
TRIANGULARIZATION OF HANKEL OPERATORS

AND THE BILINEAR HILBERT TRANSFORM

Jesus Gasch and John E. Gilbert

Abstract. A relation between the Bilinear Hilbert transform and triangular truncations of
Hankel and Toeplitz operators is established. Boundedness of triangular truncations of Han-
kel operators then follows from deep, known properties for the Bilinear Hilbert transform,
con�rming a conjecture attributed to Peller. These properties also provide a uni�ed alter-
native proof of previously known triangular truncation and dilation results for Hankel and
Toeplitz operators.

1. Introduction.

Bounded operators between Hilbert spaces may or may not remain bounded after tri-
angular truncation. For instance, the triangular truncation of a Toeplitz matrix need not
be bounded as an operator on `2+, even though the Toeplitz matrix itself is bounded on
`2+; simple examples of such operators exploit the unboundedness of the Hilbert transform
on L1(T) ([2]). More generally, triangular truncation of operators in the space Sp of
Schatten p-class operators follow a pattern similar to the one for the boundedness of the
Hilbert transform on Lp(T): triangular truncation is bounded on Sp, 1 < p <1, but fails
to be bounded on S1 or S1 as techniques from Hilbert transform theory show ([6]). For
Hankel operators, however, the connection between triangular truncation and boundedness
of the Hilbert transform is more tenuous since Nehari's theorem identi�es bounded Hankel
operators on `2+ with functions in the quotient space L1(T)=H1(T)? on which the Hilbert
transform reduces to a constant multiple of the identity. Nonetheless, Choi has shown
that a natural dilation of the classical Hilbert matrix is bounded on `2 but a triangular
truncation of it is unbounded (loc. cit.). By contrast, Hardy's well-known inequality can
be used to show that the upper and lower triangular truncations of the Hilbert matrix is
bounded on `2+ as we shall see in section 5. Thus it is all the more surprising to discover
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that the triangular matrix

(1.1) Ta =

266666666666664

a0 a1 a2 a3 a4 : :

0 a2 a3 a4 :

0 0 a4 :

0 0 :

0 :

:

:

377777777777775
derived from a Hankel matrix Ha = [aj+k] is bounded as an operator on `2+ if and only if
the original Hankel matrix is bounded as an operator on `2+. Establishing this result and
a unifying series of generalizations is the focus of the present paper.

Main Theorem. Let Ha be the Hankel operator determined by a Hankel matrix Ha =
[aj+k]j;k�0 and let Ta be its triangular truncation corresponding to the upper triangular
matrix Ta. Then Ta is bounded from H2(T) to H2(T)� if and only Ha is bounded from
H2(T) to H2(T)�.

This result con�rms a conjecture usually attributed to Peller. By regarding a Hankel
operator as a bilinear form on H2(T) � H2(T), as is more convenient for the purposes
of this paper, we clearly obtain a corresponding result in the setting of bilinear forms.
The Main Theorem and its proof were announced by the second-named author at the
Conference in Approximation Theory at Texas A&M in April, 1998. The authors wish
to thank David Larson for many stimulating comments he made at the meeting about
the truncation problem and its possible generalizations; these led shortly thereafter to the
uni�ed picture presented in sections 4 and 5 of the paper. The same results with much
the same proof, as well as others not discussed here, were obtained independently by Aline
Bonami and Joaquim Bruna. These were announced by Prof. Bonami in St. Louis in
September, 1998, and on that occasion she also supplied the authors with a pre-print from
June, 1998 ([1]).

2. Bilinear Hilbert Transform

The appearance of the Hilbert (or Conjugate) transform

g 7�! eg(�) =
1

2�

Z 2�

0

g(� � t)
dt

tan(12 t)
= (�i)

X
m

bg(m) sign(m)eim�

in truncation results is well-known. Let � : L2(T) 7�! H2(T) be the Riesz Projection

g 7�! �(g)(�) =
1X

m=0

bg(m) eim�
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from L2(T) onto H2(T) obtained by `truncating' the Fourier coe�cients
�bg(m)

	
from Z to

Z+. Then �(g) di�ers from 1
2 (g + i eg) by a constant term 1

2bg(0) only. Formally, the same

is true in the context of Hankel operators. Indeed, if we de�ne the matrix eHa `conjugate'
to Ha by

