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Abstract. The study of bilinear operators associated to a class of non-smooth symbols can
be reduced to the study of certain special bilinear cone operators to which a time frequency
analysis using smooth wave-packets is performed. In this paper we prove that when smooth
wave-packets are replaced by Walsh wave-packets the corresponding discrete Walsh model for
the cone operators is not only Lp-bounded, as Thiele has shown in his thesis for the Walsh
model corresponding to the bilinear Hilbert transform, but actually improves regularity as it
maps into a Hardy space. The same result is expected to hold for the special bilinear cone
operators.

1. Introduction.
Let B : S(R) × S(R) → S′(R) be a continuous bilinear operator that commutes with

simultaneous translations. Then there exists m in S′(R× R), the symbol of B, such that

(1.1) B(f, g)(x) =
∫ ∞

−∞

∫ ∞

−∞
m(ξ, η)f̂(ξ) ĝ(η) e2πix·(ξ+η) dξdη.

If m is homogeneous of degree 0, such a B commutes also with simultaneous dilations.
The basic Lp-boundedness problem is to prescribe conditions on m so that B extends
to a bounded operator from Lp(R) × Lq(R) into Lr(R); in the dilation-invariant case
the exponents p, q and r must follow the same pattern as in Hölder’s inequality, i.e.,
1/p+ 1/q = 1/r.

A necessary condition for Lp-boundedness is that m be bounded , but it is not sufficient.
On the other hand, smoothness of m is sufficient but not necessary. In particular, if m is
sufficiently smooth, then B maps Lp×Lp′ into L1 ([8]); furthermore, for a smooth symbol
the cancellation condition

(1.2) m(ξ,−ξ) = 0 (ξ �= 0)
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improves the boundedness to Lp × Lp′ → H1 ([7]). Such an improvement in regularity
comes into play in compensated compactness, because it allows use of weak∗ compact-
ness arguments to ensure convergence of approximating solutions to partial differential
equations. Notice that (1.2) is equivalent to the vanishing moment condition

(1.3)
∫ ∞

−∞
B(f, g)(x) dx = 0

whenever the integral is well-defined since∫ ∞

−∞
B(f, g)(x) dx =

∫ ∞

−∞
m(ξ,−ξ) f̂(ξ) ĝ(−ξ) d ξ .

Perhaps the most fundamental example having non-smooth symbol arises from the
Hilbert transform H in the form of the pointwise product

(1.4) f, g −→ 1
4 (f + iHf)(x)(g + iHg)(x) =

∫ ∞

0

∫ ∞

0

f̂(ξ)ĝ(η) e2πix(ξ+η) dξdη

of the projections of f, g on complex Hardy spaces. Virtually by construction it maps
Lp(R)× Lq(R) into complex Hardy space Hr

C(R), 1/p+ 1/q = 1/r. The imaginary part

(1.5) f, g −→
∫ ∞

−∞

∫ ∞

−∞
(sgn(ξ) + sgn(η))f̂(ξ)ĝ(η) e2πix(ξ+η) dξdη

of (1.4) is the prototype T = H of the Coifman-Rochberg-Weiss commutator B(f, g) =
T (f)g−fT ∗(g) occurring in the ‘div-curl’ lemma. This prototype satisfies (1.2) and maps
Lp(R) × Lq(R) into the real Hardy space Hr(R), while any linear combination of H ⊗ I
and I ⊗H always maps Lp(R) × Lq(R) into Lr(R). What makes the Lp-boundedness so
easy to establish for all of these examples is that they are sums of operators ‘respecting’ a
tensor product structure in the sense that each such B is the composition

(1.6) Lp(R)⊗γ Lq(R) K−→ Lp(R)⊗γ Lq(R) M−→ Lr(R)

of a singular integral operator K and pointwise multiplication M : f ⊗ g → f(x)g(x). The
decomposition (1.6) occurs whenever m is constant on each quadrant of R×R, but if the
symbol is, say, a rotation of one of

m(ξ, η) = −i(sgn(ξ) + sgn(η)), m(ξ, η) = −i sgn(ξ)

through some angle other than a multiple of π/2, this simple argument fails and Lp-
boundedness is no longer clear.

To understand the general non-smooth case, therefore, we need to look at operators
whose symbol ‘cuts across’ quadrants. Such operators arise naturally not only in connection
with compensated compactness phenomena but also with Calderón’s first commutator

C(1)
A (f)(x) =

1
π

∫ ∞

−∞

A(x)−A(y)
(x− y)2 f(y) dy
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where A has a derivative A′ = a ∈ L∞(R). Indeed, it is well known that C(1)
A can be

realized as a weighted average

〈
C(1)
A (f), g

〉
=

∫ π/2

0

〈
B−θ(f, g), a

〉 1
(sin θ + cos θ)2

dθ

of a family

Bθ(f, g) = −i
∫ ∞

−∞

∫ ∞

−∞
sgn(ξ cos θ + η sin θ) f̂(ξ) ĝ(η) e2πix(ξ+η) dξdη

of dilation-invariant bilinear operators whose symbols lack both smoothness and cancella-
tion ([9]). Each Bθ can also be written as a principal value singular integral

(1.7) Bθ(f, g)(x) =
1
π

∫ ∞

−∞
f(x− t cos θ) g(x− t sin θ) dt

t
.

The simple cases H ⊗ I and I ⊗ H correspond to θ = 0, π/2, π, 3π/2 ; all of these map
Lp×Lp′ → L1. By contrast, Bπ/4 reduces to the Hilbert transform H(fg) of the pointwise
product of f, g and so is bounded from L2 × L2 into weak-L1, not into L1. The Bilinear
Hilbert transform is the case θ = −π/4; recently, Lacey and Thiele established its Lp×Lq →
Lr-boundedness for 2 < p, q <∞ using a very delicate time-frequency analysis in the spirit
of Fefferman’s proof of the almost everywhere convergence of Fourier series of L2-functions
([13], [19]).

The previous discussion suggests that the most inclusive criterion for Lp-boundedness
should deal simultaneously with smooth and non-smooth symbols. For simplicity we shall
concentrate here on the dilation-invariant case. By a piecewise Ck-function on the unit
circle Σ1 in R2, we shall mean a function having bounded, continuous derivatives up to
order k on the complement of a finite set in Σ1 and one-sided derivatives at the end-points.

(1.8) Conjecture. Let m0 = m0(ξ, η) be a piecewise Ck-function on Σ1 which is Ck in
a neighborhood of the points (ξ,−ξ) and let B be the bilinear operator whose symbol is the
degree zero homogeneous extension of m0. Then B : Lp(R)×Lp′(R) → L1(R); in addition,

(i) if m0(ξ,−ξ) = 0, then B : Lp(R)× Lp′(R) → H1(R), while
(ii) if m0(ξ, η) = 0 when ξ + η ≤ 0, then B : Lp(R)× Lp′(R) → H1

C(R).

The idea underlying the conjecture is to rule out discontinuities of the symbol along the
diagonal ξ+ η = 0 and so avoid the operator H(fg) which does not map into L1, while at
the same time allowing all examples known to us of (dilation-invariant) bilinear operators
with smooth or non-smooth symbol that map at least into L1. By writing m0 as a sum
of functions supported on closed intervals in Σ1 it is enough to consider bilinear Cone
operators

(1.9) CΓα(f, g)(x) =
∫ ∫

Γα

m(ξ, η)f̂(ξ) ĝ(η) e2πix·(ξ+η) dξdη
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whose symbol m is homogeneous of degree 0 and has bounded continuous derivatives up
to order k inside a cone Γα of aperture α having vertex at the origin; the hypotheses of
the conjecture require that the diagonal ξ+ η = 0 not be an edge of the support cone. For
example, set

Aθ,α(f, g) = 1
2 i {Bθ+α(f, g)−Bθ(f, g)}.

Its symbol is supported on a double cone of aperture α inside of which it is constant.
Neither cone intersects the diagonal ξ+η = 0 so long as −3π/4 < θ < θ+α < π/4; in this
case Aθ,α can then be written as the sum of two cone operators corresponding to a cone
lying in the half-plane ξ + η > 0 and the reflection of this cone in the origin. In general
we could allow the symbol in (1.9) to be non-homogeneous so long as the derivatives up
to order k are still bounded.

The conjecture arises quite naturally from time-frequency analysis and Fourier plane
geometry of the cone operators. Suppose first that α ≤ π/4 and that one edge of Γα lies
on the positive ξ-axis; the other edge is assumed not to lie on the diagonal ξ + η = 0.
We say then that Γα is in special position; the corresponding cone operators satisfy the
hypotheses of (1.8)(ii). If f and g are now replaced by their wave packet expansions the
geometry of such Γα eliminates all wave packets except those having vanishing moment
and frequency in a fixed half-line. In such cases we expect CΓα to map Lp(R) × Lp′(R)
into complex Hardy space H1

C(R). Corresponding results for Γα in general position as
well as for α > π/4 would then follow via symmetry and simple examples such as (1.4),
establishing the conjecture in full knowing (1.8)(ii) only for CΓα with Γα in special position.
As illustration, note that the previous Aθ,α satisfy the cancellation condition (1.2), and
so by (1.8)(i) should map Lp(R) × Lp′(R) into H1(R). But this also would follow from
(1.8)(ii) because one of the cone operators in the decomposition of Aθ,α would then map
into H1

C(R), while, by symmetry, the second maps into H1
C(R). Boundedness for all the

Bθ, θ �= π/4, too would follow from (1.8)(ii).
In this paper we shall establish strong supporting evidence for conjecture (1.8)(ii) on

which the full conjecture rests. When the functions f and g in (1.9) are replaced by smooth
wave packet expansions then CΓα(f, g) becomes an �1-sum of discrete bilinear operators
which can be thought of as infinite sums of modulated para-products. When Γα is in special
position its geometry ensures that the wave packets occurring in these infinite sums have
frequency in one direction and so they belong to H1

C. The problem thus becomes one of
establishing the Lp(R)×Lp′(R) → H1

C(R)-boundedness of such discrete bilinear operators.
The time-frequency analysis of them, however, is complicated by the fact that smoothness
of the wave-packets forces overlap, thereby eliminating sharp ‘cut-offs’. By contrast, Walsh
wavelet packets are not smooth, but the time-frequency analysis associated with them is
simpler. Conjecture (1.8) can thus be tested on the discrete bilinear operator obtained
by substituting Walsh wavelet packets for smooth wave packets in the infinite sums of
modulated para-products.

Let wj,�,n = 2−j/2Wn(2−jx − �) be the usual Walsh wavelet packets derived from the
Walsh functions Wn. The Walsh model for the Bilinear Hilbert Transform is the family of
bilinear operators

(1.10) Hw : f, g −→
∑
j,�,n

2−j/2
〈
f,wj,�,4n+ε1

〉
〈g,wj,�,4n+ε2

〉
wj,�,4n+ε3
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associated with all fixed triples (ε1, ε2, ε3) having integer entries εk such that

(1.11) 0 ≤ εk ≤ 3, j �= k =⇒ εj �= εk.
Summation in (1.10) is taken over all j, � ∈ Z and all n ≥ 0 but the same triple is used
throughout the sum and the notation Hw will be used irrespective of the choice of triple.
Estimates for Walsh functions show that the series converges unconditionally in Lr(R)
for all g ∈ Lq(R), q < r, so long as f is a step function, but convergence in general is
much more delicate. This family was first introduced by Thiele in his thesis - the so-called
‘Quartile Operator’ ([22]).

