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Chapter 5

INVERSION

The notion of inversion has occurred several times already, especially in connection with

Hyperbolic Geometry.  Inversion is a transformation different from those of Euclidean

Geometry that also has some useful applications.  Also, we can delve further into hyperbolic

geometry once we have developed some of the theory of inversion. This will lead us to the

description of isometries of the Poincaré Disk and to constructions via Sketchpad of tilings of

the Poincaré disk just like the famous ‘Devils and Angels’ picture of Escher.

5.1 DYNAMIC INVESTIGATION. One very instructive way to investigate the basic

properties of inversion is to construct inversion via a custom tool in Sketchpad. One way of

doing this was described following Theorems 3.5.3 and 3.5.4 in Chapter 3, but in this section

we’ll describe an alternative construction based more closely on the definition of inversion.

Recall the definition of inversion given in section 5 of chapter 3.

5.1.1 Definition. Fix a point O  and a circle C  centered at O  of radius r . For a point P ,

P ≠ O , the inverse of P  is the unique point ′ P  on the ray starting from O  and passing through

P  such that      2rPOOP =′⋅ .

The point O  is called the center of inversion and circle C  is called the circle of inversion,

whiler  is called the radius of inversion.

r

P
O

P'

OP = 0.51 inches
OP' = 1.08 inches

OP OP' = 0.55 inches2

r = 0.74 inches

r 2 = 0.55 inches2
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To create a tool that constructs the inverse of a point P  given the circle of inversion and its

center, we can proceed as follows using the dilation transformation.

• Open a new sketch and draw a circle by center and point. Label the center by O and label

the point on the circle by R.  Construct a point P not on the circle.  Construct the ray from

the center of the circle, passing through P . Construct the point of intersection between the

circle and the ray, label it D.

• Mark the center of the circle - this will be the center of dilation. Then select the center of the

circle, the point P , and then the point of intersection of the ray and the circle.Go to “Mark

Ratio” under the Transform menu. This defines the ratio of the dilation.

•  Now select the point of intersection of the ray and the circle, and dilate by the marked ratio.

The dilated point is the inverse point to P. Label the dilated point ′ P .

• Select O, R, P, and P’.

• Under the Custom Tools Menu, choose “Create New Tool” and check “Show Script

View” . You may wish to use Auto-Matching for O and R as we are about to use our

inversion script to explore many examples.  Under the Givens List for your script, double

click on O and R and check the box “Automatically Match Sketch Object”.  To make use

of the Auto-Matching you need to start with a circle that has center labeled by O and a point

on the circle labeled by R.

•  Save your script.

Use your tool to investigate the following.

5.1.2 Exercise. Where is the inverse of P if

• P is outside the circle of inversion? _____________________

• P is inside the circle of inversion? _____________________

• P is on the circle of inversion? _____________________

• P is the center of the circle of inversion? _____________________

Using our tool we can investigate how inversion transforms various figures in the plane by

using the construct “Locus” property in the Construct menu. Or by using the “trace”

feature.  For instance, let’s investigate what inversion does to a straight line.

• Construct a circle of inversion. Draw a straight line and construct a free point on the line.

Label this free point by P.

• Use your tool to construct the inverse point ′ P  to P.
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• Select the points ′ P and P. Then select “Locus” in the Construct menu. (Alternatively, one

could trace the point ′ P while dragging the point P.)

5.1.3 Exercise. What is the image of a straight line under inversion?  By considering the

various possibilities for the line describe the locus of the inversion points. Be as detailed as you

can.

O
P

A line, which

passes through the circle of inversion

Image:_____________________________

O

P

A line, which

is tangent to the circle of inversion

Image:_____________________________

O

P

A line, which passes

through the center of the circle of inversion

Image:_____________________________

O

P

A line, which doesn’t

intersect the circle of inversion

Image:_____________________________
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5.1.4 Exercise. What is the image of a circle under inversion?  By considering the various

possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

O

P

A circle, which

is tangent to the circle of inversion

Image:_____________________________

O

P

A circle, which intersects the

circle of inversion in two points.