(2.1) eHa =

266666666666664

0 �ia1 �ia2 �ia3 �ia4 : :

ia1 0 �ia3 �ia4 :

ia2 ia3 0 :

ia3 ia4 :

ia4 :

:

:

377777777777775
;

then the triangular truncation Ta in (1.1) di�ers from 1
2 (Ha + i eHa) by a simple diagonal

matrix diagf12a0;
1
2a2; : : : g. Notice that this conjugate matrix is the Schur product of

the Hankel matrix
�
aj+k

�
with a Toeplitz matrix

�
i sign(j � k)

�
. As the diagonal matrix

will always be bounded on `2+ so long as fa0; a2; : : :g is a bounded sequence, the Main
Theorem should thus follow easily once boundedness properties of the `conjugate' transform

Ha 7�! eHa are known. Indeed, if eHa denotes the bilinear form on H2(T) � H2(T) such
that eHa(�m ; �n) = i sign(m� n)Ha(�m ; �n) = i sign(m� n) am+n

on characters �
m
(�) = e2�im� of the circle group T, Nehari's theorem reduces the problem

to one of identifying the mapping

a 7�!
1

2
(Ha + i eHa); (a 2 L1(T));

and then establishing its boundedness as a mapping L1(T) �! B(H2(T); H2(T)). What
makes the proof of the Main Theorem di�cult, however, is the fact that the Schur mul-
tiplier determined by the Toeplitz matrix

�
i sign(j � k)

�
is not a bounded operator on

B(L2(T); L2(T)) since the only bounded Schur multipliers of this form are Fourier-Stieltjies

transforms. As we shall see, the requisite mapping a �! 1
2 (Ha + i eHa) can be identi�ed

with the adjoint of the bilinear mapping

(2.2)

f; g 7�!
1

2

�
f(�) g(�) + i eB(f; g)(�)�

=
1

2

�
f(�) g(�) + i

1

2�

Z 2�

0

f(� + t) g(�� t)
dt

tan(12 t)

�
from L2(T) � L2(T) into L1(T). The mapping f; g 7�! eB(f; g) in (2.2) was introduced
in the setting of functions on the real line by Calder�on in the 1960's in his study of the
Cauchy Integral on Lipschitz curves where it is known as the Bilinear Hilbert transform.
But its principal properties have been revealed only recently ([7, 8], cf. also [4, 5]).
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(2.3) Theorem. The bilinear mapping f; g 7�! eB(f; g) is bounded from L2(T) � L2(T)
into L1(T) and from H2(T) �H2(T) into H1(T).

Although Bilinear Conjugate transform might be a more appropriate name for the periodic
version of Calder�on's operator, we will continue to use the name Bilinear Hilbert transform.
Results for the real line transfer immediately to corresponding ones for the periodic version
because both have the same singularity 1=t.

While the Main Theorem is essentially the `adjoint' of (2.3), the proof of (2.3) lies deep
since it requires techniques developed by C. Fe�erman in his proof of the a.e. convergence of
Fourier series of L2-functions ([3]). In retrospect, however, it is not perhaps so surprising
that such techniques are at the root of the Main Theorem. The rows in (2.1) involve
all positive integer translates n 7! (�i) sign(m � n) of the multiplier of the conjugate

transform, and so in computing the L2-operator norm of eHa all of these translates have
to be dealt with simultaneously. In the same way, establishing pointwise convergence
of Fourier series reduces to establishing the L2-boundedness of the maximal partial sum
operator

g 7�! S�[g](�) = sup
n

���� 12�
Z 2�

0

ein(��t) g(�� t)
dt

tan ( 12 t)

����
= sup

n

��X
m

bg(m) (�i) sign(m� n) eim�
��

which again requires that all integer translates n 7! (�i) sign(m � n) be dealt with si-
multaneously. As the proofs of results for the Bilinear Hilbert transform are so delicate,
we shall often assume that f or g is a trigonometric polynomial, thereby reducing the
problem to the classical linear Hilbert transform. Then use of (2.3) will enable us to pass
from trigonometric polynomials to general functions.