A natural structure has been built into the definition. By interchanging ε1 and ε2 we
see that the Walsh model family is symmetric in the sense that f, g can be reversed in
(1.10), while interchanging ε3 with either of ε1, ε2 shows that the family is also self-adjoint.
On the other hand, when dilation is defined by δr : f(x) → r−1/2f(r−1x), it is clear that
each individual operator commutes with simultaneous dyadic dilation since

(1.12) Hw(δ2kf, δ2kg) = 2−k/2δ2k(Hw(f, g)), (k ∈ Z).

Thus any Lp×Lq → Lr boundedness result for the Walsh model family must again follow
the same pattern as in Hölder’s inequality, i.e., 1/p+ 1/q = 1/r. The symmetry and self-
adjoint structure together with a bilinear Marcinkiewicz Interpolation theorem will enable
us to establish such strong type results from weak type estimates solely on the restricted
range 1 < p < 2 ≤ q <∞.

In his thesis Thiele showed, among other results, that Hw maps L2(R) × L2(R) into
L1(R). By analogy with conjecture (1.8), therefore, the question is whether cancellation
improves regularity. In the context of Walsh functions the appropriate Hardy space is
dyadicH1 and, in view of (1.3), the corresponding cancellation condition is the requirement
that each ‘exposed’ function wj,�,4n+ε3 have vanishing moment. Since only the Wn, n >
0, have vanishing moment, the most natural family of Walsh model operators having
‘cancellation’ are thus the operators

(1.13) Dw : f, g −→
∑
n>0

∑
j,�∈Z

2−j/2
〈
f,wj,�,4n+ε1

〉
〈g,wj,�,4n+ε2

〉
wj,�,4n+ε3

obtained by restricting summation in (1.10) to n > 0 for each fixed choice of triple
(ε1, ε2, ε3) satisfying (1.11). This family will again be symmetric as well as self-adjoint,
and each individual operator will be simultaneously invariant under dyadic dilation. The
principal result proved in this paper is the following analogue of the smooth symbol result.

Main Theorem. Every bilinear operator Dw is bounded from L2(R) × L2(R) into the
dyadic Hardy space H1

d(R).

The difference between Hw and Dw is an operator

(1.5) (Hw −Dw) : f, g −→
∑
j,�∈Z

2−j/2
〈
f,wj,�,ε1

〉
〈g,wj,�,ε2

〉
wj,�,ε3

which will still increase regularity if the ‘exposed’ wavelet packet wj,�,ε3 has vanishing
moment, i.e., if ε3 �= 0. For then one of the adjoints of (Hw −Dw) will be a para-product
since at least one of wj,�,ε1 ,wj,�,ε2 also will have vanishing moment for all �, j (cf. [18] page
375). In such a case Hw itself will increase regularity. More precisely,
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Corollary. A Walsh model operator Hw associated with a triple (ε1, ε2, ε3) is bounded
from L2(R)× L2(R) into the dyadic Hardy space H1

d(R) whenever ε3 �= 0.

The proof of the Main theorem uses characterizations of H1
d(R) by 4-adic martingale

conjugate transforms just as the Hilbert transform characterizes H1(R). The basic idea is
to replace the phase plane constructed with dyadic intervals by one constructed with 4-
adic intervals and to replace a Walsh wavelet packet by its 4-tuple of conjugate transforms
analogous to a wave packet being in complex H1. In this way we obtain an R4-valued
version D of Dw. We regard both Dw and D as Walsh models for cone operators - the
former for the case of a double cone, the latter for one defined in (1.9) with Γα in special
position. In complete analogy with the discussion of (1.8)(ii) for complex H1-spaces we
prove an R4-valued version of Thiele’s result by showing that D maps L2(R,R4)×L2(R,R4)
into L1(R,R4). With this the proof of the Main Theorem is complete. One might expect
to use a maximal function or square function argument to establish H1-boundedness but
this seems to add a non-linear veneer to an already involved proof. The non-linearity could
perhaps be avoided in the case of square function arguments by using vector-valued ideas,
but even here the use of integral transform characterizations would appear to be simpler
since they reduce the proof to an L1-result for R4-valued functions.

Our proof actually establishes a stronger result, namely the boundedness of

Dw : Lpd(R)× Lqd(R) −→ Hr
d(R)

(
1
p

+
1
q

=
1
r

)
for all 1 < p, q <∞ so long as r > r0 where r0, r0 < 1, is an as yet undetermined critical
index. The appearance of this critical index can be traced to the conjugate transform
characterization of Hr

d(R), and not to the intrinsic structure of Dw.
This paper is organized as follows. In section 2 we introduce some basic facts about the

Walsh wave-packets and martingales on R. Section 3 contains the Chao-Janson character-
ization of H1

d(R) by 4-adic martingale conjugate transforms. In section 4 we introduce the
scalar and vector-valued 4-adic Walsh models, study their relationship and explain how the
strong-type results for the vector-valued 4-adic Walsh model yield the same results for the
scalar-valued one; the Riesz transforms of the Walsh wavelet packets will be determined
also. In section 5 we study the geometry of the 4-adic (or even-scaled) phase plane. Section
6 contains a formulation of Janson’s real bilinear interpolation theorem. We also explain
there how this, together with symmetry and duality, is exploited to obtain the strong-type
results Lp × Lq → Lr with 1 < p, q < ∞ and 1/p + 1/q = 1/r < 3/2 solely from the
weak-type estimates Lp × Lq → Lr∞ with 1 < p < 2 ≤ q < ∞ and 1/p + 1/q = 1/r.
Finally in section 7 we establish these weak type estimates for the vector-valued 4-adic
Walsh model. The proof of these estimates is analogous to that given by Thiele in his
thesis for the quartile operator Hw, both of which in turn were inspired by Fefferman’s
proof of Carleson’s theorem ([13]).

Finally, Thiele’s results together with our proof suggests that the full result should be
that the bilinear operator Dw is bounded as an operator

Dw : Hp
d (R)×Hq

d(R) −→ Hr
d(R)

for all p and q such that 0 < 1/p+1/q = 1/r < 3/2. By duality there will also be results for
dyadic BMO and Lipschitz spaces. Using the symmetry and self-adjoint property of the
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Dw family our proof establishes boundedness for all 1 < p, q <∞ and r > max{ r0, 2/3 },
knowing simply the result for 1 < p < 2 ≤ q <∞. Computing r0 is an algebraic problem;
we omit any discussion of it here. On the other hand, extension of the possible values of p
and q would come about if the Carleson measure estimate (7.8) can be established for all
Hp
d (R), 2/3 < p ≤ 2, rather than for Lp(R), 1 < p ≤ 2. Again we omit any discussion of it

here.
The authors wish to thank R. Coifman, M. Cwikel, J. Lakey, and M. Taibleson for

enlightening conversations or correspondence during work on this paper.

2. Wavelet packets, martingales.
The Walsh functions W0,W1,W2, . . . are defined recursively on [0, 1) by

(2.1)(i) W0 ≡ 1, W2n+1(x) =

{
Wn(2x), 0 ≤ x < 1

2 ,

−Wn(2x− 1), 1
2 ≤ x < 1,

and

(2.1)(ii) W2n(x) =

{
Wn(2x), 0 ≤ x < 1

2 ,

Wn(2x− 1), 1
2 ≤ x < 1.

The Wm will always be extended by zero outside the interval [0, 1). An alternative defini-
tion in terms of the Rademacher functions

(2.2) r0(x) = sgn sin 2πx, rn(x) = r0(2nx) (n ≥ 1)

and the dyadic representation of integers will be useful later: if m = 2s1 + 2s2 + · · ·+ 2sk

with s1 > s2 > · · · > sk, then

(2.4) Wm(x) =

{
χ[0,1)(x), m = 0

rs1(x) rs2(x) . . . rsk
(x)χ[0,1)(x), m ≥ 1.

where χ[0,1) is the characteristic function of the interval [0, 1). This last representation
makes clear the fact that |Wm(x)| = 1 everywhere on its support.

There are deep connections with analysis on both the unit interval and the whole real
line. It is well-known, for instance, that {Wm}m≥0 is an orthonormal basis of L2[0, 1)
with respect to the natural inner product on L2[0, 1); the Walsh series of a function f in
L2[0, 1) is then defined by

W [f ] =
∑
m≥0

〈
f,Wm

〉
Wm.

Relations with martingales can be made through Walsh series: the partial sums

fn(x) =W2n [f ] =
∑

0≤m≤2n

〈
f,Wm

〉
Wm(x)
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of order 2n have the structure of a dyadic martingale; in fact, the representation by mar-
tingale differences

(2.5) f ∼
∑
n

∆nf =
∑
n

( ∑
2n≤m≤2n+1

〈
f,Wm

〉
Wm

)

is the earliest and simplest form of a Littlewood-Paley decomposition ([14]).
Connections with analysis on the real line can be made through the theory of wavelets

and wavelet packets. As W1 is just the Haar mother wavelet, its dyadic translates and
dilates 2−j/2W1(2−jx − k) provide an orthonormal wavelet basis for L2(R). While this
achieves excellent ‘time’ localization, an improvement in ‘frequency’ localization can be
obtained by allowing translates and dilates of all Walsh functions ([10],[15]). The Walsh
wavelet packets are thus defined by

(2.6) wj,�,m(x) = 2−j/2Wm(2−jx− �) = (δ2k ◦ τ�)Wm

with respect to dyadic dilation and integer translation τ(�) : f(x) → f(x − �). For each
fixed resolution j the family{wj,�,m : � ∈ Z, m ≥ 0} is an orthonormal basis for L2(R) with
respect to the inner product

〈
f, g

〉
=

∫ ∞

−∞
f(x)g(x)dx.

Other orthonormal bases can be constructed using the covering criterion of Coifman-Meyer
et al. ([11] page 466). Walsh wavelet packets are related to dyadic martingales on the real
line in the same way that Walsh functions are related to dyadic martingales on [0, 1). Let

Ek : f −→
∑
I∈Bk

1
|I| 〈f, χI 〉χI (x)

be the conditional expectation with respect to the σ-field Bk generated by dyadic intervals
of length 2−k (cf. [21] page 188). The Ek commute with dyadic dilation and with integer
translation in the sense that

(2.7)
Ek(δ2j (f)) = δ2j (Ej+kf) (j, k ∈ Z),

Ek(τ�(f)) = τ�(Ekf) (k ≥ 0, � ∈ Z).