Image:_____________________________

O

P

A circle, which passes through

the center of the circle of inversion

Image:_____________________________

O

P

A circle passing through the center of the

circle of inversion, also internally tangent

Image:_____________________________
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O
P

A circle which is orthogonal to the circle of

inversion.

Image:_____________________________

You should have noticed that some circles are transformed into another circle under the

inversion transformation.  Did you notice what happens to the center of the circle under

inversion in these cases? Try it now.

End of Exercise 5.1.4.

     You can easily construct the inverse image of polygonal figures by doing the following.

Construct your figure and its interior. Next hide the boundary lines and points of your figure so

that only the interior is visible.  Next select the interior and choose “Point on Object” from the

Construct Menu.  Now construct the inverse of that point and then apply the locus

construction.  Here is an example.

O
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5.1.5 Exercise. What is the image of other figures under inversion?  By considering the various

possibilities for the line describe the locus of the inversion points. Be as detailed as you can.

O

P

A triangle, external to the

circle of inversion

Image:_____________________________

O P

A triangle, with one vertex as the

center of the circle of inversion

Image:_____________________________

O

P

A triangle internal to the

circle of inversion

Image:_____________________________
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5.2 PROPERTIES OF INVERSION.  Circular inversion is not a transformation of the

Euclidean plane since the center of inversion does not get mapped to a point in the plane.

However if we include the point at infinity, we would have a transformation of the Euclidean

Plane and this point at infinity.   Also worth noting is that if we apply inversion twice we obtain

the identity transformation.  With these observations in mind we are now ready to work through

some of the basic properties of inversion. Let C be the circle of inversion with center O and

radius r.  Also, when we say “line”, we mean the line including the point at infinity.  The first

theorem is easily verified by observation.

5.2.1 Theorem. Points inside C map to points outside of C, points outside map to points inside,

and each point on C maps to itself. The center O of inversion maps to {∞}

5.2.2 Theorem. The inverse of a line through O is the line itself.

Again, this should be immediate from the definition of inversion, however note that the line

is not pointwise invariant with the exception of the points on the circle of inversion.  Perhaps

more surprising is the next theorem.

5.2.3 Theorem. The inverse image of a line not passing through O is a circle passing through

O.

Q

PO
P'

Q'

Proof.  Let P be the foot of the perpendicular from O to the line. Let Q be any other point on

the line. Then ′ P  and ′ Q  are the respective inverse points. By the definition of inverse points,

OP ⋅O ′ P = OQ ⋅ O ′ Q .  We can use this to show that ∆OPQ  is similar to ∆O ′ Q ′ P . Thus the

image of any Q on the line is the vertex of a right angle inscribed in a circle with diameter O ′ P .
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The proof of the converse to the previous theorem just involves reversing the steps.  The

converse states, the inverse image of a circle passing through O is a line not passing through O.

Notice that inversion is different from the previous transformations that we have studied in that

lines do not necessarily get mapped to lines.  We have seen that there is a connection between

lines and circles.

5.2.4 Theorem. The inverse image of a circle not passing through O is a circle not passing

through O.

O

R

P
Q

A

A'

P'
Q'

Proof.  Construct any line through the center of inversion which intersects the circle in two

points P and Q.  Let ′ P  and ′ Q be the inverse points to P and Q.  We know that

OP ⋅O ′ P = OQ ⋅ O ′ Q = r2 .  Also by Theorem 2.9.2 (Power of a Point), OP ⋅OQ = OA2 = k .

Thus 
OP ⋅O ′ P 

OP ⋅OQ
=

OQ ⋅ O ′ Q 

OP ⋅ OQ
=

r2

k
 or 

O ′ P 

OQ
=

O ′ Q 

OP
=

r 2

k
.  In other words, everything reduces to a

dilation.

5.2.5 Theorem. Inversion preserves the angle measure between any two curves in the plane.

That is, inversion is conformal.

Proof.  It suffices to look at the case of an angle between a line through the center of inversion

and a curve.   In the figure below, P  and Q  are two points on the given curve and ′ P  and ′ Q are

the corresponding points on the inverse curve. We need to show that m∠OPB = m∠E ′ P D .

