Chapter 5
INVERSION

The notion of inversion has occurred severa times aready, especially in connection with
Hyperbolic Geometry. Inversion isatransformation different from those of Euclidean
Geometry that also has some useful applications. Also, we can delve further into hyperbolic
geometry once we have developed some of the theory of inversion. Thiswill lead usto the
description of isometries of the Poincaré Disk and to constructions via Sketchpad of tilings of
the Poincaré disk just like the famous ‘ Devils and Angels picture of Escher.

5.1 DYNAMIC INVESTIGATION. One very ingtructive way to investigate the basic
properties of inversion isto construct inversion viaa custom tool in Sketchpad. One way of
doing this was described following Theorems 3.5.3 and 3.5.4 in Chapter 3, but in this section
we' |l describe an alternative construction based more closely on the definition of inversion.
Recall the definition of inversion given in section 5 of chapter 3.

5.1.1 Definition. Fix apoint O and acircle C centered at O of radiusr . For apoint P,

Pt O,theinverseof P istheunique point P¢ ontheray starting from O and passing through
P suchthat OP>OP¢=r?.

The point O iscalled the center of inversion and circle C iscalled the circle of inversion,
whiler iscalled theradius of inversion.

OP = 0.51 inches
OP' = 1.08 inches
r = 0.74 inches
. . 2
OP*OP' = 0.55 inches

r2 =0.55 inches2




To create atool that constructs the inverse of apoint P given the circle of inversion and its
center, we can proceed as follows using the dilation transformation.

Open anew sketch and draw acircle by center and point. Label the center by O and label
the point onthe circle by R. Construct a point P not on the circle. Construct the ray from
the center of the circle, passing through P. Construct the point of intersection between the
circleand theray, labdl it D.

Mark the center of the circle - thiswill be the center of dilation. Then select the center of the
circle, the point P, and then the point of intersection of the ray and the circle.Go to “Mark
Ratio” under the Transform menu. This defines the ratio of the dilation.

Now select the point of intersection of the ray and the circle, and dilate by the marked ratio.
The dilated point isthe inverse point to P. Label the dilated point Pq.

Sdect O, R, P,and P'.

Under the Custom Tools Menu, choose “ Create New Tool” and check “ Show Script
View” . You may wish to use Auto-Matching for O and R as we are about to use our
inversion script to explore many examples. Under the Givens List for your script, double
click on O and R and check the box “ Automatically Match Sketch Object”. To make use
of the Auto-Matching you need to start with acircle that has center labeled by O and a point
onthecirclelabeled by R.

Save your script.

Use your tool to investigate the following.

5.1.2 Exercise. Whereistheinverse of P if
P isoutside the circle of inversion?
Pisingddethecircle of inversion?
Pisonthecircle of inversion?
P isthe center of the circle of inversion?
Using our tool we can investigate how inversion transforms various figures in the plane by

using the construct “Locus’ property in the Construct menu. Or by using the “trace”
feature. For instance, let’sinvestigate what inversion doesto a straight line.

Congtruct acircle of inversion. Draw a straight line and construct afree point on theline.
Labd thisfree point by P.
Use your tool to construct the inverse point P¢ to P.



Select the points Pdand P. Then select “Locus’ in the Construct menu. (Alternatively, one
could trace the point Pdwhile dragging the point P.)

5.1.3 Exercise. What istheimage of astraight line under inversion? By considering the
various possibilities for the line describe the locus of the inversion points. Be as detailed asyou
can.

A ling, which

A line, which . . . .
istangent to the circle of inversion

passes through the circle of inversion

Image:
Image: X
P
J
A line, which passes A line, which doesn’t
through the center of the circle of inversion intersect the circle of inversion
Image: Image:




5.1.4 Exercise. What isthe image of acircle under inversion? By considering the various
possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

P P.
A circle, which A circle, which intersectsthe
Istangent to the circle of inversion circle of inversion in two points.
Image: Image:
Q
. (@]

A circle, which passes through

the center of the circle of inversion A circle passing through the center of the

circle of inversion, aso internally tangent

Image:

Image:




A circlewhich is orthogonal to the circle of
inversion.
Image:

Y ou should have noticed that some circles are transformed into another circle under the
inversion transformation. Did you notice what happens to the center of the circle under
inversion in these cases? Try it now.

End of Exercise5.1.4.