The variables � + t and � � t in (2.2) correspond to the directions of constancy in the
respective Hankel and Toeplitz matrices appearing in (2.1). By changing these directions
to p� + p0t and q� � q0t, where (p; q) and (p0; q0) are pairs of relatively prime integers, we
obtain both a 1-parameter family of matrices whose entries have an angle of constancy
arctan(q=p) and a 1-parameter family of triangular truncations of these matrices having
angle of truncation arctan(�q0=p0). For example, Hankel matrices have angle of constancy
�=4, while Toeplitz matrices have angle of constancy ��=4, and the Bilinear Hilbert trans-
form in (2.2) provides an angle of truncation ��=4. By varying the angle of truncation,
however, we can see why triangular truncation may sometimes fail. Indeed, the bilinear
mapping

(2.4) f; g 7�!
1

2�

Z 2�

0

f(� + t) g(�+ t)
dt

tan( 12 t)

provides an angle of truncation �=4. But it is clearly unbounded as a mapping from
L2(T)�L2(T) into L1(T) because it reduces to the composition of pointwise multiplication
followed by the Hilbert transform. For this reason we can expect that the usual triangular
truncation of Toeplitz operators will not be bounded. The general case will be discussed
in detail in sections 4 and 5, especially as it relates to triangular truncation of operators
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and their dilates. Surprisingly, unboundedness is the exception: triangular truncation will
always be bounded except when arctan(q=p) = arctan(�q0=p0).

3. Conjugate and Triangular Hankel Operators

Denote by Lp(T) the usual Lebesgue Lp-spaces on the unit circle T and by Hp(T) the
Hardy spaces of boundary values of functions analytic inside T. For the most part we
shall concentrate on the Hilbert space case, but many results are valid for general p. The

mapping f 7�! f bf(m)gm2Z from a function to its Fourier coe�cients identi�es L2(T) with
the two-way in�nite sequence space `2 = `2(Z) and the Hardy space H2(T) with the one-
way in�nite sequence space `2+ = `2(Z+). The space of Borel measures on T will be denoted
by M(T). Our approach emphasizes bilinear operators and bilinear forms. For each � in
M(T) set

(3.1)

B�(f; g)(�) =
1

2�

Z 2�

0

f(� + t) g(�� t) d�(t)

=
X
m;n

bf(m) bg(n) b�(n�m) ei(m+n)�

where f and g are trigonometric polynomials. Clearly (3.1) extends uniquely to a bilinear
operator f; g 7�! B�(f; g) from L2(T) � L2(T) into L1(T) that is bounded in the sense
that the inequality

1

2�

Z 2�

0

jB�(f; g)(�)j d� � kfk2 kgk2
1

2�

Z 2�

0

jd�(t)j � kfk2 kgk2 k�k

holds for all f; g in L2(T). Its adjoint de�nes a mapping a 7�! B��(a) from L1(T) into the

space B(L2(T); L2(T)) of bounded bilinear forms on L2(T) � L2(T). In terms of Fourier
series,

(3.2)

B��(a)(f; g) =
1

4�2

Z 2�

0

Z 2�

0

f(� + t) g(�� t) a(�)d�d�(t)

=
X
m;n

bf(m) bg(n) b�(n�m)ba(m+ n):

Taking group characters for f and g, we can thus associate a two-way in�nite matrix

(3.3) A� =

�
B��(a)(�m ; �n)

�
m;n2Z

=

�b�(n�m)ba(m+ n)

�
m;n2Z

to each a in L1(T) and � in M(T). This matrix is the Schur product of two-way in�nite
Hankel and Toeplitz matrices associated with a and � respectively.

Example 1: Let � = �0 be the point mass at 0. Then

B�0(f; g)(�) = f(�) g(�)
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reduces to the pointwise product of f; g. Since

B��0(a)(f; g) =
X
m;n

bf(m) bg(n)ba(m+ n);

the associated matrix (3.3) is the two-way in�nite Hankel matrix
�ba(m+ n)

�
. Nehari's

theorem asserts that every bounded bilinear Hankel form on H2(T)�H2(T) arises as the
restriction of B��0(a) for some a in L1(T).

Now �x � inM(T). Property (3.2) together with example 1 can be interpreted as saying
that the Schur product�ba(m+ n)

�
m;n2Z

�!

�b�(n�m)ba(m+ n)

�
m;n2Z

de�nes a bounded operator B��0(a) �! B��(a) with norm at most k�k. This simple
(and well-known) result about Schur multipliers does not apply to the Bilinear Hilbert
transform, however, because cot( 12 t)dt does not belong to M(T). Standard approximation
ideas from classical Hardy space theory have to be adopted to overcome the problem.