The sketchpad activity below will lead us to the desired result.
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O

R

Q

P

E

Q'

P'
B

D
m OPB = 69.67°

m EP'D = 69.67°

• Open a new sketch and construct the circle of inversion with center O and radius r.

Construct an arc by 3 points inside the circle and label two of the points as P and Q.  Next

construct the inverse of the arc by using the locus construction and label the points ′ P  and

′ Q . Finally construct the line OP (it will be its own inverse).

• Next construct tangents to each curve through P and ′ P  respectively.

• Notice that P, Q, ′ P , and ′ Q  all lie on a circle. Why? Thus ∠QP ′ P  and ∠ ′ P ′ Q Q  are

supplementary (Inscribed Angle Theorem).

• Thus m∠OPQ = m∠ ′ P ′ Q O .  Check this by measuring the angles.

• Next drag Q towards the point P.  What are the limiting position of the angles∠OPQ  and

∠ ′ P ′ Q O ?

• What result does this suggest?

5.2.6 Theorem.  Under inversion, the image of a circle orthogonal to C is the same circle

(setwise, not pointwise).

Proof.   See Exercise 5.3.1.

5.2.7 Theorem.  Inversion preserves the generalized cross ratio 
d(P,M)

d(P, N)

d(Q, N)

d(Q, M)

 
 
  

 
 of any

four distinct points P,Q,M, and N in the plane.
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Proof.   See Exercise 5.3.3.

Recall our script for constructing the inverse of a point relied on the dilation transformation.  A

compass and straightedge construction is suggested by the next result.

5.2.8 Theorem. The inverse of a point outside the circle of inversion lies on the line segment

joining the points of intersection of the tangents from the point to the circle of inversion.

O P

P'

A

B

Proof.  By similar triangles OAP  and O ′ P A , 
OA

O ′ P 
=

OP

OA
. Use this to conclude that P and P’

are inverse points.

5.3 Exercises.  These exercises are all related to the properties of inversion.

Exercise 5.3.1.  Prove Theorem 5.2.6.  That is if C is the circle of inversion and ′ C is

orthogonal to it, draw any line through O which intersects ′ C in A and B and show that A and B

must be inverse to each other.
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C

C'

O A

B

Exercise 5.3.2.  Let C be the circle of inversion with center O.  Show that if ′ P  and ′ Q are the

inverse images of P and Q then ∆OPQ ~ ∆O ′ Q ′ P .

C Q

P

O

Q'

P'

Exercise 5.3.3.  Do the following to prove Theorem 5.2.7.  Let P, Q, N, and M be any four

distinct points in the plane.  Use Exercise 5.3.2 to show that 
PM

′ P ′ M 
=

OP

O ′ M 
 and 

PN

′ P ′ N 
=

OP

O ′ N 
.

               Show that these imply
PM

PN
=

P ′ M 

P ′ N 
⋅
O ′ N 

O ′ M 
.

      Complete the proof that 
PM

PN
⋅

QN

QM
=

′ P ′ M 

′ P ′ N 
⋅

′ Q ′ N 

′ Q ′ M 
.

Exercise 5.3.4.  Use Theorem 5.2.8 and Sketchpad to give compass and straightedge

constructions for the inverse point of P when P is inside the circle of inversion and when P is

outside the circle of inversion.

Exercise 5.3.5.  Let C be the circle having the line segment AB  as a diameter, and let P and P’

be inverse points with respect to C.  Now let E be a point of intersection of C with the circle
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having the line segment P ′ P  as diameter.  See the figure below.  Prove that ∠OED = 90° .

(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

O

R

A BP P'D

E

Exercise 5.3.6.  Again, let C be the circle having the line segment AB  as a diameter, and let P

and ′ P  be inverse points with respect to C.  Now let ′ C be the circle having the line segment

P ′ P  as diameter. See the figure above. Prove that A and B are inverse points with respect to ′ C .

(Hint: Recall the theorems about the Power of a Point in Chapter 2.)