Y ou can easily construct the inverse image of polygona figures by doing the following.
Construct your figure and itsinterior. Next hide the boundary lines and points of your figure so
that only theinterior isvisible. Next select the interior and choose “Point on Object” from the
Construct Menu. Now construct the inverse of that point and then apply the locus
construction. Hereisan example.



5.1.5 Exercise. What is the image of other figures under inversion? By considering the various
possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

A triangle, externa to the

circle of inversion
A triangle, with one vertex asthe

center of the circle of inversion
Image: Image:

A triangle internd to the
circle of inversion

Image:




5.2PROPERTIES OF INVERSION. Circular inversion is not atransformation of the
Euclidean plane since the center of inversion does not get mapped to a point in the plane.
However if we include the point at infinity, we would have a transformation of the Euclidean
Plane and this point at infinity. Also worth noting isthat if we apply inversion twice we obtain
the identity transformation. With these observations in mind we are now ready to work through
some of the basic properties of inversion. Let C be the circle of inversion with center O and
radiusr. Also, when we say “lin€”, we mean the line including the point at infinity. The first
theoremis easily verified by observation.

5.2.1 Theorem. Points inside C map to points outside of C, points outside map to pointsinside,
and each point on C mapsto itself. The center O of inversion mapsto {¥}

5.2.2 Theorem. Theinverse of aline through O isthelineitself.
Again, this should be immediate from the definition of inversion, however note that the line
is not pointwise invariant with the exception of the points on the circle of inversion. Perhaps

more surprising is the next theorem.

5.2.3 Theorem. The inverseimage of aline not passing through O isacircle passing through
0.

Proof. Let P bethefoot of the perpendicular from O to theline. Let Q be any other point on
theline. Then P¢ and Q¢ are the respective inverse points. By the definition of inverse points,
OP>OP¢=0Qx0Q¢. We can usethisto show that DOPQ issmilar to DOQIP4. Thusthe
image of any Q on thelineisthe vertex of aright angle inscribed in a circle with diameter OPC.



The proof of the converse to the previous theorem just involves reversing the steps. The
converse states, the inverse image of acircle passing through O isaline not passing through O.
Notice that inversion is different from the previous transformations that we have studied in that
lines do not necessarily get mapped to lines. We have seen that there is a connection between
linesand circles.

5.2.4 Theorem. The inverseimage of acircle not passing through O isacircle not passing
through O.

Proof. Construct any line through the center of inversion which intersects the circle in two
pointsP and Q. Let P¢ and Qtbetheinverse pointsto P and Q. We know that
OP>OP¢=0Qx0Q¢=r>. Also by Theorem 2.9.2 (Power of aPoint), OP>0Q = OA”> = k.
OP>OP¢_ OQx0Q¢ _ r or OP¢_ OQe_ r?
OP>x0Q OPx0Q k 0Q OP k
dilation.

Thus . In other words, everything reducesto a

5.2.5 Theorem. Inversion preserves the angle measure between any two curvesin the plane.
That is, inversion is conformal.

Proof. It sufficesto look at the case of an angle between aline through the center of inversion
and acurve. Inthefigurebelow, P and Q aretwo points on the given curve and P¢ andQare

the corresponding points on the inverse curve. We need to show that mBDOPB = mBDEP® .
The sketchpad activity below will lead usto the desired resuilt.



> A

m/OPB = 69.67°
m/EP'D = 69.67°

Open anew sketch and congtruct the circle of inversion with center O and radiusr.
Construct an arc by 3 pointsinside the circle and label two of the pointsas P and Q. Next
congtruct the inverse of the arc by using the locus construction and label the points P¢ and
Q4. Finally construct the line OP (it will beits own inverse).

Next construct tangents to each curve through P and P¢ respectively.

Noticethat P, Q, P¢, and Q¢ al lieon acircle. Why? Thus BDQPP¢ and BP®RQ®) are
supplementary (Inscribed Angle Theorem).

Thus mBOPQ = nbP®®. Check this by measuring the angles.

Next drag Q towards the point P. What are the limiting position of the anglesDOPQ and
DPEQ®O?

What result does this suggest?

5.2.6 Theorem. Under inversion, theimage of acircle orthogonal to C isthe samecircle
(setwise, not pointwise).

Proof. SeeExercise5.3.1.

&@(P.M) dQN)o
ed(P,N) d(Q,M)2

5.2.7 Theorem. Inversion preserves the generalized cross ratio of any

four distinct points P,Q,M, and N in the plane.