Example 2: For 0 < r < 1 set

d�r(t) =
1

2

�
1 + reit

1� reit

�
dt =

1

2

�
Pr(t) dt + i Qr(t) dt

�
where Pr and Qr are the respective Poisson and Conjugate Poisson Kernels on T. Then

B�r (f; g)(�) =
1

2

�
BPr(f; g)(�) + i BQr(f; g)(�)

�
:

As the matrices associated with these bilinear mappings BPr and BQr are�
rjn�mj ba(m+ n)

�
m;n

;

�
i sign(m� n)rjn�mj ba(m+ n)

�
m;n

;

the matrix determined by B��r (a) is the upper triangular matrix

(3.4)

2666666666666664

1
2a0 ra1 r2a2 r3a3 r4a4 : :

0 1
2a2 ra3 r2a4 :

0 0 1
2a4 :

0 0 :

0 :

:

:

3777777777777775
:

Formally, matrix (3.4) converges to 1
2(Ha + i eHa) as r ! 1�, but to desribe the con-

vergence more precisely we follow the same path as in the classical case for functions.
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(3.5) Theorem. The limit

lim
r!1�

1

2�

Z 2�

0

f(� + t) g(�� t)Pr(t) dt = B�0(f; g)(�)

exists almost everywhere and in L1(T)-norm for each f; g in L2(T).

Proof. Suppose �rst that f and g are trigonometric polynomials. Then for N su�cently
large

lim
r!1

BPr (f; g)(�) = lim
r!1

� NX
m;n=�N

bf(m) bg(n) rjm�nj ei(m+n)�

�
= f(�) g(�)

everywhere. On the other hand, by H�older's inequality,

sup
0<r<1

��BPr (f; g)
�� � const: M2(f)(�)M2(g)(�)

whereM2(:) denotes the L
2-version of the Hardy-Littlewood maximal function. But f 7�!

M2(f) is of weak type (2; 2), so the inequality

���x : sup
0<r<1

��BPr(f; g)
�� > �

	�� � const:
kfk2kgk2

�

holds for each � > 0. Hence limr!1BPr (f; g)(�) = f(�) g(�) almost everywhere for all f; g
in L2(T). Easy modi�cations show that the limit converges also in the L1(T)-norm. �

Using corresponding pointwise and norm convergence results for the conjugate Poisson
kernel we get a reasonably general companion result to (3.5) for BQr .

(3.6) Theorem. The limit

lim
r!1�

1

2�

Z 2�

0

f(� + t) g(�� t)Qr(t) dt = eB(f; g)(�)
exists almost everywhere and in L1(T)-norm for each f in L2(T) and trigonometric poly-
nomial g.

Proof. For su�ciently large N ,

BQr (f; g)(�) =
NX

n=�N

�
1

2�

Z 2�

0

e�2�in(�+t) f(� + t)Qr(t) dt

�bg(n) e4�in�:
Since

lim
r!1

Z 2�

0

e�2�in(�+t) f(�+ t)Qr(t) dt =

Z 2�

0

e�2�in(�+t) f(� + t)
dt

tan 1
2 t
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both pointwise a.e. and in L2-norm for each n, theorem (3.6) follows immediately at least
when g is a trigonometric polynomial. �

Combining (3.5) and (3.6) we see that the limit

lim
r!1�

B�r (f; g)(�) =
1

2

�
f(�) g(�) + i eB(f; g)(�)�

exists pointwise a.e. and in L1(T)-norm for each f in L2(T) and trigonometric polynomial
g. It is very likely that the same result continues to hold for all f; g in L2(T). By duality,
therefore,

(3.7) lim
r!1�

B��r (a)(f; g) =
1

2

�
B��0(a)(f; g) + i eB�(a)(f; g)�

for each a 2 L1(T) and any pair f; g with f an L2(T)-function and g a trigonometric
polynomial. Again the result should be true for each pair f; g in L2(T), but even without
this we can now prove the Main Theorem.

Proof of Main Theorem. Let Ha =
�
amn

�
be a one-way in�nite Hankel matrix which is

bounded as an operator on `2+. By Nehari's theorem there exists a in L1(T) such that

B��0(a)(�m ; �n) = ba(m+ n) = amn

for all m;n � 0. But then, using (3.7) together with examples 1 and 2, we deduce that

1

2

�
B��0(a)(f; g) + i eB�(a)(f; g)�

=
X

0�m�n

bf(m) bg(n)ba(m+ n) �
1

2

X
n�0

bf(n) bg(n)ba(2n):
for all f in H2(T) and all trigonometric polynomials g in H2(T). In view of (2.3), therefore,
the induced operator� bf(m)

	
m�0

7�!