5.4 APPLICATIONS OF INVERSION There are many interesting applications of inversion.

In particular there is a surprising connection to the Circle of Apollonius. There are also

interesting connections to the mechanical linkages, which are devices that convert circular

motion to linear motion.  Finally, as suggested by the properties of inversion that we discovered

there is a connection between inversion and isometries of the Poincaré Disk. In particular,

inversion will give us a way to construct “hyperbolic reflections” in h-lines.  We will use this

in the next section to construct tilings of the Poincaré Disk.

First let’s look at the Circle of Apollonius and inversion in the context of a magnet. A

common experiment is to place a magnet under a sheet of paper and then sprinkle iron filings

on top of the paper.  The iron filings line up along circles passing through two points, the North

and South poles, near the end of the magnets. These are the Magnetic lines of force.  The theory

of magnetism then studies equipotential lines.   These turn out to be circles each of which is

orthogonal to all the magnetic lines of force.   The theory of inversion was created to deal with

the theory of magnetism.  We can interpret these magnetic lines of force and equipotential lines

within the geometry of circles.
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• Open a new sketch and construct a circle having center O and a point on the circle labeled R.

• Next construct any point P inside the circle and the inverse point ′ P .   Construct the

diameter AB  of the circle of inversion that passes through the point P.

• Finally construct the circle with diameter P ′ P  and construct any point Q on this circle.

•  Construct the segments AQ  and BQ .  Select them using the arrow tool in that order (while

holding down the shift key) and choose “Ratio” from the Measure menu. You should be

computing the ratio 
AQ

BQ
.

• Drag the point Q.  What do you notice? What does this tell you about the circle with

diameter P ′ P ?

5.4.1 Conjecture.  If P and ′ P  are inverse points with respect to circle C and lie on the

diameter AB  of C then the circle with diameter P ′ P  is ___________________________.

Towards the proof of the conjecture we’ll need the following.

5.4.2 Theorem.  Given P and ′ P  which are inverse points with respect to a circle C and lie on

the diameter AB  of C, then 
AP

BP
=

A ′ P 

B ′ P 
.

OA P P'B

Proof.  Since P and ′ P  are inverse points OP ⋅O ′ P = OB2 or 
OP

OB
=

OB

O ′ P 
.  Now one can check

that if a b = c d  then 
a + b

a − b
=

c + d

c − d
 so that 

OP +OB

OP −OB
=

OB + O ′ P 

OB − O ′ P 
 or 

AP

BP
=

A ′ P 

B ′ P 
.      QED

The completion of the proof can be found in Exercise Set 5.6.
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Another interesting application of inversion underlies one possible mechanical linkage that

converts circular motion to linear motion.  Such a change of motion from circular to linear

occurs in many different mechanical settings from the action of rolling down the window of

your car to the pistons moving within the cylinders in the engine of the car.  The Peaucellier

linkage figure below shows the components.  The boldface line segments represent rigid rods

such that PR = PS = QR = QS  and OP = OQ .  There are hinges at the join of these rods at O,

P, Q, R, and S.  Points P, Q, and R can move freely while S is free to move on a circle C and O

is fixed on that circle.  Surprisingly, as S moves around the circle the point R traces out a

straight line.  It is an interesting exercise to try to construct this linkage on Sketchpad.  Try it!

In case you get stuck, one such construction is given below.  The “proof” that R should trace

out a straight line is part of the next assignment.

5.4.2a Demonstration.  Constructing a Peaucellier Linkage.

• Open a new sketch and construct a circle.  Draw the ray OS  where O and S are points on

the circle.

• In the corner of your sketch construct two line segments l and m.  (See below.  Segment l

will  determine the length of OP  and  segment m will determine the length of PS .)  Color l

red, and color m blue.

• Construct a circle with center O and the same length as segment l and another circle with

center S and the same length as segment m. Color the circles appropriately. Adjust l and m

O

S
R

P

Q
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if necessary so that the circles intersect outside of C.  Next construct the intersection points

of the circles and label them P and Q, respectively.

• Construct a circle with center P and radius the same as segment m.  Label the intersection

point with the rayOS  by R.  Join the points to construct the rhombus PRQS and color the

segments blue.