Proof. SeeExercise5.3.3.

Recall our script for constructing the inverse of apoint relied on the dilation transformation. A
compass and straightedge construction is suggested by the next resullt.

5.2.8 Theorem. The inverse of apoint outside the circle of inversion lies on the line segment
joining the points of intersection of the tangents from the point to the circle of inversion.

- . OA OP _
Proof. By similar triangles OAP and OP@A, $¢: oA Use thisto conclude that P and P’

areinverse points.

5.3 Exercises. Theseexercises are al related to the properties of inversion.
Exercise5.3.1. Prove Theorem5.2.6. That isif Cisthecircleof inverson and Ctis

orthogonal toit, draw any line through O which intersects Cdin A and B and show that A and B
must be inverse to each other.
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Exercise5.3.2. Let C bethecircle of inversion with center O. Show that if P¢ and Qdare the
inverseimages of P and Q then DOPQ ~ DOQ®P.

Exercise 5.3.3. Do thefollowing to prove Theorem 5.2.7. Let P, Q, N, and M be any four

distinct pointsin the plane. Use Exercise 5.3.2 to show that PM = oP and PN = OP.
PM¢ OMC¢ PNNC ONd¢

PM _ PM¢ ON¢
PN PN¢ OM¢
PM_QN _ POM¢ QNG
PN QM P®N¢ QM ¢

Show that these imply

Complete the proof that

Exercise 5.3.4. Use Theorem 5.2.8 and Sketchpad to give compass and straightedge
congtructions for the inverse point of P when P isinside the circle of inversion and when P is
outside the circle of inversion.

Exercise 5.3.5. Let C bethecircle having the line segment AB asadiameter, and let P and P’
be inverse points with respect to C. Now let E be apoint of intersection of C with thecircle
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having the line segment PP¢ as diameter. See the figure below. Provethat BOED =90°.
(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

Exercise 5.3.6. Again, let C bethe circle having the line ssgment AB asadiameter, and let P
and P¢ be inverse points with respect to C. Now let Cdbe the circle having the line segment

PP¢ as diameter. See the figure above. Prove that A and B are inverse points with respect to CC.
(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

5.4 APPLICATIONS OF INVERSION There are many interesting applications of inversion.
In particular thereis a surprising connection to the Circle of Apollonius. There are also
interesting connections to the mechanical linkages, which are devicesthat convert circular
motion to linear motion. Finaly, as suggested by the properties of inversion that we discovered
there is a connection between inversion and isometries of the Poincaré Disk. In particular,
inversion will give us away to construct “hyperbolic reflections’ in h-lines. We will usethis
in the next section to construct tilings of the Poincaré Disk.

First let’slook at the Circle of Apollonius and inversion in the context of a magnet. A
common experiment isto place a magnet under a sheet of paper and then sprinkle iron filings
on top of the paper. Theiron filings line up along circles passing through two points, the North
and South poles, near the end of the magnets. These are the Magnetic lines of force. The theory
of magnetism then studies equipotential lines. These turn out to be circles each of whichis
orthogonal to all the magnetic lines of force. Thetheory of inversion was created to deal with
the theory of magnetism. We can interpret these magnetic lines of force and equipotentia lines
within the geometry of circles.

12



Open anew sketch and construct a circle having center O and a point on the circle labeled R.
Next construct any point P inside the circle and the inverse point P¢.  Construct the
diameter AB of the circle of inversion that passes through the point P.

Finally construct the circle with diameter PP¢ and construct any point Q on thiscircle.
Construct the segments AQ and BQ. Select them using the arrow tool in that order (while
holding down the shift key) and choose “Ratio” from the M easur emenu. Y ou should be

computing theratio ﬂ
BQ
Drag the point Q. What do you notice? What doesthis tell you about the circle with

diameter PP(?

5.4.1 Conjecture. If P and P¢ areinverse points with respect to circle C and lie on the
diameter AB of C then the circle with diameter PP¢ is

Towards the proof of the conjecture we'll need the following.