� X
0�m�n

bf(m)ba(m+ n)

�
n�0

�
1

2

�bf(n)ba(2n)�
n�0

is bounded on `2+. Now the �rst operator on the right coincides with the one determined
by triangular matrix Ta in (1.1). On the other hand, since

� bf(n)	
n�0

7�!
1

2

�bf(n)ba(2n)�
n�0

corresponds to convolution on H2(T) by an L1(T)-function, it follows that the operator

� bf(m)
	
m�0

7�!

� X
0�m�n

bf(m)ba(m+ n)

�
n�0



HANKEL OPERATORS 9

de�ned by Ta is a bounded operator on `2+. In particular, therefore, the triangular trun-
cation Ta determined by Ta is bounded from H2(T) into H2(T)�.

Conversely, if Ta is bounded from H2(T) into H2(T)�, then so is 1
2 (Ta+ T

�
a ). Since this

last operator di�ers from Ha by the same diagonal operator as before, it follows that Ha

itself is bounded, completing the proof. �

The same proof applies in the two way in�nite case. For each a in L1(T) set

Aa = B��0(a);
eAa = eB�(a):

Then Aa is a bounded bilinear form on L2(T) � L2(T) such that

Aa(�m ; �n) = ba(m+ n)

on characters. In addition, the previous proof shows that the bilinear extension, Ta, of

Ta(�m ; �n) =

( ba(m+ n); m � n;

0; m > n;
(m; n 2 Z)

is bounded on L2(T) � L2(T) since Ta di�ers from 1
2 (Aa + i eAa) by a bounded diagonal

operator.

4. Unified Picture

Both Hankel and Toeplitz matrices can be regarded as individual examples in the same
1-parameter family of matrices whose entries have a `line of constancy' property. Given
relatively prime integers p and q, let `j be the straight line

(4.1) `j =
�
(x; y) 2 R

2 : py = qx � j
	
; (j 2 Z)

having slope q=p and y-intercept �j=p.

(4.2) De�nition. Let p; q be relatively prime integers. A matrix [amn] will be said to be
constant in the direction q=p, or to have angle of constancy arctan(q=p), if there exists a
function a : Z ! C such that amn = a(j) whenever the lattice point (n;�m) lies in the
line `j.

Such matrices are easily described.

(4.3) Theorem. Let p; q be relatively prime integers. Then a two-way in�nite matrix
[amn] is constant in the direction q=p, i.e., has angle of constancy arctan(q=p), if and only
if

amn = a(pm+ qn); (m;n 2 Z)

for some function a : Z! C .

A proof will be given at the end of the section. The same result with obvious modi�cations
holds also in the one-way in�nite case. The values p = q = 1 correspond to Hankel matrices,
while p = 1; q = �1 correspond to Toeplitz matrices. In addition, the matrix operators�

xm
	
m2Z

7�!

�X
m2Z

a(mp+ nq)xm

�
n2Z
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determined by each member of this family arises as the adjoint of a bilinear `multiplication
mapping L2(T) � L2(T) ! L1(T) just as in the special case of Hankel matrices. Set

Bpq(f; g)(�) = f(p�) g(q�); (f; g 2 L2(T)):

The adjoint of Bpq thus de�nes a mapping a �! B�pq(a),

B�pq(a)(f; g) =
1

2�

Z 2�

0

f(p�) g(q�) a(�)d� =
X
m;n

bf(m) bg(n)ba(pm+ qn);

from L1(T) into B(L2(T); L2(T)). In the next section we will de�ne the `triangular trun-
cation' of B�pq(a) having angle of truncation arctan(�q0=p0).

Before proving (4.3) it will be convenient collect together some elementary facts: let p; q
be relatively prime integers. Then

1) each lattice point (n;�m) of Z� Z belongs to a unique `j ;
2) a lattice point (n;�m) belongs to `j if and only if mp + nq = j;
3) `0 \ Z2 =

�
(kp; kq) : k 2 Z

	
, and

4) for each (n;�m) in `j \ Z2

`j \ Z
2 = (n; �m) + `0 \ Z

2 =
�
(kp+ n; kq �m) : k 2 Z

	
:

We omit the details.