• Construct the segments OP  and OQ , then color them red.

• Finally select the point R and choose “Trace Points” from the Display Menu and then

drag S making sure that O is staying fixed. (Or alternatively, select the point R and then the

point S and then choose “Locus” from the Construct Menu.)

• Do you notice anything special

about the line that is traced out?

Can you describe it in another

way?

      Try various positions for O.

End of Demonstration 5.4.2a.

Finally, let’s return to the

Poincaré disk and Hyperbolic

Geometry.  We only need to put a

few things together to realize that

inversion gives us a way to construct

h-reflection in an h-line l.  If l is a

diameter of C, take just the Euclidean

reflection in the Euclidean line

containing l.  Since this is a Euclidean isometry, cross ratios, h-distance, and h-angle measure

are preserved. If l is the arc of a circle C orthogonal to the Poincaré Disk, consider inversion

with C as the circle of inversion.  This provides the desired h-reflection since l maps to itself, the

half planes of l map to each other and an inversion is h-distance preserving and h-conformal.

l

m

S

O

P

Q

R
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Poincare Disk

l

C

B

A

C'

B'

A'

Putting this together our knowledge of inversion we can actually construct specific isometric

transformations of the Poincaré Disk.  We’ll see that there are several useful reasons for doing

so.  First, let’s check this out on Sketchpad.
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5.4.2b Demonstration. Investigating constructions on the Poincaré Disk.

We will consider two ways to reflect a triangle in a Poincaré disk.  The first way uses the

definition of a reflection.

B'

C'

A' E

P. Disk Center

P. Disk Radius

B

C

A

• Open a Poincaré Disk.

• Construct any h-line l and then an h-triangle ABC.

• First construct the h-line through the vertex A perpendicular to l. Then construct the

intersection point of l  and the perpendicular line, label it E.  Next construct an h-circle

by center E and point A.  The image point ′ A  will be the intersection of the circle and

the perpendicular line.

• Repeat for B, and C. Connect ′ A , ′ B , and ′ C  with h-segments.

Next, try this again but now using the notion of inversion.  First we need a tool that

allows you to construct the inverse of a point, by only clicking on two points on the

hyperbolic segment and on the point to reflect.
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• Open Poincaré Disk and construct a hyperbolic segment.

• Select 3 points on the arc and construct the circle through the 3 points by any method. Label

the center of your circle O and one point on the circle R.

• Construct a point P. Now, construct the inverse of P as we did before. You could even run

your inverse point script.

• Hide everything except the Poincaré Disk, the hyperbolic segment, and the points P and P’.

• Create a new tool and automatically match the Poincaré Disk center and radius.

• Now use the script to construct the inverse point for each of A, B, and C.  What do you

notice?

End of Demonstration 5.4.2b.

5.4.3 Demonstration. Mapping a point P to the Origin.   Given a point P in the Poincaré

Disk, describe and then construct the hyperbolic isometry mapping P onto the origin.

Using Sketchpad we were able to perform an h-reflection, but the question here is to

construct a specific h-reflection.  What this boils down to is describing the circle C ‘with

respect to which inversion maps P onto the origin. To ensure that ′ C  is an h-line we also

require that ′ C be orthogonal to the bounding circle C for the Poincaré Disk.

C=P-Disk
C'

PO=P-Disk-Center

E

D
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We have to construct the circle ′ C  so that ′ C  is orthogonal to C and DP ⋅ DO = DE2 .

Surprising the solution is easy. Let D be the inverse point to P with respect to the circle C.

Then DO ⋅ PO = OE2 .  Consequently, DP ⋅ DO = DO(DO − PO) = DO2 − OE2 = DE2 . Thus,

D is the center of the desired circle as O and P will be inverse points.  To determine the radius

we need to describe E.  The condition DP ⋅ DO = DE2  ensures that ∆OED ~ ∆EPD . Hence the

line segment EP is perpendicular to the line segment OD. Thus to determine E we just need to

draw the perpendicular to OD and find the intersection point with C.  The point D is the

intersection of this last perpendicular with the ray from O passing through P.