Dyadic Hardy spaces can be introduced using the Ek.
(2.8) Definition. The dyadic Hardy space Hp

d (R) consists of all dyadic martingales f =
{fk} whose dyadic maximal function f∗(x) = supk |fk(x)| is Lp-integrable.
The norm on Hp

d (R) is defined by

‖f‖Hp
d

=
(∫ ∞

−∞
|f∗(x)|p dx

)1/p

.
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Meyer has developed an alternative approach to dyadic Hardy spaces using the Haar
wavelet wj,�,1 but the Walsh wavelet packets are much too overcomplete to provide the
same martingale basis as Haar wavelets. Nonetheless, the wj,�,n play an analogous role
though we have to distinguish carefully between the case m = 0 and m > 0 for precisely
the reasons that led to the distinction between Hw and Dw. So suppose first that m > 0.
Then in view of (2.5) and (2.7),

Ek(wj,�,m) =

{
wj,�,m, k + j ≥ s+ 1

0, k + j < s+ 1,

whenever 2s ≤ m < 2s+1; consequently,

(2.9) (Ek+1 − Ek)wj,�,m =

{
wj,�,m, s = k + j,

0, s �= k + j

for the same range of m. In particular,

w∗
j,�,m(x) = 2−j/2χ[0,1)(2

−jx− �) (m > 0),

so wj,�,m belongs to Hp
d (R), 0 < p <∞, for all m > 0. On the other hand,

W ∗
0 (x) ≈ 1

1 + x
χ[0,∞)(x)

so none of the translates and dilates wj,�,0 of W0 belong to Hp
d (R), p ≤ 1.

3. Characterizations of dyadic Hp.
Characterizations of dyadic Hardy spaces introduced by J.-A. Chao in the finite measure

space case will be central to the proof of the Main theorem ([3], [4]). They depend on the
fact that there is a one-to-one correspondence between dyadic martingales and 4-adic
martingales on R. Indeed, if f = {fk}k is a dyadic martingale on R relative to the σ-fields
Bk, then φ = {f2k}k is a 4-adic martingale relative to the B2k; conversely, if φ = {φk}k is
a 4-adic martingale relative to the B2k, then there is a dyadic martingale f = {fk}k such
that f2k = φk. Furthermore, a dyadic martingale f = {fk}kbelongs to Hp

d (R) if and only
if its 4-adic maximal function

(3.1) Mf(x) = sup
k
|f2k(x)|,

is Lp-integrable. Consequently,

(3.2) const. ‖f‖Hp ≤
(∫ ∞

−∞
Mf(x)p dx

)1/p

≤ const. ‖f‖Hp .

Chao’s proof of this result for a regular martingale on a finite measure space carries over
to R because the σ-fields Bk also are regular ([2]). For consistency of notation throughout
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this section, f = {fk} will always denote a dyadic martingale, while φ = {φk}, ψ = {ψk}
will denote 4-adic martingales.

The freedom to apply 4-adic martingale theory allowed Chao to exploit characterizations
of martingale H1 by ‘conjugate transforms’ obtained earlier by Janson in a setting where
initially Janson’s results did not apply ([16]). It is this same freedom that prompts the
introduction of the 4-adic Walsh model operator D in the next section. Again because of
the regularity of the Bk all constructions and results for regular martingales on a finite
measure spaces go over immediately to R. Let φ = {φk}k be 4-adic martingale on R

relative to the B2k and let A be a real 4× 4 matrix which maps the subspace

V = {v = (v0, v1, v2, v3) ∈ R4 : v0 + v1 + v2 + v3 = 0 }

of R4 into itself under matrix multiplication A : v → vA; in other words, the matrix
A = [Aij] has the property

(3.3) v0 + v1 + v2 + v3 = 0 =⇒
∑
j

(∑
i

viAij

)
= 0.

This will always be the case, for instance, when the rows of A have average zero, i.e., when∑3
j=0Aij = 0. Now let φ =

∑
k ∆kφ be the representation of φ in terms of its martingale

differences ∆kφ = φk+1 − φk. To each 4-adic interval I, |I| = 4−k, there corresponds a
vector v ∈ V such that

(∆kφ)
∣∣
I

= v0χI0
+ v1χI1

+ v2χI2
+ v3χI3

=
3∑
j=0

〈 v, ej〉χIj
(v ∈ V)

where I = ∪jIj is the partition of I into its 4 equal subintervals Ij , |Ij | = 4−(k+1). But
then

ψk
∣∣
I

=
3∑
j=0

〈A(v), ej〉χIj
(I ∈ B2k)

define martingale differences of a 4-adic martingale ψ = {ψk}k since A : V → V. Thus,
φ→ ψ =

∑
k ψk associates to each matrix A satisfying (3.3) a singular integral transform

φ → ψ = A(φ) on 4-adic martingales; we shall say that A is the symbol of A. By
construction each A commutes with 4-adic dilation in the sense that

(3.4)(i) (δ4k)(Af) = A(δ4kf), (k ∈ Z)

while it commutes with pointwise multiplication at the martingale difference level meaning
that

(3.4)(ii) A(ν∆kφ) = νA(∆kφ), (k ∈ Z)

whenever ν is B2k-measurable. Although the A do not commute with integer translation,
they do have the property:

(3.4)(iii) A(τ�(∆kφ)) = τ�(A(∆kφ)), (k ≥ 0, � ∈ Z).
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When the matrix A is diagonal such transforms reduce to a special case of the martingale
transforms introduced by Burkholder (cf. [20] pps. 95–103).

To estimate the norm of A(f) we use square function ideas. On a 4-adic interval I,

|ψk(x)|2 =
3∑
j=0

|〈A(v), ej〉|2χIj
(x) ≤ sup

j

(∑
i

|Aij |2
)
‖v‖2χI (x),

so

S(Aφ)(x) =
(∑

k

|(∆kφ)(x)|2
)1/2

≤ const.
(∑

k

E2k−2(|∆kφ|2)(x)
)1/2

.

But for regular martingales this last square function, like the first square function, is equiv-
alent to the 4-adic maximal function in Lp-norm. Interpreting this for dyadic martingales,
we deduce that the inequality∫ ∞

−∞
|A(f)(x)|p dx ≤ const.

∫ ∞

−∞
|f∗(x)|p dx

holds for all p, 0 < p <∞, proving the next result.

(3.5) Theorem. Let A be a real 4×4 matrix satisfying (3.3). Then the associated integral
transform A having A as symbol is bounded on Hp

d (R), 0 < p <∞.
The adjoint operator A∗ of A also can be described in terms of A when, say, both the

rows and columns of A have average zero. For then the transpose matrix At = [Aji] will
be the symbol of an integral transform which is bounded on all Hp

d -spaces and which on
L2(R) is easily seen to be the adjoint of A on L2(R). What we need is a vectorial version.
Let A(m) = [A(m)

ij ], 1 ≤ m ≤ n, be a family of 4 × 4 real matrices each of which satisfies
(3.3), and let A = [Aij] be the 4× 4 matrix whose entries

(3.6) Aij = (A(1)
ij , A

(2)
ij , . . . , A

(n)
ij )

belong to Rn. Then the integral transform A having A as symbol is again well-defined and
the same proof as before shows that A is bounded from Hp

d (R) into Lp(R,Rn), 0 < p <∞,
since all the necessary martingale results remain valid for Hilbert space-valued martingales.
If, in addition, every column in each A(m) has average zero, then again the adjoint of A is
the integral transform whose symbol is the transpose of A.

Janson and Chao introduced simple algebraic conditions on the matrices A(m) to provide
striking characterizations of H1

d(R) by the corresponding integral transforms in the same
sense that a function in L1(Rn) belongs to H1(Rn) if and only if its Riesz transforms are
L1(Rn)-integrable ([3], [5], [6], [16]).

(3.7) Theorem (Janson). Let A(m), 1 ≤ m ≤ n, be real 4 × 4 matrices having no
common eigenvector in V and let A(0) be the 4× 4 identity matrix. Then there exists r0,
r0 < 1, such that the inequality

‖a‖p ≤ 1
4

3∑
j=0

( n∑
m=0

|am + 〈A(m)(v), ej 〉|p
)
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holds for each p > r0 uniformly in a = (a0, . . . , an) ∈ Rn+1 and v ∈ V.
The algebraic condition on the A(m) ensures that Aφ satisfies a sub-martingale inequal-

ity. Let Am be the integral transform having A(m) as its symbol and let Ψ = {Ψk} be the
Rn+1-valued 4-adic martingale Ψ = (φ,A1φ , . . . , Anφ ) so that

Ψk+1 = Ψk + ∆kΨ = Ψk +
( 3∑
j=0

〈 A(0)(v), ej 〉χIj
, . . . ,

3∑
j=0

〈A(n)(v), ej 〉χIj

)
.

Then with a = Ψk(x) in (3.7) we see that {Ψk} satisfies the submartingale inequality

‖Ψk(x)‖p ≤ E2k(‖Ψk+1‖p)(x)

provided p > r0. Hence by the martingale maximal theorem,∫ ∞

−∞
sup
k
|φk(x)| dx ≤ const.

∫ ∞

−∞
(sup
k
‖Ψk(x)‖p)1/p dx

≤ const. sup
k

∫ ∞

−∞
‖Ψk+1(x)‖ dx

for each p, r0 < p < 1. Consequently, the inequality∫ ∞

−∞
sup
k
|φk(x)| dx ≤ const.

{
‖φ‖L1 + ‖A1(φ)‖L1 + . . . ‖An(φ)‖L1

}
will hold whenever the algebraic condition of (3.7) is satisfied. Since the reverse inequality
is always valid, this establishes the characterization of H1

d(R) on which the Main Theorem
is based.

(3.8) Theorem (Chao-Janson). Let A(m), 1 ≤ m ≤ n, be real 4 × 4 matrices having
no common eigenvector in V. Then a function f in L1(R) belongs to H1

d(R) if and only if
A1f , . . . , Anf are L1-integrable.

The same proof shows also that a dyadic martingale f = {fk} will belong toHp
d (R), p > r0,

if and only if f and all the Amf , 1 ≤ m ≤ n, are Lp-integrable.
We shall apply the Chao-Janson characterization using the matrices

(3.9)(i) R1 =
1
2


0 0 −1 1
0 0 1 −1
1 −1 0 0
−1 1 0 0

 , R2 =
1
2


1 0 0 −1
0 −1 1 0
0 1 −1 0
−1 0 0 1


and

(3.9)(ii) R3 =
1
2


1 0 −1 0
0 −1 0 1
−1 0 1 0
0 1 0 −1

 .
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The associated integral transforms R1,R2 and R3 are bounded on Hp
d (R) as are their

adjoints. In particular,

(3.10) f −→ F =
1√
3
(f,R1f,R2f,R3f)

will be bounded from Hp
d (R) into Lp(R,R4), 0 < p <∞. The factor 1/

√
3 is a normalizing

constant introduced to ensure that R : L2(R) → L2(R,R4) is a partial isometry, i.e.,

(3.11)
∫ ∞

−∞
‖R(f)(x)‖2 dx =

∫ ∞

−∞
|f(x)|2 dx (f ∈ L2(R)).

Indeed, the symbol of R∗R is the matrix

1
3 (I +Rt1R1 +Rt2R2 +Rt3R3) = I − 1

6


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
and this last matrix satisfies (3.3) because it annihilates all v in V, so the corresponding
singular integral transform annihilates all martingale differences. Consequently, R∗R = I,
establishing (3.11).

It is easy to see that these Ri satisfy the algebraic condition in (3.8).

(3.12) Lemma. The matrices R1, R2 and R3 in (3.9) have no non-zero common eigen-
vector in V.

