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Lecture 12
Bayesian Statistics

12.1 The frequentist and subjectivist interpretations of
probability

There are two major schools of thought, frequentist and subjectivist, when
it comes to the interpretation of the meaning of probability’. The frequentist
(frequency) interpretation argues that the only way to interpret the proba-
bility of an event is to repeat the “experiment” a large number of time and
compute the relative frequency of that event. That relative frequency, for a
frequentist, is the probability of that event. A subjectivist, on the other hand,
thinks of probability of an event as a degree of belief; for him or her, a probabil-
ity is a subjective matter, which may differ from an individual to an individ-
ual. It is not an objective state of reality, but simply a numerical description of
the state of an individual’s knowledge and belief about a certain occurrence.

The usual laws of probability, most notably the additivity P[A U B] =
P[A] + P[B], for ANB = @, hold in both interpretations, but for different
reasons. In the frequentist’s world, additivity of probability follows from
the fact that the frequencies are additive (the “number of times A occurred”
plus “the number of times B occurred” is exactly the same as “the number of
times A or B occurred”.)

The explanation is different for a subjectivist. She argues as follows: if an
individual believes in A to a degree p4, she will be indifferent between the
cash amount of $p4 and a bet denoted by 14 which pays $1 is A happens,
and $0 if it does not. Similarly, she will be indifferent between $pp in cash,
and the bet 15. Unless she is willing to part with all of her possessions, that
same individual will then also need to be indifferent between p 4 + pp in cash
and the bet 14,5. Why? Suppose that she is not consistent in this way and
that she prefers the cash to the bet. That means that she would be willing to
accept a tiny bit less cash (say p4 + pp — €) in exchange for the bet 145 and
still be happy. Anybody else could then come in and sell the separate bets 14
and 1p for p4 and pp, respectively, to her, and then, come back and buy the

'this is a gross simplification - many sub-interpretations are lumped here under two um-
brella notions. Third points of view, also exist.
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aggregate bet 145 = 14 + 1p for p4 + pp — €. The net of these transactions is
that our inconsistent subjectivist loses ¢ > 0 and the other party makes ¢ > 0
in profit, without assuming any risk. If more profit is needed, this game can
be repeated n times, with the total profit of ne. In other words, one cannot
hold arbitrary subjective beliefs about likelihoods of different events without
losing all their money to an opportunistic counter party.
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Figure 1. An XKCD comic on Frequentists and Bayesians

12.2 Frequentist vs. Bayesian statistics

The two schools of thought described above gave birth to two prevailing
schools of thought on how to perform statistical inference. Frequentists think
of the parameter 6 as fixed, but unknown. Once an estimator is chosen,
its performance is assessed by “repeating” the experiment many times, and
thinking of the confidence levels (say) as the relative frequency of the number
of experiments in which the “true parameter” 6 ended up in the constructed
confidence interval.
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Bayesians, on the other hand, think of data-gathering as a procedure
which gradually adjusts their subjective opinions of the value of the “true
parameter” 0. Being consistent in their beliefs (as explained in the previ-
ous section), Bayesians must adhere to the standard rules of probability. In
particular, their beliefs need to satisfy the Bayes rule; for simplicity, let us
assume for now that the unknown parameter 6 can take one of n discrete
values 0y, ...,0;:

P[0 = 6] P[Y = y[6 = 6]
¥ P[0 = 6] P[Y = y[6 = 6]
It relates the posterior probability P[0 = 6¢|Y = y] to the prior probabilities
P[0 = 6;],i = 1,...,n. In other words, it tells us how a Bayesian’s beliefs
about various values of the parameter 6 change, once Y = y is observed. This
procedure is called Bayesian updating and is the foundation of the entire
subject of Bayesian statistics.

It is important to remark that the Bayes rule prescribes how a belief needs
to be updated once new information (Y = y) arrives, but it says nothing about
the prior belief. Often, it, itself, is a result of a similar updating procedure
performed in the past, but that only kicks the can down the road. In fact, the
prior belief is an input to any Bayesian model. In practice, one often holds
a strong belief about 6 from a experience or knowledge, and then quantifies
it as a probability distribution. Alternatively, if no prior information what-
soever is available, one tries to assign a so-called uninformative prior. For
example, in the simple case described above, an uninformative prior would
assign equal probabilities to each possible value of the parameter 6, i.e., we
would have P[0 = 6;] = 1 foreachi=1,...,n.

PO = 6c|Y = y] =

Example 12.2.1. We continue the setting of Example 11.2.1. The possi-
ble values of the parameter 6 are §; = 1, 6, = 2 and 63 = 3. With-
out any other prior information of the probabilities P[0 = 6;] for
i=1,...,3, we assign an uninformative prior

P[0 =1 =P[0 =2 =P[p =3] = 3.

