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Instructor: Gordan Zitkovi¢

Lecture 3

Cumulative distribution functions and derived
quantities

When we talk about the distribution of a discrete random variable, we
write down its pmf (or a distribution table), and when the variable is contin-
uous, we give its pdf. There are other ways of expressing the same informa-
tion; depending on the context, these other ways can be much more useful
or effective.

3.1 Cumulative distribution functions (cdf)

Definition 3.1.1. For a random variable Y, discrete or continuous, we
define its cumulative distribution function (cdf) Fy : R — [0,1] by

Fr(y) =P[Y<y], yeR

The first, obvious, advantage of the cdf is that it can be used for both dis-
crete and continuous random variables. Since it is defined as a probability of
an event, Fy(y) can be computed (at least in principle) from the distribution
table in the discrete case

F(y)= ) pyv(w),

u€Sy,uy

or from the pdf (in the continuous case):

Ry = [ ptwdu (1.0

As we shall see in the examples, going the other way in the discrete case is
possible, but the formula is a bit clumsy. The continuous case is nicer because
one could use the fundamental theorem of calculus to conclude that

Ary) = GF(y) fory € R,

at least for those y where fy is a continuous function.

We know that the pdf fy of any random variable Y must be nonnega-
tive and integrate to 1. In a similar way, any cdf will have the following
properties:

Last Updated: September 25, 2019



Lecture 3: Cumulative distribution functions 20f8

1. 0 < Fy(u) <1,
2. Fy is nondecreasing, and

3. limy e Fy (1) = 1 and limy,—, o Fy(u) = 0.

Example 3.1.2.

1. Bernoulli. Let Y be a Bernoulli random variable B(p). To find an
expression for Fy, we first note that

Fy(y) =0fory <O0.

This follows directly from the defintion - Y takes values 0 or 1, so
P[Y <y] =0, as soon as y < 0. Similarly,

Fy(y)=1fory > 1.

What happens in the middle? For any y € [0,1), the only way for
Y <y to be true is if Y = 0. Therefore,

F(y) =PlY <y]=P[Y=0]=gqgfory €[0,1).

A picture makes it even easier to grasp:

1

Figure 1. The cumulative distribution function (CDF) for the Bernoulli
B(p) distribution.

2. Discrete with finite support. Let Y be a discrete random variable
with a finite support Sy = {y1,...,y»} and let its distribution table
be given by

[y vy oy
P11 P2 . pa
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Following the same reasoning as in the Bernoulli case, we get the
following expression for the cdf

0, y <Y1,
P1, y1 <y <y,
<
Fy(y) = p1+ p2, Y2 Sy <ys,

prtp2t+-F -1 Yn-1 <Y <Yn
1, Y > Y.

Again, a picture is easier to parse:

Pn

I
{

n 2 Yn

Figure 2. The cumulative distribution of a discrete distribution with
support {y1, ...,y } and the associated probabilities {p1,..., s}

3. Uniform. The cdf of the uniform distribution U(I, r) will no longer
have “jumps”. In fact, that is the reason behind calling continuous
distributions continuous. Here, we use the expression (3.1.1) and
integrate the pdf fy of the uniform distribution from —oco to y. As
above, Fy(y) = 0 for y < [ because fy(y) = 0 for y < I and
integration of 0 yields 0. To see what is going on between [ and
r, we pick y € [I,r] and note that

/fY du—/fy du—/ly%[lr] du = - /d:z_

—

Finally, for y > r, we have Fy(y) = 1. Alternatively, we could have
used the definition of Fy to conclude directly that

0, y <l
Fe(y) =P[Y <yl =S yelr]
1, y>L
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1 r

Figure 3. The cumulative distribution of a uniform U(I, r) distribution.

4. Normal Distribution. The CDF of the normal distribution N(u, o)

u 1 7(“*#)2
Fy(y):/_oo Tk 202 du

does not have an explicit expression in terms of elementary func-
tions (not even for 4 = 0 and ¢ = 1). That is why you had to use
tables (or software) to compute various probabilities associate to
the normal in your probability class. Using mathematical software,
one can evaluate this integral numerically, and the resulting picture
is given below:

098} —— =~ — e
084} = ——m—m e

e

016 -———————————-

u—o u p+o ut20

Figure 4. The cumulative distribution of a normal N(y, ) distribution.

5. Exponential distribution. The integration in the computation of
the cdf Fy of an exponentially-distributed random variable ¥ ~
E(7) can be performed quite easily and completely explicitly. First
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of all, for y < 0, we clearly have Fy(y) = 0. For y > 0, we compute

Y Y
Fy(y) = / %e‘”/fl[orw)(u) du = /0 %e‘”/T du=1—¢Y7,y>0.