Proof. It is obviously enough to show that R1 andR2 have no non-zero common eigenvector
in V. Now the kernel of R1 is generated by the vectors [1, 1, 0, 0] and [0, 0, 1, 1], so the only
vectors in V that belong to this kernel are scalar multiples of [1, 1,−1,−1]. As R2 maps
[1, 1,−1,−1] into the vector [1,−1, 1,−1], however, no non-zero vector in the kernel of R1

can be an eigenvector for R2.
On the other hand, R2 +iR1 = (R2 − iR1). Consequently, if R1 and R2 have a non-zero

common eigenvector in V, say R1v = λv and R2v = µv, then v must also be an eigenvector
for (R2 − iR1). But iR1 and R2 are both self-adjoint so all their eigenvalues are real. Thus
2λv = 0, which means that either v = 0 or else v is in the kernel of R1, neither of which
can be true if v is a non-zero eigenvector for R2. �

In view of (3.8) and (3.11), therefore, the Ri have properties analogous to classical Riesz
transforms, so it seems reasonable to call them 4-adic Riesz transforms.

4. The 4-adic Walsh model.
To exploit the characterizations of H1

d(R) given in the previous section the Dw op-
erators have to be replaced by the 4-adic version and thence by a vector-valued version
incorporating all the 4-adic Riesz transforms. Set

(4.1) ωj,�,n(x) = 2−jWn(4−jx− �) = (δ4j ◦ τ�)Wn.
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Replacing the wj,�,n in (1.13) with the ωj,�,n we obtain the 4-adic version

(4.2) D : f, g −→
∑
n>0

∑
j,�∈Z

2−j
〈
f, ωj,�,4n+ε1

〉
〈g, ωj,�,4n+ε2

〉
ωj,�,4n+ε3

of Dw. Again the family of all such D will be symmetric and self-adjoint. There is very
close relationship between Dw and D. By separating the sum over the resolution j into
even and odd j we see that

(4.3) Dw(f, g) = D(f, g) +
√

2(δ2 ◦D)(δ1/2(f), δ1/2(g)).

Replacing each wavelet packet ωj,�,m in D by the R4-valued function R(ωj,�,m) we finally
obtain the Walsh model operator

(4.4) D(F,G) =
∑
n>0

∑
j,�∈Z

2−j
〈
F,R(ωj,�,4n+ε1)

〉
〈G,R(ωj,�,4n+ε2)

〉
R(ωj,�,4n+ε3)

defined on R4-valued functions F and G. Once again the family of all such D will be
symmetric and self-adjoint. This family is the one we shall study in later sections.

Unconditional convergence of each of the series above in Lr-norm, at least for simple
functions is easily seen.

(4.5) Theorem. Let I be a dyadic interval in R and χI its characteristic function. Then
the inequalities

‖Dw(χI , g)‖Lr ≤
∑
n>0

∑
j,�∈Z

2−j/2|〈χI ,wj,�,4n+ε1〉 〈g,wj,�,4n+ε2〉| ‖wj,�,4n+ε3‖Lr

≤ const. |I|1/q′−1/r ‖g‖Lq

(
1
q

+
1
q′

= 1
)

hold uniformly for all g in Lq(R) and each r > q , q > 1.

Proof. Suppose |I| = 2−k. Then by dilation invariance

χI = 2k/2 δ2k(χJ ), D(χI , g) = (δ2−k ◦D)(χJ , δ2kg)

for some dyadic interval J with |J | = 1. On the other hand,

‖D(χJ , g)‖Lr ≤
∑
j,�,n

2−j/2 |〈wj,�,4n+ε1 , δ2kg〉| |〈χJ , wj,�,4n+ε2〉| ‖wj,�,4n+ε3‖Lr .

We estimate each of the terms in this last infinite sum. Fix m with 2s ≤ m < 2s+1. In
view of (2.11),

|〈χJ ,wj,�,m〉| =


0, j ≤ s, � ∈ Z,

0, j > s, � �= 0,

2−j/2, j > s, � = 0,
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while ∣∣〈wj,�,m, δ2kg
〉∣∣ ≤ ‖δ2kg‖Lq ‖wj,�,m‖Lq′ = 2(j−k)(1/2−1/q) ‖g‖Lq

by Hölder’s inequality since

‖wj,�,m‖Lt = 2j(1/t−1/2) (0 < t <∞).

Hence,

‖D(χ
J ,g)‖Lr ≤ const. 2−k(1/2−1/q) ‖g‖Lq

×
∞∑
s=0

( ∑
2s≤m<2s+1

∑
j>s

2−j(1+1/q−1/r)

)
≤ const. 2−k(1/2−1/q) ‖g‖Lq

provided r > q. Thus

‖(δ2k ◦D)(χJ , g)‖Lr ≤ const. 2−k(1−1/r−1/q) ‖g‖Lq = const. |I|1/q′−1/r ‖g‖Lq ,

completing the proof. �

By applying this result to a finite number of dyadic intervals we obtain

(4.6) Corollary. Let f =
∑

I aIχI be a finite linear combination of characteristic func-
tions of dyadic intervals in R. Then the inequalities

‖Dw(f, g)‖Lr ≤
∑
n>0

∑
j,�∈Z

2−j/2 |〈f,wj,�,4n+ε1〉 〈g,wj,�,4n+ε2〉| ‖wj,�,4n+ε3‖Lr

≤ const. ‖g‖Lq

hold for all g in Lq(R) and each r > q with constant depending on f ; in particular, (1.13)
converges unconditionally in Lr(R), r > q, for all g ∈ Lq(R) whenever f =

∑
I aIχI .

Thus Dw(f, g) is well-defined for all g ∈ Lq(R) and all f in a dense subspace of Lp(R).
The analogous result will be true for both D(f, g) and D(F,G). Since R(D(f, g)) and∑

n>0

∑
j,�∈Z

2−j
〈
f, ωj,�,4n+ε1

〉
〈g, ωj,�,4n+ε2

〉
R(ωj,�,4n+ε3)

will also then be well-defined as functions in Lr, property (3.11) ensures that the identity

(4.7) R(D(f, g)) = (D(f, g), R1(D(f, g)), . . . ,R3(D(f, g))) = D(Rf,Rg)

holds for all g ∈ Lq(R) and f =
∑

I aIχI . To prove that D(f, g), and hence Dw(f, g), is
in H1

d(R), therefore, it is enough to prove
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(4.8) Theorem. The operator D is bounded from L2(R,R4) × L2(R,R4) into L1(R,R4)
for all triples (ε1, ε2, ε3) having integer entries satisfying (1.11).

In fact more is true. We will actually prove thatD is bounded from Lp(R,R4)×Lq(R,R4)
into Lr(R,R4) for all p, q > 1 such that 1/p+ 1/q = 1/r < 3/2.

The proof of (4.8) will run parallel to the corresponding scalar-valued one given by Thiele
in his thesis once all the analogous 4-adic results and properties have been established. For
the convenience of the reader we give most of the details, especially as those details have
some novelty. To that end we first study the action of R on the ‘even-scaled’ Walsh wave
packets ωj,�,m. Everything depends on the 4-adic decomposition ofm. So fix m and choose
σ so that 4σ ≤ m < 4σ+1; this requires m to lie in one of three frequency intervals

(4.9) w1 = [4σ, 2.4σ), w2 = [2.4σ, 3.4σ), w3 = [3.4σ, 4σ+1)

each having the same length 4σ.

(4.10) Theorem. Let Ri(ωj,�,m) be the 4-adic Riesz transforms of the Walsh wavelet
packets ωj,�,m, m ≥ 1, where the Ri are defined in section 3. Then

R1(ωj,�,m) =


0, m ∈ w1,

ωj,�,m+4σ , m ∈ w2,

−ωj,�,m−4σ , m ∈ w3,

R2(ωj,�,m) =


ωj,�,m+4σ , m ∈ w1,

ωj,�,m−4σ , m ∈ w2,

0, m ∈ w3,

while

R3(ωj,�,m) =


ωj,�,m+2.4σ , m ∈ w1,

0, m ∈ w2,

ωj,�,m−2.4σ , m ∈ w3

where the frequency intervals w1, w2 and w3 are defined in (4.9).

Proof. In view of (3.4)(i), (iii) and (2.9),

Ri(ωj,�,m) = (δ4j ◦ τ�)Ri(Wm),

so it is enough to prove the theorem in the case j = � = 0. But by (2.9) again

(E2σ+2 − E2σ)(Wm) =Wm.

On each time interval I of length 4−σ, therefore, the 4 values of Wm determine a vector
v ∈ V. To compute Ri(Wm) we need to find this vector; it will depend on which of the
frequency intervals wi the integer m belongs. Now

m = 4σ +m1, (m ∈ w1); m = 2.4σ +m2, (m ∈ w2);

m = 2.4σ + 4σ +m3, (m ∈ w3)
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with 0 ≤ mi < 4σ for all three i. Thus

Wm(x) =


r0(4σx).Wm1(x), m ∈ w1,

r0(2.4σx).Wm2(x), m ∈ w2,

r0(4σx)r1(4σx).Wm3(x), m ∈ w3,

and so R(Wm) = Wm1 R(r0) when m ∈ w1 since Wm1 will be B2σ-measurable; similar
comments apply when m ∈ w2 and m ∈ w3. Consequently, there is a natural mapping

Wm −→ v =


[1, 1,−1,−1], m ∈ w1,

[1,−1, 1,−1], m ∈ w2,

[1,−1,−1, 1], m ∈ w3

from Wm into V. Furthermore, the particular 4-vector associated to Wm is independent
of the time interval I, |I| = 4−σ. But simple matrix multiplication shows that

[1, 1,−1,−1]Ri =


0, i = 1,

[1,−1, 1,−1], i = 2,

[−1, 1, 1,−1], i = 3,

[1,−1, 1,−1]Ri =


[1,−1,−1, 1], i = 1,

[1, 1,−1,−1], i = 2,

0, i = 3,

[1,−1,−1, 1]Ri =


−[1,−1, 1,−1], i = 1,

0, i = 2,

[1, 1,−1,−1, ], i = 3,

Hence, by (3.4)(ii)

R1(Wm) =


0, m ∈ w1,

Wm+4σ , m ∈ w2,

−Wm−4σ , m ∈ w3,

R2(Wm) =


Wm+4σ , m ∈ w1,

Wm−4σ , m ∈ w2,

0, m ∈ w3,

while

R3(Wm) =


Wm+2.4σ , m ∈ w1,

0, m ∈ w2,

Wm−2.4σ , m ∈ w3.

This completes the proof of (4.10). �
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(4.11) Corollary. Each function R(ωj,�,m) has support on the interval [4j�, 4j(� + 1)),
and on this support ‖R(ωj,�,m)(x)‖ = 2−j. In addition ‖R(ωj,�,m)‖L2 = 1.

5. Geometry of even-scaled phase space.
In this section we develop the geometric properties of phase plane needed later. The

details differ somewhat from those given by Thiele because 4-adic constructions are used
and the frequency n = 0 has been excluded. Recall that an even-scaled dyadic interval or
4-adic interval is an interval of the form [4j�, 4j(� + 1)), j, � ∈ Z. The set J of all such
intervals form a grid in the sense that

(i) I ∩ I ′ ∈ {∅, I, I ′}, (ii) I ⊂ I ′, I �= I ′ =⇒ 4|I| ≤ |I ′|.

for all I, I ′ ∈ J ; frequent use of this property will be made without comment. The even-
scaled Walsh phase plane will be the open upper half-plane R2

+ where the first coordinate
represents the time or spatial variable and the second coordinate represents the frequency
variable. A tile P is a rectangle IP × ωP in R2

+ such that IP , wP ∈ J and |IP | |wP | = 1.
The set of all these tiles will be denoted by P. To each tile

P = [4j�, 4j(�+ 1))× [4−jm, 4−j(m+ 1))

we associate the Walsh wave packet

ωP (x) = ωj,�,m(x) = 4−j/2Wm(4−jx− �),

thus providing a one-to-one correspondence P ↔ ωP between P and the family of all Walsh
wavelet packets introduced in (4.1). Note that ωP (x) is supported on the time interval IP
of the P and that its absolute value is constant on this interval; corollary (4.11) says that
the same is true of R(ωP ).