This allows us to compute the posterior probabilities, given the obser-
vation Y = G:

PlY = G|6 =1]P]f =
Plo=1)y = G| = Y =GP =1[Plo =1]
Lia Py =Gl =i]P[6 =]
0.9><%
= 7 7 T ~ 0.58
09x3+015x3+05X% 3
Similarly,
0.15x %
P[0 =2|]Y =G] = i T T ~0.10
09x3+015x3+05X% 3
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and

1
05X 3

P9 =3|Y =G| =
0=3 ] 09 x £ 4+0.15x £ +05x 1

~ 0.32.

In other words, the uniform prior distribution

1 2 3
033 0.33 0.33

turned into the posterior distribution

1 2 3
0.58 0.10 0.32

after we learned that Y = G.

Suppose now that we know that the three busses arrived from three
different neighboring towns of sizes 5,000, 35,000 and 10, 000, respec-
tively. If we picked a random football fan and tried to guess his or her
bus of origin (without asking about the team they support), we would
probably guess bus 2 and assign the following prior probability distri-
bution to the parameter 6:

| 1 2 3 |1 2 3

5000 35000 10000 = — 1§ - T
| 20006 500w Boom | /10 7/10 1/5

If we subsequently learn that out fan supports the team G, i.e., that
Y = G, Bayes formula would produce a new (posterior) distribution
for 6:

1
0.9 X 15

7 = T ~ 0.31
09x 15 +015X% 57 +05% 5

Plo=1]Y =G] =

and similarly,
P[§ =2|Y = G] = 0.35 and IP[§ = 3|Y = G] =~ 0.34.

The value of 6 with the largest posterior is still § = 2, even though the
proportion of the fans of the Orange team in town 2 is only 0.15. Note
however, that this probability went down from 0.7. In other words,
the new information that Y = G prompted the Bayesian statistician to
adjust his or her beliefs about 6 quite significantly. The prior informa-
tion, however, was so strong that even after that adjustment, the value
0 = 2 wins, albeit with a much smaller margin®

‘our Bayesian statistician would have been willing to pay more for the bet 179_5}
before seeing the data Y = G.
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12.3 Priors and posteriors when distributions are continuous

We move on and apply the Bayesian ideas to the continuous case which
is quite common in practice. The Bayes formula in this case looks pretty
much the same as above, with the usual discrete—continuous changes. In
particular, we assume that the prior distribution for the unknown parameter
6 admits a pdf, which is usually denoted by p(6) in Bayesian statistics. The
posterior density is traditionally denoted by p(0|y1,...,yx), the likelihood
function L(6;y1,...,yx) plays the role of the conditional probability, and the
sum in the denominator is replaced by an integral:

__pO)LOly1,---,Yn)
POV V) = o L Blyn, - ) B8

We use the notation @ for the variable of integration, and the integral is always
taken from —oo to oo; this can be effectively reduced to a smaller domain if
p(0) takes the value 0 on some subset of R. It is important to note right away
that the integral in the denominator does not depend on 0; it is effectively a
constant.

Example 12.3.1. Suppose that Y3, ...,Y; is a random sample from the
Normal distribution with the unknown mean y and a known standard
deviation ¢ = 1. The prior distribution for the parameter u is assumed
to be normal, too, with parameters 0 and 1 (a standard normal). The
pdf of the prior distribution is

1
p(p) = (m) V%2,
and the likelihood function is given by
1
L(w;y1, -, Yn) = (271)_”/26722(%7”)2.
Therefore, by the Bayes formula,

(271)*”/2*1/2[%(”2*2?:1 (yi—n)?)

p(plyy - yn) =
' f(zyT)fn/zfl/zef%(ﬁMZ?’:l Wi=P%) gg

At this point we could go ahead and try to evaluate the integral in the
denominator. Alternatively, we could remember that the denominator
is not a function of u (it got “integrated away”), and that it can be
taught of as “the constant the numerator must be divided by to obtain
a true pdf”. In other words, we have

(il ) = ce™ 20 HE)
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where ¢ does not depend on p and ensures that p(p|ys,...,yn) is a
true pdf (i.e., integrates to 1). If we rearrange the terms inside the
exponential function above, we get

p(uly ) = Ce*%((nJrl);ﬂquZiyﬁZy?)
17ec-7Yn) —

NI—

2 Yin
=c ef% Ly; g_ (n+1) (;l 2 n]+l )

1 2_o, Lit1  (Li¥i?
_ . -bew, o (-2t ()

2
(i)
= (e n+l
1 1
where ¢ = ce 2 Zylz_z("ﬂ) L is another constant as far as u is con-
cerned. We recognize the expression above as the pdf of a normal
distribution with mean nlﬁ Y. y; and variance (n + 1). This automati-
cally dictates the value of the constant ¢. Indeed, it needs to be equal to
(27t(n+1))~1/2; otherwise, p(p; y1, - . ., yu) would not be a pdf. There-
fore, we conclude

2
1 1
. - (P—,Hl Ziyi)

P(#|y1/"'/yn):me n+1 ,

i.e., the posterior distribution of y is normal, with mean %—‘rl Y. y; and
variance n + 1.