5.4.2 Theorem. Given P and P¢ which are inverse points with respect to acircle C and lieon

the diameter AB of C, then AP = ﬂ
BP BP¢
A 060 P B P >
OP OB
Proof. SinceP and P¢ areinverse points OP xOP¢= OB’ o OB = ot Now one can check
a+tb_c+d OP+OB _OB+OPt AP _ APC

that if & b=c/d then

so that QED
a-b c-d OP-OB OB- OPt" BP BP¢

The completion of the proof can be found in Exercise Set 5.6.
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Another interesting application of inversion underlies one possible mechanical linkage that
converts circular motion to linear motion. Such a change of motion from circular to linear
occursin many different mechanical settings from the action of rolling down the window of
your car to the pistons moving within the cylinders in the engine of the car. The Peaucellier
linkage figure below shows the components. The boldface line segments represent rigid rods
such that PR=PS=QR= QS and OP =0Q. There are hinges at the join of theserods at O,
P, Q, R and S Points P, Q, and R can move freely while Sisfreeto moveon acircleC and O
isfixed on that circle. Surprisingly, as Smoves around the circle the point R traces out a
straight line. It isaninteresting exercise to try to construct this linkage on Sketchpad. Try it!
In case you get stuck, one such construction is given below. The “proof” that R should trace
out astraight lineis part of the next assignment.
5.4.2a Demonstration. Constructing a Peaucellier Linkage.

Open anew sketch and construct acircle. Draw the ray OS5 where O and Sare points on
thecircle.

In the corner of your sketch construct two line segments| and m. (See below. Segment |

will determinethe length of OP and segment mwill determine the length of PS.) Color |
red, and color m blue.

Congtruct acircle with center O and the same length as segment | and another circle with
center Sand the same length as segment m. Color the circles appropriately. Adjust | and m

14



if necessary so that the circlesintersect outside of C. Next construct the intersection points
of the circles and label them P and Q, respectively.

Congtruct acircle with center P and radius the same as segment m. Label the intersection

point with the rayOS by R Join the points to construct the rhombus PRQS and color the
segments blue.

Construct the segments OP and OQ, then color them red.

Finally select the point R and choose “ Trace Points’ from the Display Menu and then
drag Smaking sure that O is staying fixed. (Or aternatively, select the point R and then the
point Sand then choose “Locus’ from the Construct Menu.)

Do you notice anything specia

about the line that istraced out?
Can you describeit in another ©
way?

Try various positions for O.

End of Demonstration 5.4.2a.

Finaly, let’ sreturn to the
Poincaré disk and Hyperbolic
Geometry. We only need to put a
few things together to realize that
inversion gives us away to construct
h-reflectioninan h-linel. If lisa
diameter of C, take just the Euclidean
reflection in the Euclidean line
containing |. Since thisis a Euclidean isometry, cross ratios, h-distance, and h-angle measure
are preserved. If | isthe arc of acircle C orthogonal to the Poincaré Disk, consider inversion
with C asthecircle of inversion. This provides the desired h-reflection since | mapsto itself, the
half planes of | map to each other and an inversion is h-distance preserving and h-conformal.

15



Poincare/D

Putting this together our knowledge of inversion we can actually construct specific isometric
transformations of the Poincaré Disk. We'll seethat there are several useful reasons for doing
so. First, let’s check this out on Sketchpad.

16



5.4.2b Demonstration. I nvestigating constructions on the Poincaré Disk.

Wewill consider two waysto reflect atriangle in a Poincaré disk. Thefirst way usesthe
definition of areflection.

P. Disk Radius

Open a Poincaré Disk.

Construct any h-line| and then an h-triangle ABC.

First construct the h-line through the vertex A perpendicular to |. Then construct the
intersection point of | and the perpendicular line, 1abel it E. Next construct an h-circle
by center E and point A. Theimage point A¢ will be the intersection of the circle and
the perpendicular line.

Repest for B, and C. Connect Ad, B¢, and C¢ with h-segments.

Next, try this again but now using the notion of inversion. First we need atool that
allows you to construct the inverse of a point, by only clicking on two points on the
hyperbolic segment and on the point to reflect.

17



Open Poincaré Disk and construct a hyperbolic segment.

Select 3 points on the arc and construct the circle through the 3 points by any method. L abel
the center of your circle O and one point onthecircle R.

Construct a point P. Now, construct the inverse of P aswe did before. Y ou could even run
your inverse point script.

Hide everything except the Poincaré Disk, the hyperbolic segment, and the points P and P’.
Create anew tool and automatically match the Poincaré Disk center and radius.

Now use the script to construct the inverse point for each of A, B, and C. What do you
notice?

End of Demonstration 5.4.2b.

5.4.3 Demonstration. Mapping a point P to the Origin. Given apoint P in the Poincaré
Disk, describe and then construct the hyperbolic isometry mapping P onto the origin.