(5.1) Remark. Because the frequency n = 0 has been excluded, the distance from a tile
P to the boundary R of R2

+ is at least 1/|IP |.
A quartile Q is a 4-adic rectangle IQ × wQ in R2

+ of area 4 where both IQ and wQ
are 4-adic intervals. The set of all these quartiles will be denoted by Q. Each quartile
Q ∈ Q consists of four frequency sibling tiles aQ, bQ, cQ and dQ, listed alphabetically with
increasing frequency, all of which have the same time interval as Q. On the other hand, Q
will be said to be decomposable if it can also be written as the union of four time sibling
tiles αQ, βQ, γQ and δQ, listed alphabetically with increasing time, all of which have the
same frequency interval as Q. Notice that every quartile can be written as the union of
four frequency sibling tiles but by (5.1) there are quartiles which cannot be written as the
union of four time sibling tiles. Such quartiles will be said to be indecomposable. To the
frequency siblings correspond Walsh wavelet packets ωaQ , ωbQ , ωcQ and ωdQ respectively,
while ωαQ , ωβQ , ωγQ and ωδQ correspond to the respective time siblings.

There is a very delicate interplay between the geometry of 4-adic phase plane and
boundedness estimates for the Walsh model operator D. This is based on the phase plane
realization of D. For when ε1 = 0, ε2 = 1, and ε3 = 2, the corresponding operator in (4.4)
can be written as

D(F,G) =
∑
Q∈Q

1√
|IQ|

〈F, R(ωaQ) 〉 〈G, R(ωbQ) 〉R(ωcQ).
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The family of all D-operators is obtained by varying the choice and order of frequency
siblings used. The remainder of this section develops the interplay between the geometry
of 4-adic phase plane and the structure of D.

(5.2) Lemma. Let Q and Q′ be two different quartiles in Q. Then at least three of the
intersections aQ ∩ aQ′ , bQ ∩ bQ′ , cQ ∩ cQ′ , dQ ∩ dQ′ are empty.

Proof. First note that if wQ = [4jm, 4j(m+ 1)) then each frequency sibling tile of Q has
frequency interval fi = [4jm + (i − 1)4j−1, 4jm + i4j−1), i = 1, . . . , 4 respectively. If
Q ∩ Q′ = ∅ we are done. So suppose Q ∩ Q′ �= ∅. Without any loss of generality we can
assume wQ′ ⊂ wQ since Q �= Q′. But wQ′ ⊆ fi for some 1 ≤ i ≤ 4 since wQ′ is itself a
4-adic interval. Then all frequency sibling tiles in Q′ have frequency intervals contained in
fi0 . Thus all of the frequency intervals of the four frequency sibling tiles of Q′ have empty
intersection with fi for all i �= i0. �

There is a natural partial order on P in which

P ≤ P ′ ⇐⇒ IP ⊆ IP ′ , wP ⊇ wP ′ .

Observe that two tiles are comparable, meaning that P ≤ P ′ or P ′ ≤ P , if and only if
P ∩ P ′ �= ∅.

If P is a set of tiles we denote by Pmin the set of minimal tiles in P and by Pmax the
set of maximal tiles in P.

(5.3) Remark. The four frequency sibling tiles of an indecomposable quartile are always
minimal tiles.

(5.4) Lemma. Let P be a finite set of pairwise disjoint tiles. Let P̃ be the set of all tiles
P̃ ∈ P such that P̃ ⊂

⋃
P∈P P . Then either P = (P̃)min or P contains four frequency

sibling tiles.

Proof. The tiles in (P̃)min are minimal and therefore pairwise disjoint. They are all covered
by tiles in P. Therefore either P = (P̃)min or there exists P ∈ P such that P /∈ (P̃)min.
We pick such a P with maximal time interval IP and we also pick P̃ ∈ P̃ such that P̃ ≤ P ,
P̃ �= P . Then P̃ is less or equal than any of the three frequency sibling tiles to P . Since
P̃ is covered by the tiles in P then for each of the three frequency sibling tiles of P there
exists a P ′ ∈ P intersecting nontrivially that sibling, and such that P ′∩P = ∅. Therefore,
each of the three frequency sibling tiles to P is less or equal than P ′. But then, P ′ ∈ P̃
and P ′ is not minimal , moreover |IP ′ | ≤ |IP |. Then P ′ must equal a frequency sibling tile
to P and therefore P contains four frequency siblings. �
(5.5) Lemma. Let P and P̃ be as in (5.4). Then,⋃

P∈P
P =

⋃
P̃∈( eP)min

P̃

Proof. If P = (P̃)min we are done. If P �= (P̃)min, lemma (5.4) ensures that P contains
four frequency sibling tiles none of which belong to (P̃)min. So a quartile that is the union
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of these four frequency sibling tiles is decomposable by (5.3) and we can then replace the
four frequency sibling tiles by the four time sibling tiles over the same quartile. It suffices
now to establish the lemma for the new set of tiles. Doing this successively, the procedure
must terminate because changing from frequency sibling tiles to time sibling tiles gives tiles
with larger frequency intervals. Since there is an upper bound on the size of the frequency
intervals of tiles in P̃ (the original P was a finite set), this procedure terminates when P
becomes (P̃)min. �

(5.6) Lemma. Let P and P̃ be as in (5.4). Then⋃
P∈P

P =
⋃

P̃∈( eP)max

P̃

Proof. This is a consequence of the dual versions of (5.4) and (5.5). That is, exchange
≤ by ≥, the words maximal and minimal as well as “frequency sibling tiles” and “time
sibling tiles.” For the proof of the dual version of (5.5) note that any quartile that is the
union of four time sibling tiles is always decomposable (so we can replace the four time
sibling tiles by the four frequency sibling tiles over the same quartile). �

(5.7) Corollary. Let P and P̃ be as in (5.4). Then for each P̃ ∈ P̃ there is a set P ′ of
pairwise disjoint tiles that contains P̃ and satisfies⋃

P ′∈P′

P ′ =
⋃
P∈P

P

Proof. By (5.5) we can assume P = (P̃)min and also that each P ∈ (P̃)min intersects P̃
nontrivially. (Just remove from (P̃)min all those which don’t. Call that set A.) We get
then that P̃ is maximal in the set B of all tiles in

⋃
P∈( eP)min\A P . By (5.6) we are done

once we choose P ′ = Bmax ∪A. �
We define for quartiles the same partial order as for tiles. Then we have:

(5.8) Definition. A set Q of quartiles is called “convex”, if for all ordered triples Q ≤
Q′ ≤ Q′′ of quartiles we have that if Q,Q′′ ∈ Q then Q′ ∈ Q.

(5.9) Lemma. The union of a finite convex set Q of quartiles can be decomposed into a
disjoint union of tiles.

Proof. We use induction on the number of quartiles. Clearly the lemma is true for the
empty set. So given a nonempty finite convex set Q of quartiles we can pick a minimal
quartile Q in Q. Let aQ be one of the four frequency sibling tiles that constitute Q. Let
Q′ be the quartile which is the union of aQ and its three time siblings (these tiles are at
the same scale as the aQ). The choice of Q′ is uniquely determined because the union
of the time interval of aQ and its three time sibling tiles must be a 4-adic interval on R

of size four times the size of the time interval of aQ; and there exists a unique one with
these conditions since the 4-adic intervals on R form a grid. If there exists Q′′ ∈ Q besides
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Q which intersects aQ nontrivially then its frequency interval must be contained in or be
equal to the frequency interval of aQ (Q is minimal) and thus also be contained or be equal
to the frequency interval of Q′. So Q ≤ Q′ ≤ Q′′ which implies Q′ ∈ Q by convexity. This
means aQ is either contained in or disjoint from (in the case that such a Q′′ doesn’t exist)
the union of the quartiles in Q \ {Q}. This is true for all four frequency sibling tiles that
constitute Q, and so the desired result follows from the induction hypothesis (which says
that Q \ {Q} can be decomposed into a disjoint union of tiles). �
(5.10) Lemma. Let Q be a quartile. Then each of the wave packets associated to each of
the four frequency sibling tiles of Q can be written as a linear combination of wave packets
associated to each of the time sibling tiles, and vice versa. Namely,

ωj+1,�,4n =
1
2
(
ωj,4�,n + ωj,4�+1,n + ωj,4�+2,n + ωj,4�+3,n

)
,

ωj+1,�,4n+1 =
1
2
(
ωj,4�,n + ωj,4�+1,n − ωj,4�+2,n − ωj,4�+3,n

)
,

ωj+1,�,4n+2 =
1
2
(
ωj,4�,n − ωj,4�+1,n + ωj,4�+2,n − ωj,4�+3,n

)
,

ωj+1,�,4n+3 =
1
2
(
ωj,4�,n − ωj,4�+1,n − ωj,4�+2,n + ωj,4�+3,n

)
.

Proof. From the inductive definition of the Walsh functions it is easy to see that

wj,�,2n =
1√
2

(
wj−1,2�,n + wj−1,2�+1,n

)
,

wj,�,2n+1 =
1√
2

(
wj−1,2�,n − wj−1,2�+1,n

)
.

By applying these twice we get the corresponding relationships between wave packets in
the 4-adic case:

ωj+1,�,4n =
1√
2

(
w2j+1,2�,2n + w2j+1,2�+1,2n

)
,

=
1
2
(
w2j,4�,n + w2j,4�+1,n + w2j,4�+2,n + w2j,4�+3,n

)
,

=
1
2
(
ωj,4�,n + ωj,4�+1,n + ωj,4�+2,n + ωj,4�+3,n

)
.

The other identities can be established in exactly the same way. Notice that the coefficient
matrix

B =
1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


is an orthogonal matrix. So we can change back and forth, increasing or decreasing the
scale as we wish. �
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(5.11) Lemma. Let P and P ′ be two finite sets of pairwise disjoint tiles, which cover the
same area in the phase plane. Then the two sets of wave packets {ωP }P∈P and {ωP ′}P ′∈P′

span the same vector subspace of L2(R).

Proof. As in (5.5) we replace each set of four frequency sibling tiles by four time sibling tiles
without changing the spanned vector space in L2(R) or in L2(R,R4) by (5.10), until both
sets become (P̃)min. If the four frequency sibling tiles form an indecomposable quartile
they already belong to (P̃)min. �
(5.12) Corollary. Let P and P ′ be two finite sets of pairwise disjoint tiles, which cover
the same area in the phase plane. Then the two sets {R(ωP )}P∈P and {R(ωP ′)}P ′∈P′

span the same vector subspace of L2(R,R4).