End of Demonstration 5.4.3.

Suppose now that we are given any two points P and Q in the Poincaré Disk. We can, in

fact, construct a hyperbolic isometry of the Disk that maps P onto Q.  All we have to do

is first construct an isometry mapping P to the origin, and then construct an isometry mapping

the origin to Q.  We can also use this result to prove some results about Hyperbolic geometry.

We discovered that the sum of the interior angles of an h-triangle is less than 180 degrees. This

is easily seen when the origin is one of the vertices of the triangle for then two of the sides of

the h-triangle will be Euclidean Line segments.  Given an arbitrary h-triangle we can always

map one vertex to the origin using the result above and since inversion is a hyperbolic isometry

we can see the result is also true for any triangle.

5.5 TILINGS OF THE HYPERBOLIC PLANE.  Let’s pull together many of the ideas

developed in this course by investigating tilings of the hyperbolic plane – in its Poincaré disk

model – and then use this to explain the geometry underlying the most sophisticated of

Escher’s repeating graphic designs.  Earlier in Chapter 2 we saw that very few regular polygons

could be used to provide edge–to-edge tilings of the Euclidean plane. In fact, only equilateral

triangles meeting six at a vertex, squares meeting four times at a vertex, and finally regular

hexagons, meeting three times at a vertex.  As we have extended to the hyperbolic plane the

notion of distance between points and the angle between lines, we can now formulate the notion

of a regular h-polygon in exactly the same was as before. A regular h-polygon is a figure in the

hyperbolic plane whose edges are h-line segments that have the same length and the same

interior angles.  What should be noted is that the interior angles of a regular h-polygon can have

arbitrary values so long as those values are less than their Euclidean values.   Thus for any n,

any regular h-polygon with n sides will tile the Hyperbolic plane, so long as the interior angle

evenly divides 360! The first question we face is the following:
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5.5.1 Demonstration.  How do we construct a regular n-gon that will tile the

hyperbolic plane?

C

A
B

h-angle ABC = 90.0°

We will construct our regular n-gon centered at the center of the Poincaré Disk.  The edges

of the regular n-gon are arcs of circles that are orthogonal to the Poincaré Disk.  We can find

the center of one of those circles by some basic trigonometry.  The central h-angles of a regular

n-gon are all equal to 2 n . For our n-gon to tile the plane the interior h-angles must all be

equal to 2 k where k is an appropriate positive integer.    Any regular n-gon is comprised of n

congruent isosceles triangles. ∆AGC  is one of those isosceles triangles.    We will focus our

attention on ∆AFC , where AF is the perpendicular

bisector of GC .

Assume the Poincaré Disk has center (0,0) and radius

1 and that the desired orthogonal circle has center

(h,0) and radius r.  The key step is to extend AC  to

AE which gives the right ∆ABE .
A=(0,0) F

C

G

2π/

k

n

π/

π/
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Poincare Disk

1

h orthogonal circle

r

A=(0,0)

D

B=(h,0)F

C

E

G

We are given that m(h − angle∠FAC) = n  and m(h − angle∠ACF) = k .

Using trigonometry,

sin(∠ECB) = EB / r  and sin(∠CAB) = EB / h .

Thus,

)sin()sin( CABhECBr ∠⋅=∠⋅

Now,

• 221 hr =+

• kECB /2/)sin( −=∠

• nCAB /)sin( =∠

yielding h2 −1 ⋅sin( /2 − / k) = h ⋅sin( / n) .

Solving for h we get,

h =
sin2 ( / 2 − / k)

sin2 ( /2 − / k) − sin2 ( / n)
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where h is the center of the orthogonal circle which determines the edge of a regular n-gon with

interior angles equal to  2 k .

Examples:

• Regular hexagon meeting 4 at vertex (i.e. interior angles are equal to 2 /4 ): k=4, n=6 thus

h = 2 ≈ 1.414

• Regular quadrilateral meeting 6 at vertex (i.e. interior angles are equal to 2 /6 ): k=6. n=4,

thus h = 3 ≈ 1.732

• Regular pentagon meeting 4 at vertex (i.e. interior angles are equal to 2 /4 ): k=4, n=5

thus h = 5 +1 ≈ 1.798

To construct the n-gon, once we know h, we can do the following. We’ll do the specific case of

a regular pentagon,

C

A
B

h-angle ABC = 90.0°

• Open the Poincaré Disk Starter.