Proof of Theorem (4.3). Since p; q are relatively prime there exist integers r; t such that
rq � tp = 1. Consequently, each j in Z can be written as j = jrq � jtp. Thus

`j \ Z
2 =

�
(jr + kp; jt+ kq) : k 2 Z

	
:

Next we want to describe `j \
�
(n;�m) : n 2 Z

	
for each m in Z. If there is a pair

(n;�m) in this intersection, then n;m must satisfy

(4.4) n = jr + kp; �m = jt + kq:

Now set Zq =
�
[d] : 0 � d � q � 1

	
where

[d ] =
�
w 2 Z : d� w = kq for some k 2 Z

	
:

The second of the equations in (4.4) ensures that [jt] = [�m], so

jt = d + qb; �m = d + qa

for some d 2
�
0; 1; : : : ; q�1

	
and a; b in Z. Then kq = �m� jt = q(a� b) and k = a� b.

Using this in the �rst of the equations in (4.4) we deduce that n = jr + p(a � b). Since

amn = a(j) = a(jrq � jtp)

and
jrq � jtp = (n + p(b � a))q � p(d + qb)

= �p(qa + d) + qn = pm + qn;

it follows that amn = a(pm + qn). Conversely, if the matrix [amn] has the property
amn = a(pm+ qn) for some a : Z 7�! C and all m;n, then (n;�m) 2 `pm+qn, completing
the proof of the theorem. �
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5. Conjugate operators

A more general version of the Bilinear Hilbert transform due also to Calder�on in the
non-periodic case enables us to de�ne a 1-parameter family of triangular truncations of the
bilinear forms B�pq(a) introduced in the previous section. Fix a second pair of relatively
prime integers p0; q0. Then for each measure � in M(T)

(5.1) B� : f; g 7�!
1

2�

Z 2�

0

f(p� + p0t) g(q�� q0t) d�(t)

is bounded from L2(T) � L2(T) into L1(T) and its adjoint

a �! B��(a)(f; g) =
1

4�2

Z 2�

0

Z 2�

0

f(p� + p0t) g(q�� q0t) a(�)d�(t)

is a bounded mapping from L1(T) into B(L2(T); L2(T)) such that

B��(a)(f; g) =
X
m;n

bf(m) bg(n)b�(nq0 �mp0)ba(mp+ nq):

As in Example 1, B� reduces to the pointwise product Bpq : f; g ! f(p�) g(q�) when
� = �0, irrespective of the choice of p

0 and q0. On the other hand, analogous arguments to
those in section 3 for the Cauchy kernel lead to the principal value integral

(5.2) eBp0q0(f; g)(�) =
1

2�

Z 2�

0

f(p� + p0t) g(q�� q0t)
dt

tan( 12 t)

generalizing the Bilinear Hilbert transform eB in (2.2). Its main properties were established,
at least in the analogue for the real line, by Lacey-Thiele ([7, 8], cf. also [4, 5]). When
q=p = �q0=p0 the operator reduces to

eBp0q0(f; g)(�) =
1

2�

Z 2�

0

f(p(� � kt)) g(q(�� kt))
dt

tan( 12 t)
; (k = �1)

since (p; q), (p0; q0) are pairs of relatively prime integers. Here eBp0q0 is simply the pointwise
product followed by the usual conjugate transform, and so will not map L2(T) � L2(T)
into L1(T). This is the only exception to boundedness, however.

(5.3) Theorem. The bilinear operator eBp0q0 is bounded as a mapping from L2(T)�L2(T)
into L1(T) and from H2(T) �H2(T) into H1(T) so long as q=p 6= �q0=p0.

The same truncation results as before are still valid in this more general case. For
instance, in the two way in�nite case set

Aa = B�pq(a); eAa = eB�p0q0(a); (a 2 L1(T)):
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Then Aa is a bounded bilinear form on L2(T) � L2(T) such that

Aa(�m ; �n) = ba(pm+ qn)

on characters. In addition, the the bilinear extension, Ta, of

Ta(�m ; �n) =

( ba(pm+ qn); p0m � q0n;

0; p0m > q0n;
(m; n 2 Z)

is bounded on L2(T)�L2(T) provided q=p 6= �q0=p0 since Ta di�ers from 1
2
(Aa+ i eAa) by

a bounded diagonal operator. Thus � : Aa �! Ta can be said to have angle of truncation
arctan(�q0=p0). Except when q=p = �q0=p0, � will be bounded on the Bpq(a).