Using Sketchpad we were able to perform an h-reflection, but the question hereisto
congtruct a specific h-reflection. What this boils down to is describing the circle C *with
respect to which inversion maps P onto the origin. To ensure that C¢isan h-linewe aso
require that Cdbe orthogonal to the bounding circle C for the Poincaré Disk.

O=P-Disk-Cent
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We have to construct the circle C¢ so that C¢ is orthogonal to C and DP xDO = DE?.
Surprising the solution is easy. Let D bethe inverse point to P with respect to the circle C.

Then DOXPO = OE?. Consequently, DPXDO = DO(DO - PO)= DO’ - OE” = DE”. Thus,
D isthe center of the desired circle as O and P will be inverse points. To determine the radius

we need to describe E. The condition DP xDO = DE? ensures that DOED ~ DEPD . Hence the
line segment EP is perpendicular to the line segment OD. Thus to determine E we just need to
draw the perpendicular to OD and find the intersection point with C. The point D isthe
intersection of this last perpendicular with the ray from O passing through P.

End of Demonstration 5.4.3.

Suppose now that we are given any two points P and Q in the Poincaré Disk. We can, in
fact, construct a hyperbolic isometry of the Disk that maps P onto Q. All we haveto do
isfirst construct an isometry mapping P to the origin, and then construct an isometry mapping
the originto Q. We can also use this result to prove some results about Hyperbolic geometry.
We discovered that the sum of the interior angles of an h-triangleis less than 180 degrees. This
iseasily seen when the origin is one of the vertices of the triangle for then two of the sides of
the h-triangle will be Euclidean Line segments. Given an arbitrary h-triangle we can always
map one vertex to the origin using the result above and since inversion is a hyperbolic isometry
we can see theresult isal so true for any triangle.

55TILINGSOF THE HYPERBOLIC PLANE. Let's pull together many of the ideas
developed in this course by investigating tilings of the hyperbolic plane —in its Poincaré disk
model — and then use this to explain the geometry underlying the most sophisticated of

Escher’ s repeating graphic designs. Earlier in Chapter 2 we saw that very few regular polygons
could be used to provide edge-to-edge tilings of the Euclidean plane. In fact, only equilateral
triangles meeting six at a vertex, squares meeting four times at a vertex, and finally regular
hexagons, meeting three times at avertex. Aswe have extended to the hyperbolic plane the
notion of distance between points and the angle between lines, we can now formulate the notion
of aregular h-polygon in exactly the same was as before. A regular h-polygon isafigureinthe
hyperbolic plane whose edges are h-line segments that have the same length and the same
interior angles. What should be noted isthat the interior angles of aregular h-polygon can have
arbitrary values so long as those values are less than their Euclidean values. Thusfor any n,
any regular h-polygon with n sideswill tile the Hyperbolic plane, so long as the interior angle
evenly divides 360! Thefirst question we face isthe following:
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5.5.1 Demonstration. How do we construct aregular n-gon that will tile the
hyperbolic plane?

h-angle ABC = 90.0°

We will construct our regular n-gon centered at the center of the Poincaré Disk. The edges
of the regular n-gon are arcs of circlesthat are orthogonal to the Poincaré Disk. We can find
the center of one of those circles by some basic trigonometry. The central h-angles of aregular

n-gon are all equal to 2Tc/n For our n-gon to tile the plane the interior h-angles must all be

equa to ZJkahere kisan appropriate positive integer. Any regular n-gon is comprised of n
congruent isosceles triangles. DAGC is one of thoseisoscelestriangles.  We will focus our
atention on DAFC, where AF isthe perpendicular

bisector of GC .

Assume the Poincaré Disk has center (0,0) and radius
1 and that the desired orthogonal circle has center

(h,0) and radiusr. Thekey stepisto extend AC to
AE which gives theright DABE .

p/k

p/n p/2

A=(0, F
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PoincareD

orthogonal circle

We are given that m(h - angleDFAC) = J‘/n and m(h - angleBDACF) = “/k

Using trigonometry,
SiN(DECB) = EB/r and sin(®CAB) = EB/h.
Thus,
r>sin(PECB) = h>sin(BCAB)
Now,
1+r? =h?

Sin(BECB) =n /2- w /k
sin(BCAB) ==zt /n

yidding v/h? - 1>6in(zw /2 - 7 /K) = hosin(w /).