• Draw a ray through the disk center. Construct the point of intersection with the Poincare

Disk. Label it B.

• Select the P. Disk Center and “Mark Center” under the Transform menu.  Now dilate B

by the scale factor = h =1.798. This new point is the center of the desired circle, label it H.

• Let  O denote the P. Disk Center (do not change the label in your sketch since any script

that uses auto-matching will not work).  Construct a circle with diameter OH . Then

construct one of the points of intersection with the Poincaré Disk, label it D.
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• Construct the circle C by

center H and point D.

• Rotate C about the P-disk

Center by 72 degrees. Do

this 5 times.

• Construct the 5 points of

intersection that are closest to

the P-Disk Center.  These

points are the vertices of the

pentagon.   Connect them

with h-segments. Hide

anything that is unwanted.

End of Demonstration 5.5.1.

C

D

H
B

P-Disk Center

P-Disk Radius
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5.5.1a Demonstration.  Tiling the hyperbolic plane.

Once we have an appropriate starter n-gon that will tile the hyperbolic plane by meeting k at a

vertex (i.e. the interior angles equal 2 k ) we can tile plane successively h-reflecting the figure.

Things will go a little quicker if we also allow ourselves rotations as well.  Choose one side of

the regular n-gon and reflect the vertices of the n-gon across this h-segment (we can accomplish

this with an appropriate tool since this is equivalent to inverting the vertices with respect to the

circle).  Then connect the images of these vertices by h-segments. One could continue this

process producing a tiling of the plane (up to the memory limitations of SketchPad).  To make

the process go faster one could also use (Euclidean) rotations about the P-Disk Center of 2 n

degrees.

For example, starting with our regular hexagon, we can create a hyperbolic as in the figure

below!

End of  Demonstration 5.5.1a.
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Now go back to Escher’s Devils and Angels graphic in the hyperbolic plane (see below).

Escher is using “colored” tiles to tile the hyperbolic plane.   Can you determine what regular

polygon is underlying the tiling?  How many are meeting at each vertex?

5.6 Exercises.  These exercises follow up on the connection between inversion and Apollonius’

Circle and between inversion and linkages.

Exercise 5.6.1.  Complete the proof of Conjecture 5.4.2. That is if P and ′ P  are inverse points

with respect to circle C and lie on the diameter AB  of C  and Q any point on the circle with

diameter P ′ P  then 
AQ

BQ
=

AP

BP
.  Follow the steps below to give a coordinate geometry proof.
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O P P'A B

Q

• Let A=(-1,0), B=(1,0), and the P be the point (a,0).  What are the coordinates of ′ P ?

• What are the coordinates of the midpoint of the line segment P ′ P ?

• What is the equation of the circle ′ C ’?

• Determine the ratio PA/PB .

• Determine the ratio QA/QB.

• Complete the solution by showing 
AQ

BQ
=

AP

BP
.

The remaining exercises refer to the Peaucellier linkage and the figure below.

S

O
Q

P

R
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Exercise 5.6.2. Using the fact that PRQS is a rhombus, prove that its diagonals are

perpendicular and bisect each other.

Exercise 5.6.3.   Prove that OS.OR is a constant by proving that OS.OR = OP2 − PR2 .  When

do S, R lie on the circle centered at O having radius OP2 − PR2 ?

Exercise 5.6.4.  Deduce from Exercise 5.6.3 that the locus of R is a straight line l as S varies

over circle C.

Exercise 5.6.5.  Prove that l is perpendicular to the line passing through O and the center of the

circle C.

Exercise 5.6.6.  As S varies over the circle C does R vary over all of the (infinite) line l?  If not,

give a precise description of the line segment that R describes.  Can S go around all of circle C?

If not, give a precise description of the arc of C that S traces.