—00

0

Figure 5. CDF of the exponential distribution E(7).
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3.2

Quantiles

The notion of a quantile is familiar to almost everyone, even if you have not
learned it formally in a class. You don know what “top 1%” means, right?
The formal definition is easy once we have the notion of a cdf at our disposal:

Definition 3.2.1. For « € (0,1), we define the a-quantile of the distri-
bution of the random Y as the number gy(«) € R with the property
that

Fr(gy(a)) =, ie, P[Y<gy(a)]=a

Caveat: The way we defined above, the quantile gy («) may not need
to exist for all . This can be remedied by adopting a more careful
definition, but, since we will not have to deal with this problem in
these notes - and whenever we need quantiles, they will happily exist
- we simply ignore it. If you want to think about this a bit more, try to
figure out which quantiles of the Bernoulli distribution actually exist,
i.e., for which « can we find a number g such that P[Y < g] = a, when
Y is Bernoulli. Is such a g uniquely determined?
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Example 3.2.2. Normal quantiles. In practice, one finds quantiles by
inverting the CDF; graphically this amounts to finding « on the ver-
tical axis, and then finding a value g on the horizontal axis such that
Fy(q) = a. For example, Figure 4. in Example (3.1.2), part 4., above,
reveals that, for Y ~ N(u, ), we have (approximately)

gy(0.16) = p—o0, qy(0.5) = u, qy(0.84) = yu+ 0 and qy(0.98) = u+20.

This is very much related to the well-known 68 — 95 — 99.7-rule.

3.3 Survival and hazard functions

Survival and hazard functions are especially important for an area of statis-
tics called the survival analysis, but are also a part of the vocabulary of gen-
eral statistics.

Definition 3.3.1. Let Y be a random variable with cdf Fy.

1. The survival function Sy (y) of Y is defined by
Sy(y) =1—Fy(y) fory e R.

2. If Y is continuous, the hazard function hy(y) is given by

hy(y) = L4 for y with Fy(y) < 1.

These quantities have natural interpretations when Y is thought of as a
lifetime (of a particle, bulb, bacterium, individual, etc.). Fixing, for conve-
nience, the interpretation that Y is the age at death of an individual, we have

1. Sy(y) is the probability that the individual will survive at least y years.

2. hy(y)Ay is the (conditional) probability that the individual will die some
time in the (small) interval [y, y + Ay], given that it has survived until y.

Example 3.3.2. Let Y be an exponential random variable with param-
eter 7. Then

Sy(y) = e ¥/ and hy(y) = 1 fory >o0.
In words, exponentially-distributed lifetimes have constant hazard
functions - “the probability of dying in the next Ay is constant and
does not depend on the age y.” For comparison, Figure 6 below fea-
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tures some real data about humans where the hazard rate is far from

constant.

— 0.3

08 0.25

0.2

06 0.15

0.4 0.1

0.2 0.05

y
20 40 60 80 100

20 40 60 80 100 120y

Figure 6. The survival (left) and the hazard (right) functions of the empirical
distribution of the ages of death of all female individuals born in the US in

1917.

3.4 Problems

Problem 3.4.1. Two (unbiased, independent) coins are tossed, and the total
number of heads is denoted by Y. Write an expression for the CDF of Y and

sketch its graph.

Problem 3.4.2. Which of the following pairs of functions could be the pdf and
the cdf (respectively) of some probability distribution:

Problem 3.4.3. Let Y be a random variable with CDF Fy, and let gy : (0,1) —
R be its quantile function (we assume it exists for each « € (0,1)). What is
the relationship between the graphs of Fy and gy, i.e., how do you get one
from the other?
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Problem 3.4.4. Let Y be a continuous random variable with the density fy
given by
A y) = (1—y)1py (),

for an appropriate constant c.
1. Sketch the graph of f and find the value of the constant c.

2. Compute the cumulative distribution function (cdf) Fy and the survival
function Sy, of Y.

3. What is the domain of the hazard function? Compute the hazard function
hy itself.

4. Find the mode of Y
5. Compute the %—th quantile of Y. (Note: Guess and verify.)

Problem 3.4.5. Let Y be a random variable with the pdf
fr(y) =2yLio<y<1y-

Compute the hazard function hy of Y.

Problem 3.4.6. Let Y be a uniform random variable on the interval [0,100].
The hazard function hy of the distribution of Y is given by

(a) %l{po} for y € (—o00,100)
(b) 1305 1(y0y for y € (—o0,100)

100—
(C) 1{y<0} + Toyl{ogygloo} for y S (—00, 100]

(d) (100 = y)1(ye(0,100)) fory € [0,0)

(e) none of the above

Problem 3.4.7. The expected lifetime of a bulb is & (in hours). Assuming that
the bulb lifetimes are exponentially distributed, compute

1. the probability that the bulb is still functional at time &

2. the half-life of the bulb, i.e., a number t* such that the probability that the
bulb is still functional after t* hours is exactly 1/2.

Problem 3.4.8. Compute the a-quantile gy («a) for « = 0.75 where Y is the
uniform distribution U(4,8) on [4,8].

Last Updated: September 25, 2019



	Cumulative distribution functions (cdf)
	Quantiles
	Survival and hazard functions
	Problems

