps from the gallows to the oak tree. At the oak, turn 90° to the right. Take
the same number of steps and then put a spike in the ground. Next, return to the gallows
and walk to the pine tree, counting the number of steps. At the pinetree, turn 90° to the | eft,
take the same number of steps, and then put another spike in the ground. The treasureis
buried halfway between the spikes.”

José found the idland and the trees but could not find the gallows or the spikes, which
had long since rotted. José dug al over theidland, but because the idand was large, he gave
up. Devise aplan to help José find the treasure.
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44 TILINGSREVISITED. Toillustrate further the idea of reflections, rotations,
trandations, and glide reflections we want to begin the geometric analysis of ‘wallpaper’
designs. A wallpaper design isatiling of the plane that admits trandational symmetry in
two directions. That isthe design can be “moved” in two different directions and coincide
with itself. The checkerboard below would produce awallpaper design if continued
indefinitely.
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First we notice that certain rotations are admissible. For the checkerboard we can rotate
by 90° (quarter-turn) about the center of any green or white square and repeat the same
figure. Also we can rotate by 180° (half-turn) about the vertex of any square and repeat the
samefigure. There are wallpaper designs that admit 60° (sixth-turn) rotations and
120° (third-turn) rotations. What is more remarkable is that these are the only rotations
allowed in any wallpaper design! A simple argument shows why. (See Crowe) To get you
started on the fifth-turn case, try the following. Choose one center of rotation P and then
choose another center of rotation that is closest to Q. Next argue why this cannot happen.
The n-th turn caseis even easier.
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This restriction on rotations provides a convenient way to analyze wallpaper patterns.
In fact, it can be shown that there are only 17 different types of wallpaper designs!

Four which have no rotations at all;
Five whose smallest rotation is 180°;
Three whose smallest rotation is 120°;
Three whose smallest rotation is 90°;
Two whose smallest rotation is 60°;

Thereisasmple flowchart one can use to classify any wallpaper design. The symbols

for the patterns have special meaning: m means mirror, g means glide, and anumber like 2
or 4 means half-turn or quarter-turn.

22