Proof. Let F be a linear combination of {R(ωP )}P∈P . Since R is linear, we can express
F as the image under R of a linear combination of the wave packets {ωP }P∈P . By (5.11)
and the linearity of R, F can be expressed as linear combination of {R(ωP ′)}P ′∈P′ . �
(5.13) Corollary. Let S ⊆ R2

+ be a disjoint union of tiles. Then there is a unique vector
space in L2(R) associated to S, and a unique vector space in L2(R,R4) associated to S.
Namely, the vector space spanned by {ωP }P∈S and by {R(ωP )}P∈S respectively.

We denote by ΠS both the orthogonal projection onto this subspace of L2(R) and onto
this subspace of L2(R,R4). We say that the set S defines a projection.

(5.14) Corollary. Let P be a finite set of pairwise disjoint tiles and let A denote their
union. Then the wave packet ωP of any tile P ⊂ A is contained in the vector space spanned
by the wave packets of the tiles in P. And moreover, R(ωP ) is contained in the vector space
spanned by the functions R of the wave packets of the tiles in P.
Proof. That ωP is contained in the vector space spanned by the wave packets of the tiles
in P is a consequence of Corollaries (5.7) and (5.13). The corresponding result for R(ωP )
relies also on the linearity of R. �
(5.15) Lemma. If two tiles P, P ′ are disjoint, then the corresponding wave packets ωP
and ωP ′ are orthogonal in L2(R).

Proof. If IP ∩ IP ′ = ∅ then 〈ωP , ωP ′〉 = 0. If IP ∩ IP ′ �= ∅ then we must have that
wP ∩ wP ′ = ∅ since P and P ′ are disjoint. Without any loss of generality we can assume
IP , IP ′ ⊆ [0, 1), since if |IP | = 4j and |IP ′ | = 4j

′
with j ≥ j′, by a rescaling of the time axis

we have that 〈ωP , ωP ′〉 = 2j−j
′〈ωP̃ , ωP̃ ′〉 where P̃ = [0, 1) × [m,m + 1), |IP̃ ′ | = 4−(j−j′)

and wP̃ ∩wP̃ ′ = ∅.
Let P be the set of tiles of the form [0, 1)×w with |w| = 1 which intersect P and let P ′ be

the set of tiles of the same form which intersect P ′. These two sets are disjoint. Moreover,
the wave packets corresponding to tiles of the form [0, 1)×w are Walsh functions restricted
to [0, 1). Hence by (5.14) the two wave packets in question are contained in orthogonal
subspaces of L2(R) since Walsh functions are orthogonal on [0, 1). �

The corresponding result for the R(ωP ) follows at once from

〈R(ωP ),R(ωP ′)〉 = 〈ωP , ωP ′〉

since R∗R = I on L2(R).
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(5.16) Corollary. If two tiles P, P ′ are disjoint, then R(ωP ) and R(ωP ′) are orthogonal
in L2(R,R4).

6. Bilinear Marcinkiewicz interpolation.
In the final analysis establishing boundedness for such bilinear operators as those in

the previous sections always relies on linear or bilinear real interpolation between weak
type estimates. In this section we collect together the requisite interpolation results and
then show how the main theorem follows from them once weak type estimates have been
established.

Because of the need to allow Lebesgue Lp-spaces and Lorentz Lpq-spaces with p < 1 it
will be important to formulate all the interpolation results in the context of quasi-Banach
spaces. It will also be important to allow Hilbert space-valued functions. Thus we shall
be considering Lebesgue spaces Lp(R,H)-spaces and Lorentz spaces Lpq(R,H)-spaces with
0 < p <∞ and H a real or complex Hilbert space. Recall the following real interpolation
between such spaces which is well-known in its scalar-valued form, though less-well known
in general ([1] page 121).

(6.1) Theorem. Let H be a real or complex Hilbert space. Then the equality

(Lp0q0(R,H), Lp1q1(R,H))θ,q = Lpq(R,H)
(

1
p

=
1− θ
p0

+
θ

p1

)
holds up to equivalence of norms for all pi, qi with 0 < pi ≤ ∞ and 1 ≤ qi ≤ ∞.

As Michael Cwikel has pointed out to us, however, the vector-valued version of (6.1) for
any Banach space A can be deduced from the scalar-valued version: let X0, X1 be Banach
spaces of measurable functions on the same measure space Ω and let Xi(A) be the space
of A-valued strongly measurable functions f : Ω → A for which ‖‖f(.)‖A‖Xi is finite.
Then it is straightforward to show that the K-functionals associated with the respective
compatible pairs B = (X0(A), X1(A)) and X = (X0, X1) satisfy the identity

K(t, f : B) = K(t, ‖f(.)‖A : X) (t > 0)

for an A-valued function f . Interpolation between spaces of A-valued functions can thus
be read off from the corresponding scalar-valued results.

Bilinear interpolation results paralleling Young’s inequality for convolution have been
known for Banach spaces from the early days of interpolation theory, but a result paral-
leling Hölder’s inequality for pointwise multiplication precisely, valid for both p-Banach
spaces and Banach spaces, is needed. This was given by Janson though his result will be
formulated here exactly as it is required ([17]).

Fix p0, p1 and p2 with 1 < p0 < p1 ≤ p2 <∞ and let B = B(f, g) be a bilinear operator
which is defined on some space F(R,H) of functions which is dense in every Lp(R,H),
0 < p <∞. Suppose further that B extends to a bounded bilinear operator

(6.2) B :

{
Lp0(R,H)× Lp2(R,H) −→ Lr0,∞(R,H),

Lp2(R,H)× Lp0(R,H) −→ Lr0,∞(R,H),

(
1
r0

=
1
p0

+
1
p2

)
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as well as

(6.3) B :

{
Lp1(R,H)× Lp2(R,H) −→ Lr1,∞(R,H),

Lp2(R,H)× Lp1(R,H) −→ Lr1,∞(R,H),

(
1
r1

=
1
p1

+
1
p2

)
.

The result of Janson replaces these weak type estimates with strong type estimates as
in the classical Marcinkiewicz theorem by setting up an abstract interpolation structure.

(6.4) Theorem. If B is bilinear operator which is defined on all functions in F(R,H),
then it extends to a bilinear operator

B : Lp(R,H)× Lq(R,H) −→ Lr(R,H)
(

1
r

=
1
p

+
1
q

)
that is bounded for all

p0 < p, q < p2,
1
r1
<

1
p

+
1
q
<

1
r0

once (6.2) and (6.3) are known to be bounded.

The proof is simply an application of Janson’s result in a particular case. Because the
form of the conditions on p, q and r are the same as in Hölder’s theorem, i.e. corresponding
to pointwise multiplication, we shall call (6.4) the Bilinear Marcinkiewicz Interpolation
theorem for multiplication type operators.

Proof of (6.4). Fix compatible pairs

X1 = (Lp0(R,H), Lp2(R,H)) = X2, Y = (Lr0,∞(R,H), Lp2/2,∞(R,H)).

of complete quasi-normed Abelian groups and let

Xi,θi,qi = ((Lp0(R,H), Lp2(R,H))θi,qi , Yθ,q = (Lr0,∞(R,H), Lp2/2,∞(R,H))θ,q.

be the corresponding real interpolation spaces; these can be identified using (6.1). Now set
θ = −1+φ+ψ for each pair (φ, ψ) ∈ [0, 1]× [0, 1]. Janson’s result relates the boundedness
of B with the geometry of the set Φ of pairs (φ, ψ) for which

B : X1,φ,q1 ×X2, ψ,q2 −→ Yθ,∞

is bounded for some choice of q1, q2 varying possibly with (φ, ψ). Property (6.2) ensures
that Φ contains the points (1, 0) and (0, 1), while (6.3) ensures that Φ contains the points
(θ1, 1) and (1, θ1) when θ1 is chosen so that

Lp1(R,H) = (Lp0(R,H), Lp2(R,H))θ1,p1 .

Consequently,

B : Lp(R,H)× Lq(R,H) −→ Lr(R,H)
(

1
r

=
1
p

+
1
q

)
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will be bounded for any pair (φ, ψ) in the interior of the convex set having these four
points in Ω as extreme points ([17], theorem 2). Such points correspond precisely to the
restrictions on p, q given in (6.4), thus completing the proof of (6.4). �

Although (6.1) can fail when the same Hilbert space or Banach space is not used through-
out (cf. [12]), it is worth noting that the proof above remains valid for arbitrary Banach
spaces A0, A1 and A2 in the sense that a bilinear operator B will be bounded as a mapping

(6.5) B : Lp(R, A0)× Lq(R, A1) −→ Lr(R, A2)
(

1
r

=
1
p

+
1
q

)
for the same range as in (6.4) once

(6.6) B :

{
Lp0(R, A0)× Lp2(R, A1) −→ Lr0,∞(R, A2),

Lp2(R, A0)× Lp0(R, A1) −→ Lr0,∞(R, A2),

(
1
r0

=
1
p0

+
1
p2

)

as well as

(6.7) B :

{
Lp1(R, A0)× Lp2(R, A1) −→ Lr1,∞(R, A2),

Lp2(R, A0)× Lp1(R, A1) −→ Lr1,∞(R, A2),

(
1
r1

=
1
p1

+
1
p2

)

are known to bounded.
The next result reduces the proof of (4.8), and hence that of the Main Theorem, to

establishing weak type estimates forD, i.e., to establishing the boundedness of the mapping
D : Lp(R)× Lq(R) → Lr∞(R).

(6.8) Theorem. Suppose D is bounded from Lp(R)× Lq(R) into Lr∞(R) for all choices
of triples (ε1, ε2, ε3) having integer entries satisfying (1.11) whenever 1 < p < 2 ≤ q <∞.
Then each such D extends to a bounded operator

D : Lp(R)× Lq(R) −→ Lr(R)

for all 1 < p, q <∞ for which 1/p+ 1/q = 1/r < 3/2.

Proof. Choose 1 < p0 < 2 ≤ p2 < ∞. Then by symmetry, D satisfies (6.2) with H = R4.
Similarly, D will satisfy (6.3) also for any fixed choice of p1, p0 < p1 < 2. Thus by the
bilinear Marcinkiewicz theorem above, D will extend to a bounded operator

D : Lp(R)× Lq(R) −→ Lr(R)

for all 1 < p, q <∞ for which

1
p1

+
1
p2
<

1
p

+
1
q
<

1
p0

+
1
p2

By varying the choice of p0, p1 and p2 we thus obtain (6.8) for all 1 < p, q < ∞ with
1/2 < 1/p+ 1/q < 3/2.
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To extend the range, we exploit the self-adjoint property of the family of D operators.
Fix q0 > 4. We prove first that D maps Lq0 ×Lq0 into Lq0/2 (this corresponds to the case
proved separately by Thiele using tri-linear estimates). Let Lp0(R,H), 1 < p0 < 2, be the
dual space of Lq0/2 and let Lq1(R,H) be the dual space of Lq0(R,H). Then for each H in
Lp0(R,H) and F,G in Lq0(R,H),

〈D(F,G), H 〉 =
∑
j,�,n

2−j
〈
F,R(ωj,�,4n+ε1)

〉
〈G,R(ωj,�,4n+ε2)

〉 〈
H,R(ωj,�,4n+ε3)

〉
=

〈
G,

{∑
j,�,n

2−j
〈
H,R(ωj,�,4n+ε3)

〉〈
F,R(ωj,�,4n+ε1)

〉
R(ωj,�,4n+ε2)

}〉
.

But
1
q1

=
1
q0

+
1
p0

=
1
q0

+
q0 − 2
q0

= 1− 1
q0
>

1
2
.

