In class we defined the important notion of Normal Subgroup. If \(H \) is a subgroup of a group \(G \), then \(H \) is said to be Normal in \(G \) when \(xH = Hx \) for all \(x \) in \(G \). To show that \(H \) is normal in \(G \), therefore, we have to show that \(xH = Hx \) for all \(x \) in \(G \), whereas to show that \(H \) is NOT normal in \(G \) all we have to do is show that \(xH \neq Hx \) for some \(x \) in \(G \). So let’s look at a few examples. Clearly, every subgroup of an abelian group is normal, but if \(G \) is not abelian the situation is more complicated.

Problem 1: If \(G = \{I, R, R^2, R^3, S, SR, SR^2, SR^3\} \) is the symmetry group of a square, show that the group \(H = \{I, S\} \) is not normal in \(G \), but \(H = \{I, R, R^2, R^3\} \) is normal in \(G \).

Problem 2: If

\[
G = \{I, R, R^2, R^3, R^4, R^5, R^6, R^7, S, SR, SR^2, SR^3, SR^4, SR^5, SR^6, SR^7\}
\]

is the symmetry group of a regular octagon centered at the origin where \(R \) is rotation through \(\pi/4 \) about the origin and \(S \) is reflection about the \(x \) axis, show that the group \(H = \{I, R^2, R^4, R^6\} \) is normal in \(G \).
As we also saw in class, if H is normal in G, then the set of all equivalence classes with respect to the equivalence relation
\[y \equiv_H x \quad \text{if and only if} \quad y^{-1}x \in H \]
becomes a group, often called a Factor Group of G, and denoted by G/H, when the group operation of these equivalence classes is defined by
\[Hx \circ Hy = Hxy. \]
It’s an interesting exercise to identify G/H for given G and H. For instance, in class we saw that G/H can be identified with the group \mathbb{Z}_n of integers with addition mod n as group operation when
\[G = \mathbb{Z}, \quad H = n\mathbb{Z} = \{nk : k \in \mathbb{Z}\}. \]
Recall now the group
\[K_4 = \{I, A, B, AB\}, \quad A^2 = B^2 = I, \]
only called the Klein-4 group.

Problem 3: Show that K_4 can be identified with the symmetry group of a rectangle by identifying A and B as transformations of the rectangle.

Problem 4: Show that $H = \{I, R^2, R^4, R^6\}$ can be identified with the group of symmetries of the colored octagon

![Colored Octagon](image)

Problem 5: Show that when G is the group of symmetries of a mono-chromatic regular octagon and $H = \{I, R^2, R^4, R^6\}$ is its subgroup preserving the four colors in the corresponding colored regular octagon given immediately above, then the factor group G/H can be identified with the Klein-4 group.

Hint: Try to express A, B in terms of S, R and H using the four colors as a guide, by coloring a rectangle with the four colors).