For the function f whose graph is

\[
\begin{array}{c}
z \\
y \\
x \\
\end{array}
\]

\[P\]

\[
\begin{array}{c}
\text{determine the sign of } f_x \text{ and } f_y \text{ at } P. \end{array}
\]

1. $f_x < 0$, $f_y = 0$ correct
2. $f_x < 0$, $f_y > 0$
3. $f_x = 0$, $f_y = 0$
4. $f_x = 0$, $f_y > 0$
5. $f_x > 0$, $f_y < 0$
6. $f_x > 0$, $f_y < 0$

Explanation:
The partial derivative f_x gives the slope of the graph in the direction of increasing x, while f_y gives the slope in the direction of increasing y. But at P the graph slopes down in the positive x-direction, while the graph is horizontal in the y-direction. Consequently,

\[f_x < 0, \quad f_y = 0. \]