So by our earlier strong type results,

|〈D(F, G), H〉| ≤ const. ‖F‖Lq0‖G‖Lq0‖H‖Lp0 ,

showing indeed that D maps Lq0×Lq0 into Lq0/2. Consequently, D is bounded as a bilinear
operator

D :

{
Lp0(R,H)× Lq0(R,H) −→ Lr0,∞(R,H),

Lq0(R,H)× Lp0(R,H) −→ Lr0,∞(R,H),

(
1
r0

=
1
p0

+
1
q0

)
as well as

D : Lq0(R,H)× Lq0(R,H) −→ Lr1,∞(R,H),
(

1
r1

=
2
q0

)
.

We can thus apply the bilinear Marcinkiewicz theorem again, establishing boundedness
in (6.8) for all p, q such that

1
p0

+
1
q0
>

1
r

=
1
p

+
1
q
>

2
q0
.

The general result follows by letting q0 →∞. �
7. Weak type estimates for D.

In this section we will complete the proofs of the boundedness results for the various
Walsh model operators by showing that the 4-adic version

D : F,G −→
∑
Q∈Q

1√
|IQ|

〈F, R(ωaQ) 〉 〈G, R(ωbQ) 〉R(ωcQ)

satisfies the weak type estimate

(7.1) |{x : ‖D(F,G)(x)‖ > λ }| ≤ const.
(
‖F‖Lp‖G‖Lq

λ

)r

(λ > 0)
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provided

1 < p < 2 ≤ q <∞, 1
p

+
1
q

=
1
r
.

To be able to exploit the structure of the family of such operators, however, it is important
to observe the proof of (7.1) does not depend on which three of the four frequency siblings
{aQ, bQ, cQ, dQ} are used to define D, nor on the order in which they appear, so long as
the choice and order are fixed for all Q.

In proving (7.1), the lack of a natural total order in the geometry of D forces us to
use L2-techniques. We shall partition R into a ‘good’ set R \ E where L2-estimates can
be established and a ‘bad’ set E whose measure can be controlled. To that end fix F in
Lp(R), 1 < p < 2, so that G→ D(F,G) becomes a linear operator; we shall further assume
that F is a linear combination of characteristic functions of 4-adic intervals, though this
requirement is not always necessary.

(7.2) Main Lemma. For each κ > 0 there exists a set E ⊂ R such that the estimates

(i) |E| ≤
(
‖F‖Lp

κ

)p

,

and

(ii)
(∫

R\E
‖D(F,G)(x)‖2 dx

)1/2

≤ const.
(

κ

‖F‖Lp

)α

‖F‖Lp ‖G‖Lq

hold uniformly for all G ∈ Lq(R,R4) with 2 ≤ q <∞ and α = p(1/r − 1/2).

Given λ > 0, the weak estimate (7.1) follows easily from (7.2) by choosing

κ =
(
‖F‖pLp

λq

‖G‖qLq

)1/p+q

.

For then

|E| ≤
(
‖F‖Lp

κ

)p

≤ const.
(
‖F‖Lp‖G‖Lq

λ

)r

,

while ∫
R\E

‖D(F,G)(x)‖2 dx ≤ const.(κα‖F‖1−αLp ‖G‖Lq)2

≤ const. λ2

(
‖F‖Lp‖G‖Lq

λ

)r

.

In this case

|{x : ‖D(F,G)(x)‖ > λ}| ≤ 1
λ2

∫
R\E

‖D(F,G)(x)‖2 dx+ |E|

≤ const.
(
‖F‖Lp‖G‖Lq

λ

)r

,
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establishing (7.1). �
We are thus reduced to proving the Main Lemma (7.2). It in turn relies on two key

estimates:
• Proposition (7.4) which will control the measure of the set E, and

• Proposition (7.13) which will yield the L2 estimate on R \E.
Their proof will run parallel to those given by Thiele in the scalar-valued setting. Given a
family P of pairwise disjoint tiles in P, set

NP(x) = card{P ∈ P : x ∈ IP }.

We call this the counting function for the set P. Now let Pk be a set of pairwise disjoint
tiles in P such that

‖ΠP (F )‖L∞ = ‖
〈
F,R(ωP )

〉
R(ωP )‖L∞ =

|〈F,R(ωP )〉|√
|IP |

≥ 2k, (P ∈ Pk).

By Parseval’s inequality and (5.16),

(7.3)
∫ ∞

−∞
NPk

(x) dx =
∑
P∈Pk

|IP | ≤ const.
(
‖F‖L2

2k

)2

.

We call such an estimate a Carleson measure estimate. Of course, both Pk and its Carleson
measure estimate depend on the fixed choice of F .

(7.4) Proposition. For each F ∈ Lp(R,R4), 1 < p < 2, and k ∈ Z the counting function
NPk

satisfies the inequality

‖N1/p′+ε
Pk

‖Lp ≤ const.
‖F‖Lp

2k

uniformly in F for each ε > 0 with constant depending on p and ε.

Proof. For each x ∈ R, let B(x) = {ΠP (F )(x)}P∈Pk
. Then the Lp(R, ls)-norm of this

function B = B(x) is given by

‖B‖Lp(ls) =
(∫ ∞

−∞

( ∑
P∈Pk

‖ΠP (F )(x)‖s
)p/s

dx

)1/p

.

Thus again by Parseval’s inequality and (5.16)

‖B‖L2(l2) =
∑
P∈Pk

‖ΠP (F )‖2L2 ≤ ‖F‖L2 ,

while

‖B‖1+εL1+ε(l∞) =
∫ ∞

−∞

(
sup
P∈Pk

‖ΠP (F )(x)‖
)1+ε

dx

≤
∫ ∞

−∞
(M(F )(x))1+ε dx ≤ ‖F‖1+ε

L1+ε
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for some small ε > 0 since

‖ΠP (F )(x)‖ ≤ 1
|IP |

∫
IP

‖F (y)‖ dy ≤M(F )(x).

But then by complex interpolation the inequality

(7.5) ‖B‖Lp(lp′+ε̃) ≤ const. ‖F‖Lp (1 < p < 2)

holds for sufficiently small ε̃ > 0 ([1]). On the other hand,

NPk
(x) =

∑
P∈Pk

χP (x) ≤
∑
P∈Pk

(
2−k‖ΠP (F )(x)‖

)p′+ε̃
.

Hence, in view of (7.5),(∫ ∞

−∞

(
NPk

(x)
)p/p′+ε̃

dx

)1/p

≤ 1
2k

(∫ ∞

−∞

(
‖B(x)‖�p′+ε̃

)p
dx

)1/p

=
1
2k
‖B‖Lp(�p′+ε) ≤ const.

‖F‖Lp

2k
,

completing the proof. �
When the projection ΠP (F ) = 〈F, R(ωP ) 〉R(ωP ) onto the subspace spanned by the

wavelet packet associated with a single tile is replaced by the projection

ΠQ(F ) =
d∑

z=a

〈F,R(ωzQ)〉R(ωzQ)

onto the subspace spanned by the wavelet packets associated with the four frequency
sibling tiles {aQ, bQ, cQ, dQ} in a given quartile Q, there is a companion Carleson measure
estimate. To isolate the L∞-norm of each of the terms in this sum, however, we set

(7.6) ‖ΠQ(F )‖∞ = max
z=a,...,d

‖ΠzQ(F )‖L∞ = max
z=a,...,d

‖〈F,R(ωzQ)〉R(ωzQ)‖L∞

where the maximum is taken over the four frequency siblings in Q.

(7.7) Corollary. The Carleson measure estimates of (7.4) remain valid when the sets Pk
of pairwise disjoint tiles are replaced by any set Qk of pairwise disjoint quartiles such that
‖ΠQ(F )‖∞ ≥ 2k for all Q ∈ Qk.

Proof. If Q is a quartile in Qk such that ‖ΠQF‖L∞ ≥ 2k, then one of the frequency sibling
tiles in Q, say aQ, satisfies

‖ΠaQF‖L∞ ≥ 2k.

For each quartile Q ∈ Qk we pick one such tile and call this set of tiles Pk. The corollary
follows applying (7.4) to this set Pk. �
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Just as in Fefferman’s proof of the almost everywhere convergence of Fourier series of
L2-functions, the proof of the Main Lemma proceeds by decomposing the operator D into
sums over ‘trees’ which in our case will be collections of quartiles. Recall the partial order
on the set Q of quartiles in which

Q ≤ Q′ ⇐⇒ IQ ⊆ IQ′ , wQ′ ⊆ wQ.

We define the density of the quartile Q with respect to F by

δ(Q,F ) = sup
Q′≥Q

‖ΠQ′ (F )‖∞

and set
Qk(f) = {Q ∈ Q : 2k ≤ δ(Q,F ) < 2k+1 } (k ∈ Z).

These are the quartiles having homogeneous density . They provide the initial decomposi-
tion

D(F,G) =
∑
k∈Z

( ∑
Q∈Qk

1√
|IQ|

〈F, R(ωaQ) 〉 〈G, R(ωbQ) 〉R(ωcQ)
)

of D(F,G). Notice also that each Qk is finite since F is a finite linear combination of
characteristic functions, so it makes sense to speak of maximal quartiles in Qk and to
count how many maximal quartiles in Qk are greater than a given quartile. To quantify
these ideas let Qmax

k be the set of all such maximal quartiles in Qk.

(7.8) Definition. For each i ≥ 0 the set

Qk,i = {Q ∈ Qk : 2i ≤ card{Q′ ∈ Qmax
k : Q′ ≥ Q } < 2i+1 }

of quartiles in Qk will be called a forest. Conversely, for each maximal quartile Qmax in
Qk,i, the set

TQmax = {Q ∈ Qk,i : Q ≤ Qmax }

of quartiles in Qk,i will be called a tree having tree top Qmax.

With this decomposition, D(F,G) now becomes a sum

(7.9) D(F,G) =
∑
k∈Z

( ∞∑
i=0

FQk,i
(G)

)

of Forest operators

FQk,i
(G) =

∑
Q∈Qk,i

1√
|IQ|

〈F, R(ωaQ) 〉 〈G, R(ωbQ) 〉R(ωcQ).

The union of trees gives back a forest, but we can be much more precise,
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(7.10) Lemma (Fefferman-Thiele). Any two trees in Qk,i are disjoint.

Proof. Suppose not, then there exists Q ∈ Qk,i such that Q ≤ Qmax and Q ≤ Q′max where
both Qmax and Q′max are maximal quartiles in Qk,i. But Qmax and Q′max must be less
than at least 2i maximal quartiles in Qk since they both belong to Qk,i. Furthermore,
these two collections of maximal quartiles must be disjoint because by maximality the
frequency intervals of Qmax and Q′max are disjoint. Hence Q is less than at least 2i+1

maximal quartiles in Qk, contradicting the fact that Q belongs to Qk,i. �

Consequently, each Forest operator in (7.9) is itself a sum

FQk,i
=

∑
Qmax∈Qk,i

TQmax

of Tree operators

TQmax(G) =
∑

Q∈TQmax

1√
|IQ|

〈F, R(ωaQ) 〉 〈G, R(ωbQ) 〉R(ωcQ).