Solving for h we get,

sin?(n/2- n/K)
\ sn(re /2 - w 1K) - sin’(e /n)
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where h isthe center of the orthogonal circle which determines the edge of aregular n-gon with

interior angles equal to <Y, .

Examples:

Regular hexagon meeting 4 at vertex (i.e. interior angles are equal to 2rt /4 ): k=4, n=6 thus
h=J2»1414

Regular quadrilateral meeting 6 at vertex (i.e. interior angles are equal to 2wt /6): k=6. n=4,
thus h=/3» 1.732

Regular pentagon meeting 4 at vertex (i.e. interior angles are equal to 2t /4): k=4, n=5
thus h=/J/5+1 » 1.798

To construct the n-gon, once we know h, we can do the following. We'll do the specific case of
aregular pentagon,

h-angle ABC = 90.0°

Open the Poincaré Disk Starter.

Draw aray through the disk center. Construct the point of intersection with the Poincare
Disk. Label it B.

Select the P. Disk Center and “Mark Center” under the Transform menu. Now dilate B
by the scale factor = h =1.798. This new point is the center of the desired circle, label it H.

Let O denote the P. Disk Center (do not change the label in your sketch since any script

that uses auto-matching will not work). Construct acircle with diameter OH . Then
congtruct one of the points of intersection with the Poincaré Disk, labd it D.
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Congtruct the circle C by
center H and point D.

Rotate C about the P-disk
Center by 72 degrees. Do
this 5 times.

Construct the 5 points of
intersection that are closest to
the P-Disk Center. These
points are the vertices of the
pentagon. Connect them
with h-segments. Hide
anything that is unwanted.

End of Demonstration 5.5.1.
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5.5.1a Demonstration. Tiling the hyperbolic plane.

Once we have an appropriate starter n-gon that will tile the hyperbolic plane by meeting k at a
vertex (i.e. theinterior angles equal 2rt/k) we can tile plane successively h-reflecting the figure.
Thingswill go alittle quicker if we also alow ourselvesrotations aswell. Choose one side of
the regular n-gon and reflect the vertices of the n-gon across this h-segment (we can accomplish
thiswith an appropriate tool since thisis equivalent to inverting the vertices with respect to the
circle). Then connect the images of these vertices by h-segments. One could continue this
process producing atiling of the plane (up to the memory limitations of SketchPad). To make
the process go faster one could also use (Euclidean) rotations about the P-Disk Center of 2xt/n
degrees.

For example, starting with our regular hexagon, we can create a hyperbolic asin the figure
below!

End of Demonstration 5.5.1a.
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Now go back to Escher’s Devils and Angels graphic in the hyperbolic plane (see below).
Escher isusing “colored” tilesto tile the hyperbolic plane. Can you determine what regular
polygon is underlying thetiling? How many are meeting at each vertex?

i p..n-i-.q-._._‘;a:: PR r
e

e

iz

5.6 Exercises. These exercisesfollow up on the connection between inversion and Apollonius
Circle and between inversion and linkages.

Exercise 5.6.1. Complete the proof of Conjecture 5.4.2. That isif P and P¢ are inverse points

with respect to circle C and lie on the diameter AB of C and Q any point on the circle with

AQ_AP

diameter PP¢ then BO . Follow the steps below to give a coordinate geometry proof.
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Let A=(-1,0), B=(1,0), and the P be the point (a,0). What are the coordinates of P¢?

What are the coordinates of the midpoint of the line ssgment PP¢?

What is the equation of thecircle C¢'?

Determinethe ratio PA/PB .

Determine the ratio QA/QB.

Complete the solution by showing AQ = AP :
BQ BP

The remaining exercises refer to the Peaucellier linkage and the figure below.
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Exercise 5.6.2. Using the fact that PRQSis arhombus, prove that its diagonals are
perpendicular and bisect each other.

Exercise 5.6.3. Provethat OSOR isaconstant by proving that OSOR = OP? - PR*. When
do S Rlieon thecircle centered at O having radius vOP? - PR? ?

Exercise 5.6.4. Deduce from Exercise 5.6.3 that the locus of Risastraight linel as Svaries
over circleC.

Exercise 5.6.5. Provethat | is perpendicular to the line passing through O and the center of the
circleC.

Exercise5.6.6. AsSvariesover thecircle C does Rvary over dl of the (infinite) linel? If not,

give a precise description of the line segment that R describes. Can Sgo around all of circle C?
If not, give aprecise description of the arc of C that Straces.
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