It turns out that the general situation is a little harder to analyze, but
easier to interpret. A bit more algebra than above shows that if the
prior distribution of y is normal with known parameters ppior and
Toriors and if Yy,..., Yy ~ N (u, 00), where 0y is known, then the poste-
rior distribution of y is also normal with parameters

ior = AT+ (1= A)iprior and T2 = (s— + )"
Hposterior Y Hprior posterior 5 ’

)
prior % /n

}z)rior
Z}Z)riorﬂrg/n )
the prior mean and the sample mean, with weights that are inversely
proportional to the prior and sample variances. The posterior vari-
ance is smaller than both the prior variance and the sample variance.
Loosely speaking, the posterior belief about y centers it somewhere
between the prior mean and the sample mean, with a higher degree of
certainty than before.

where A = The posterior mean is a weighted average of
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12.4 Statistical inference in the Bayesian framework

In theory, once we combine the data and the prior into a posterior distri-
bution, our job is done - we have a complete description of our state of
knowledge (belief) about the unknown parameter 6. In practice, the whole
distribution (i.e., its pdf) is often hard to interpret directly and may contain
an overwhelming amount of information. For that reason we introduce the
Bayesian versions of point and interval estimators. We define them in the
continuous case, with the discrete case being completely analogous:

Definition 12.4.1. Let p(0|y1,...,yn) denote the posterior distribution
for the unknown parameter 6.

1. The estimator

A

6 — Eposterior {6] — /Qp(elyl, e ,]/n) do

is called the Bayes estimator for 6.

2. An interval estimator (fr,fg) is called a (Bayesian) credible inter-
val of size 1 — « if the posterior probability that 6 € (0r,6r) is (at
least) 1 — a, i.e., if

L ) 0
]Ppostenor[eL <9< GR] _ /é R p(9|]/l/' . .,]/n) do =1 — «.
L

We illustrate the use of these concepts on a commonly used example. It
features a new class of distributions (do not confuse the parameter a below
with the significance level « above. They have nothing to do with each other.)

Definition 12.4.2. The continuous distribution with the pdf

fly) = B(i,ﬁ) yail (1- y)ﬁill[o,l] ),

where «, B > 0 are parameters and B(«, ) = fo y)Pldy, is
called the beta distribution (denoted by Beta(a, ﬁ)

The beta distribution generalizes the uniform distribution (x = = 1), as
well as some other important distributions supported on (0,1). As we will
see in the example below, it seems to be tailor-made for modeling proportions
or unknown probabilities. The function B(a, B), defined so that [ f(y)dy =1,
is known as the beta function and it can be expressed in terms of the gamma
function as follows:

L(a)L(p)

Bl B) = T 8)
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In particular, since I'(n) = (n —1)! for n € IN, we have B(a, ) = % =
(a+p—1)(“TF72), as soon as a, B € N.

a—1
Both the expectation and the variance of the beta distribution have nice
compact explicit forms:

_ _ ap
ElY] = 235 VarlY] = mppterseny

Example 12.4.3. Let Yj,...,Y, be a sample from the Bernoulli B(6)-
distribution (we use 6 instead of the usual p to avoid confusion with
the pdfs which are also denoted by p in Bayesian statistics). The prior
distribution for p is chosen to be Beta(a, ) for some «,f > 0. The
posterior is then given by

pOly1,. .., yn) = EpO)L(O; Y1, .., Yn),

where C = [L(8ly1,...,yx)p(0)d0 is a constant (as far as 6 is con-
cerned). We plug in the expressions for p and L (and remember that
the function B(w, B) which appears in the pdf of the beta distribution
does not contain 6, either):

pOly1, ..., yn) = Weaﬂ(l _ 9)/571 Hgyi(l _ 9)1*%
1

_ 1 =1+Yyi(1 _ —14+n—Y,;y;

_W(;w LiVi(] — g)P-1+n—YLiy
As a function of 6§, this looks exactly like the density of beta distribu-
tion, but with parameters &’ =« + Y y; and p’ = B+ n — Y_y;. There-
fore, the constant CB(«, B) must be equal to the normalizing constant
for the Beta(a/, /) distribution, i.e., B(a/, ).
Now that we have our posterior distribution, we need to compute its
expectation to obtain an expression for the Bayes estimator:

6 — o atYiyi
— W+p T atptn”

The special case where & = = 0 corresponds to a so-called uninfor-
mative prior' we obtain § = § - which is both the UMVUE and the
MLE in this case. For integer values of « and , the prior information
amounts to adding « ones and B zeros to the sample. It is as if, we
already collected a sample of size « + B before y1,...,y,.

To find a credible interval, one needs to be able to compute quantiles
of the posterior distribution. For example, when &« = = 0, n = 100
and Y y; = 60, the posterior distribution is Beta(60,40), whose 2.5%
and 97.5% quantiles are 0.503 and 0.693, respectively. Therefore, in this
case, the 95%-credible interval for 6 is (0.503,0.693).

Istrictly speaking, there is no Beta distribution with « = B = 0 since its “density”

y~1(1 —y)~! integrates to +co on [0, 1]. What we have in mind is the limiting case & — 0
and |beta — 0.
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