It may be instructive to illustrate these ideas within the context of Hilbert matrix results
given by Choi in [2]. Set p = q = 1. Now let A = [amn]

1
m;n=0 be the (one-way in�nite)

Hilbert matrix i.e.,

(5.4) A =

26666666666666664

1 1
2

1
3

1
4 : : :

1
2

1
3

1
4 :

1
3

1
4 :

1
4 :

:

:

:

37777777777777775
and HA the corresponding Hankel bilinear form on H2(T)�H2(T). Now let  =  (�) be

a function in L1(T) such that b (m) = 1=(m+ 1) for m � 0; the 2�-periodic extension of
the function

(5.5)  (�) = ie�i� (� � �); (�� < � < �);

is a standard example. We are interested in constructing dilations of HA, meaning bilinear
forms DA on L2(T)�L2(T) such that DA

��
H2�H2 = HA. The �rst `natural' dilation given

by Choi is B�0( ) since the entries of the associated two-way in�nite Hankel matrix [amn]
are

amn =

( 1
m+n+1 ; m+ n 6= �1;

0; m+ n = �1:

(loc. cit. page 305). The second of Choi's examples is the two-way in�nite `triangular'
matrix [bmn] where

bmn =

( 1
m+n+1 ; m+ n > �1;

0; m+ n � �1:
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The �rst of these is bounded on `2 since B�0 is bounded from L1(T) into B(L2(T); L2(T)),
but the second is not because the Hilbert transform is unbounded on L1(T). This is not
surprising, however, because [bmn] is the triangular trunction of [amn] produced by the
adjoint of the bilinear operator

f; g 7�!
1

2

�
f(�) g(�) + i

1

2�

Z 2�

0

f(� + t) g(�+ t)
dt

tan(12 t)

�
:

It is unbounded because the angle of truncation �=4 coincides with the angle of constancy
�=4.

An entirely analogous argument explains the why the well-known example of a bounded
Toeplitz matrix on `2+ has unbounded triangular truncation. Let T be the one-way in�nite
Toeplitz matrix

T� =
�
�ij
�
i;j�0

; �ij =

( 1
i�j ; i 6= j;

0; i = j:

Then T is bounded on `2+; in fact, kTk � �. Now let

U� =
�
ujk

�
ujk =

( 1
j�k

; j < k;

0; j � k;

be the associated upper triangular matrix. Then calculations using properties of the con-

jugate operator shows that the �nite upper triangular matrices Un =
�
tij
	n�1
i;j=0

satisfy

inequalities

kTk � kTnk �
�2
3

�1=2
logn:

Hence T is bounded, but its upper triangularization U is unbounded. Again this is not
surprising in view of our results on the Bilinear Hilbert transform. To construct Toeplitz
matrices an angle of constancy ��=4 is needed, so the multiplication operator is f; g 7�!
f(�) g(��), i.e., p = �q = 1. To achieve the triangular truncation U an angle of truncation
��=4 is needed, so we use the adjoint of the mapping

f; g 7�!
1

2

�
f(�) g(��) + i

1

2�

Z 2�

0

f(� + t) g(�� � t)
dt

tan( 12 t)

�
:

But this operator is unbounded from L2(T) � L2(T) into L1(T).
The �nal example is a case where triangular trunction is related to classical operators.

Again let A be the one-way in�nite Hilbert matrix. Its upper triangular truncation is the
matrix TA which as an operator on `2+ is given by

TA :
�
xm

	
m�0

�!

� nX
m=0

xm
m+ n+ 1

�
n�0

:
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But ���� nX
m=0

xm
m+ n+ 1

���� � 1

n+ 1

nX
m=0

jxmj;

so Hardy's inequality� 1

n+ 1

nX
m=0

jxmj

�
n


`2
+

� const:
�xm	m`2

+

for `2+ ensures that TA is bounded on `2+. Similarly, the lower triangular truncation is the
matrix LA which as an operator on `2+ is given by

LA :
�
xm

	
m�0

�!

� 1X
m=n

xm
m+ n+ 1

�
n�0

:

But ���� 1X
m=n

xm
m+ n+ 1

���� � 1X
m=n

jxmj

m
;

so the adjoint Hardy inequality� 1X
m=n

jxmj

m

�
n


`2
+

� const:
�xm	m`2

+

for `2+ ensures that LA is bounded on `2+.
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