These are the most basic operators. They are local in the sense that TQmax(G) depends only
on the restriction of G to the maximal time interval IQmax ; on the other hand, the crucial
point of (7.10) is that the Tree operators making up a forest operator are orthogonal .
Both properties are key to determining the L2-operator norm of a forest operator once the
following two results are in hand.

(7.11) Lemma. The set of all quartiles in a tree is a finite convex set of quartiles.

Proof. By construction any tree can contain only finitely many quartiles because F was
assumed to be a finite linear combination of step functions. To check convexity, let TQmax

be a tree in Qk,i having Qmax for its top and suppose Q ≤ Q′ ≤ Q′′ holds for some pair of
quartiles Q,Q′′ in TQmax . Then Q′ ≤ Qmax and

2k ≤ δ(Q,F ) ≤ δ(Q′, F ) ≤ δ(Q′′, F ) < 2k+1,

so Q′ ∈ Qk. On the other hand, since Q ≤ Q′ ≤ Q′′,

{Q̃ ∈ Qmax
k : Q̃ ≥ Q′′} ⊆ {Q̃ ∈ Qmax

k : Q̃ ≥ Q′} ⊆ {Q̃ ∈ Qmax
k : Q̃ ≥ Q}.

Hence, Q′ ∈ Qk,i and Q′ ∈ TQmax since Q′ ≤ Qmax. �

(7.12) Lemma. Let TQmax be a tree in Qk,i having the quartile Qmax as its top, and let
ΠTQmax be the orthogonal projection onto the subspace of L2(R,R4) defined by the union
ATQmax = ∪Q∈TQmaxQ of the quartiles in TQmax . Then the inequality

‖ΠTQmax (F )(x)‖ ≤ const. 2k
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holds for every x ∈ IQmax .

Proof. By Lemma (5.9) and (7.11) a tree can be decomposed into the union of disjoint
tiles. So if P̃ = {P ∈ P : P ⊆ ATQmax}, by (5.5) and (5.13) the orthogonal projection onto
the subspace of L2(R,R4) associated with ATQmax may be realized as

ΠTQmax (F )(x) =
∑

P∈( eP)min

〈F,R(ωP )〉R(ωP )(x).

Fix x ∈ IQmax and let Q be the minimal quartile in TQmax containing x. If Q is decompos-
able, let zQ, z = α, . . . , γ, be its four time sibling tiles; without loss of generality we can
assume x ∈ IαQ . If αQ ∈ (P̃)min, lemma (5.15) ensures that

ΠQ(F )(x) = ΠαQ(F )(x) = ΠTQmax (F )(x)

from which the inequality

‖ΠTQmax (F )(x)‖ = ‖ΠQ(F )(x)‖ ≤ const. 2k

follows because of the construction of the tree.
If, however, αQ /∈ (P̃)min, then there must exist four time sibling tiles Pj , 0 ≤ j ≤ 3,

such that αQ ⊆ ∪3
j=0Pj , while

Pj ⊆ ATQmax , Pj ≤ αQ, (0 ≤ j ≤ 3).

But, Q̃ = ∪3
j=0Pj is a quartile such that I

eQ = IαQ , and

Q̃ ≤ Q ≤ Qmax, Q̃ ⊆ ATQmax ,

so the convexity of the tree ensures that Q̃ ∈ TQmax , contradicting the minimality of Q
among the quartiles in TQmax whose time interval contains x. Thus αQ ∈ (P̃)min.

On the other hand, if Q is indecomposable then, the four frequency sibling tiles that
form Q belong to (P̃)min. Moreover, because of the convexity of the tree, Q is a minimal
quartile in the tree. If x ∈ IQ, therefore, ΠTQmax (F )(x) = ΠQ(F )(x) from which the the
inequality for ΠTQmax (F ) follows as before. �

We can now prove the second of the two propositions needed in the proof of the Main
Lemma.

(7.13) Proposition. The inequality

‖FQk,i
(G)‖L2 ≤ const. 2k ‖G‖L2

holds uniformly in k and i for all G ∈ L2(R,R4).

Proof. It is enough to show that

(7.14) ‖TQmax(G)‖L2 ≤ const. 2k ‖G‖L2
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holds for all Qmax ∈ Qk,i uniformly in k and i. For then

‖FQk,i
(G)‖L2 = ‖

∑
Qmax∈Qk,i

TQmax(G)‖L2 ≤ const. 2k ‖G‖L2

because of the orthogonality properties of tree operators.
We split the tree TQmax into two subsets and then sum separately over the two sets. Fix

ξ in the frequency interval of Qmax and set

BQmax = {Q ∈ TQmax : ξ ∈ bQ }, B′
Qmax = TQmax \BQmax .

To determine the L2-operator norm of

TBQmax (G) =
∑

Q∈BQmax

1√
|IQ|

〈F,R(ωaQ) 〉 〈G,R(ωbQ) 〉R(ωcQ).

note first that if Q,Q′ belong to BQmax then cQ ∩ cQ′ = ∅. This follows from Lemma (5.2)
because

Q,Q′ ∈ BQmax, Q ∩Q′ �= ∅, =⇒ bQ ∩ bQ′ �= ∅

Thus the exposed wavelet packets {R(ωcQ) : Q ∈ BQmax } form an orthogonal family
(cf. (5.16)). Also we can replace F with the function ΠTQmax (F ) since the subspace of
L2(R,R4) associated with ATQmax contains all the {R(ωaQ) : Q ∈ TQmax }. By Parseval’s
theorem, therefore,

‖TBQmax (G)‖L2 =
( ∑
Q∈BQmax

1
|IQ|

|〈ΠTQmax (F ), R(ωaQ) 〉|2 |〈G, R(ωbQ) 〉|2
)1/2

.

The whole point of all the earlier combinatorics and operator decompositions is that we
are left with an L∞-function ΠTQmax (F ) such that

‖ΠTQmax (F )(x)‖ ≤ const. 2k.

Now view Tb as a measure space with measure µ defined on each quartile Q by

µ({Q}) = |〈ΠTQmax (F ), R(ωaQ)〉|2.

Then

‖TBQmax (G)‖L2 =
(∫ ∞

0

µ({Q : |〈G,R(ωbQ)〉|2 ≥ λ |IQ|}) dλ
)1/2

.

But if Q is a quartile such that |〈G, R(ωbQ)〉|2 ≥ λ |IQ| then

IQ ⊆ {x : M(G)2(x) ≥ λ}
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where M is the maximal function. Since the tiles aQ are pairwise disjoint, therefore,

µ({Q : |〈G,R(ωbQ)〉|2 ≥ λ |IQ|}) ≤
∫
{x :M(G)2(x)>λ}

‖ΠTQmax (F )(x)‖2 dx

≤ const. 22k |{x : M(G)2(x) ≥ λ }|.

Consequently,

‖TBQmax (G)‖L2 ≤ const. 2k
(∫ ∞

0

|{x : M(G)2(x) ≥ λ }| dλ
)1/2

≤ const. 2k‖M(G)‖L2 ≤ const. 2k‖G‖L2 .

In the second case, set

TB′
Qmax (G) =

∑
Q∈B′

Qmax

1√
|IQ|

〈F,R(ωaQ) 〉 〈G,R(ωbQ) 〉R(ωcQ).

But if Q,Q′ belong to B′
Qmax, then bQ ∩ b′Q = ∅ for the same reason as before and so the

functions {R(ωbQ) : Q ∈ B′
Qmax } form an orthonormal family. Thus the adjoint of TB′

Qmax

has the same structure as TBQmax and its L2-operator norm will satisfy the same estimate.
On combining operator norm estimates we obtain (7.14), completing the proof. �

All that remains now is the proof of the Main Lemma (7.2).

Proof of Main Lemma. Given κ > 0 choose k0 so that 2k0 ≤ κ < 2k0+1; select also any
m > p′ + ε where ε is the same as the one appearing in (7.4). For each fixed F we have
shown already that D(F,G) admits a decomposition

D(F,G)(x) =
∑
k∈Z

∞∑
i=0

FQk,i
(G),

in terms of forest operators FQk,i
each of whose L2-operator norm is essentially 2k. We

shall use the Carleson measure estimate to aid in summing over the forest operators.
Set

A = {Qk,i : k < k0, i < m(k0 − k) }

and let B be the set of all other forests. Then

D(F,G)(x) =
∑

Qk,i∈A
FQk,i

(G) +
∑

Qk,i∈B
FQk,i

(G).

Now by construction,

supp(FQk,i
(G)) ⊆

⋃
{IQ : Q ∈ Qk,i } ⊆ {x : NQk

(x) ≥ 2i }
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where NQk
(x) counts the number of maximal quartiles in Qk containing x. Thus for

Qk,i ∈ B the support of FQk,i
(G) lies in the set

Ek =

{ {x : NQk
(x) ≥ 1 }, k > k0,

{x : NQk
(x) ≥ 2m(k0−k) }, k ≤ k0.

Now set E = ∪kEk. By Corollary (7.7),

|Ek| ≤ const.
(
‖F‖Lp

2k

)p

(k > k0),

while

|Ek| ≤ const.
(

‖F‖Lp

2k2m(k0−k)/(p′+ε)

)p

(k ≤ k0).

Thus the choice of k0 and m ensure that

|E| ≤
∑
k

|Ek| =
∑
k≤k0

|Ek|+
∑
k>k0

|Ek|

≤ const.
(
‖F‖Lp

2k0

)p

≤ const.
(
‖F‖Lp

κ

)p

,

establishing the first of the estimates in the Main lemma.
To establish the second, choose G ∈ L2 ∩ Lq and observe first that

(∫
R\E

‖D(F,G)(x)‖2 dx
)1/2

≤
∑

Qk,i∈A
‖FQk,i

(G)‖L2 ,

since on R \E we find only the time intervals of quartiles in Qk,i ∈ A. But

∑
Qk,i∈A

FQk,i
(G) =

∑
k≤k0

m(k0−k)∑
i=0

FQk,i
(G),

so by (7.13)

(∫
R\E

‖D(F,G)(x)‖2 dx
)1/2

≤ const. 2k0‖G‖L2 ≤ const. κ ‖G‖L2 .

On the other hand, the support of FQk,i
(G) lies in the set {x : NQk

(x) ≥ 1} whenever Qk,i

belongs to A, so

FQk,i
(G) = FQk,i

(G)χ{x:NQk
(x)≥1} = FQk,i

(Gχ{x:NQk
(x)≥1}).
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Thus, the function G in the right hand side of the last inequality can be replaced by
Gχ{x:NQk

(x)≥1}. But, by (7.7) and Hölder’s inequality,

‖Gχ{x:NQk
(x)≥1}‖L2 ≤ ‖G‖Lq |{x : NQk

(x) ≥ 1}| 12− 1
q

≤ const. ‖G‖Lq

(
‖F‖Lp

2k

)p ( 1
2−

1
q )

≤ const. ‖G‖Lq

(
‖F‖Lp

κ

)p ( 1
2−

1
q )

.

Hence (∫
R\E

‖D(F,G)(x)‖2 dx
)1/2

≤ const. κ ‖G‖Lq

(
‖F‖Lp

κ

)p ( 1
2−

1
q )

from which the second estimate in the Main Lemma follows defining α so that

1− α = p
(

1
2
− 1
q

)
= p

(
1
2
− 1
r

+
1
p

)
.

This completes the proof of the Main Lemma, of (4.8) and of the Main Theorem as well. �
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